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Abstract

A system is presented utilizing a simple genetic algo-
rithm combined with a developmental model for the evolu-
tionary design of generic structures of combinational mul-
tipliers. An artificial environment is introduced into the sys-
tem interpreted as an external control of the developmental
process allowing to design irregular structures (inspired by
the irregularity observed in conventional multipliers). Two
sorts of experiments were conducted in order to demon-
strate the ability of the system to adapt to different environ-
ments. The approach presented in this paper poses the first
case in the field of the evolutionary design when generic
multipliers have been evolved by means of the development.

1. Introduction

Combinational multipliers represent a class of circuits
which are generally hard to design using evolutionary tech-
niques and the computing resources available nowadays.
Typically, the search space is extremely large and rugged
and the design is usually not scalable in case of low-level
representations, e.g. gate-level design using traditional
Cartesian Genetic Programming (CGP) [9]. The problem of
scale, constituting a major issue in the evolutionary design
of digital circuits, prevents from finding good solutions in
reasonable time both due to the size of the search space and
the number of inputs of the target circuit itself because of
enormously time-consuming evaluation process (fitness cal-
culation) in case of large circuits. Therefore, more effective
representations have been investigated in order to overcome
these issues and improve the scalability and evolvability of
multipliers and other digital circuits as summarized in the
following paragraph.

Miller et al summarized the principles in the evolution-
ary design of digital circuits and showed some results of
evolved combinational arithmetic circuits, including multi-

pliers, in [7]. A detailed study of the fitness landscape in
case of the evolutionary design of combinational circuits
using Cartesian Genetic Programming is proposed in [8].
3 × 3 multipliers constitute the largest and most complex
circuits designed by means of traditional CGP in these pa-
pers. Vassilev et al utilized a method based on CGP which
exploits redundancy contained in the genotypes. Larger (up
to 4 × 4 bits) and more efficient multipliers were evolved
by means of this approach in comparison with the conven-
tional designs [15]. Vassilev and Miller studied the evo-
lutionary design of 3 × 3 multipliers by means of evolved
functional modules rather than only two-input gates [16].
Their approach is based on Murakawa’s method of evolv-
ing sub-circuits as the building blocks of the target design
in order to speed up and improve the scalability of the de-
sign process [10]. Torresen applied the partitioning of the
training vectors and the partitioning of the training set ap-
proach (so-called increased complexity evolution or incre-
mental evolution) for the design of multiplier circuits. His
approach was focused on improving the evolution time and
evolvability rather than optimizing the target circuit. 5 × 5
multipliers were evolved using this method [14]. Stomeo
et al devised a decomposition strategy for evolvable hard-
ware which allows to design large circuits [13]. Among
others, 6 × 6 multipliers were evolved by means of this ap-
proach. Aoki et al introduced an effective graph-based evo-
lutionary optimization technique called Evolutionary Graph
Generation [2]. The potential capability of this method was
demonstrated through experimental synthesis of arithmetic
circuits with different levels of abstraction. 16×16 multipli-
ers were evolved using word-level arithmetic components
(such as one-bit full adders or one-bit registers). Note that,
in addition to these papers, evolution of different digital cir-
cuits, including combinational multipliers, was performed
in order to investigate fault tolerance and other important
features rather than to design large circuits, e.g. [6, 5, 4].

The goal of this paper is to utilize an artificial develop-
mental model based on application-specific instructions in
connection with the genetic algorithm in order to (1) reduce



the length of the chromosome needed for encoding the tar-
get circuits, (2) introduce an external control of the devel-
opmental process in form of a string of values interpreted as
a biologically inspired environment for the construction of
irregular structures, (3) enable to design generic combina-
tional multipliers and (4) demonstrate the ability of the sys-
tem to adapt to different environments retaining the capabil-
ity to design generic structures. A concept of environment
was proposed in [3], where the environment was utilized to
affect the function of polymorphic circuits [1]. In this paper
the environment is intended to influence the development of
the circuit structure. The development of generic multipli-
ers is inspired by the preceding research in which similar
instruction-based developmental model was applied for it-
erative design of generic sorting networks [12]. In that case
innovative algorithms were discovered in comparison with
the conventional methods.

The approach presented in this paper differs from the ex-
isting methods of the evolutionary design of multipliers par-
ticularly in the following aspects. (1) The work is focused
on the design of arbitrarily large multipliers rather than on
optimizing their structure. The existing methods usually
have dealt with a fixed number of inputs, possibly a limit of
the circuit size has been involved for keeping a reasonable
evolution time. (2) A developmental model is utilized in
this paper in combination with an evolutionary algorithm to
design the generic multipliers. Liu et al, for example, also
applied a biological development model for the design of
robust multipliers [6], however, only 2-bit multipliers were
involved in the experiments. Moreover, his work was fo-
cused on designing robust fault-tolerant circuits rather than
generic structures which represents the main difference in
comparison with this paper. (3) Our approach introduces a
kind of external environment in order to investigate an abil-
ity of adaptation of the developmental process and to create
different general multiplier structures for distinct forms of
environment.

2. The Development

In nature, the development is a biological process of on-
togeny representing the formation of a multicellular organ-
ism from a zygote. It is influenced by the genetic infor-
mation of the organism and the environment in which the
development is carried out.

In the area of computer science and evolutionary al-
gorithms in particular, the computational development has
been inspired by that biological phenomena. Computational
development is usually considered as a non-trivial and indi-
rect mapping from genotypes to phenotypes in an evolution-
ary algorithm. In such case the genotype has to contain a
prescription for the construction of target object. While the
genetic operators work with the genotypes, the fitness cal-

culation (evaluation of the candidate solutions) is applied on
phenotypes created by means of the development. The uti-
lization of environment in the computational development
may be understood as an external information (in addition to
genetic information included in the genotype) and as an ad-
ditional control mechanism of the development. The princi-
ples of the computational development together with a brief
biological background are summarized in [11].

3. Development of Generic Multipliers

The method of the development is inspired by the
construction of conventional combinational multipliers for
which generic algorithms exist. Figure 1 shows a typical
4 × 4 combinational multiplier designed by means of the
conventional approach [17]. It is evident that the first level
of AND gates and the following sequence of adders are spe-
cific in comparison with the rest of the circuit, which poses a
kind of irregularity. However, the rest of the circuit exhibits
regular sequences which can be expressed by means of it-
erative algorithm utilizing variables. Moreover, the whole
design can be easily parametrized by means of the width
(the number of bits) of the operands. Theferore, this con-
cept is assumed to be convenient for the design of generic
multipliers using development and evolutionary algorithm.
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Figure 1. A 4 × 4 conventional combinational
multiplier. A0 . . .A3,B0 . . .B3 represent the
bits of the operands, P0 . . .P7 denote the bits
of the product.

A building block represents a basic component of the cir-
cuit to be developed. The general structure of the block is
shown in Figure 2a. Each building block contains three in-
puts from which one or two may be unused depending on
the type of the block. There are two outputs at each build-
ing block from which one may be meaningless, i.e. per-
manently set to logic 0, depending on the block type. The
outputs are denoted symbolically as out0 and out1. In case
of the block containing only one output, out0 represents



the effective output and out1 is permanently set to logic 0.
The circuit is developed inside a grid (rectangular array)
which proved to be a suitable structure for the the design of
combinational multipliers (see Figure 2b). Figure 3 shows
the set of building blocks utilized for the experiments pre-
sented in this paper. For the interconnection of the blocks
the position (row, col) in the grid is utilized. The inputs of
the blocks are connected to the outputs of the neighboring
blocks by referencing the symbolic names of the outputs or
via indices to the primary inputs of the circuit, depending
on the block type. Feedback is not allowed. For example,
out1(row, col − 1) means that the input of the block at the
position (row, col) in the grid is connected to the output de-
noted out1 of the block on its left-hand side. The connec-
tions to the primary inputs are determined by the indices v0

and v1. Let A = a0a1a2, B = b0b1b2 represent the primary
inputs (operands A and B) of a 3 × 3 multiplier. For in-
stance, an AND gate with v0 = 1 and v1 = 2 has its inputs
connected to the second bit (a1) of operand A and the third
bit (b2) of operand B. In case of the building blocks at the
borders of the grid (when row = 0 or col = 0), where no
blocks with valid outputs occur (for row−1 or col−1), the
appropriate inputs of the blocks at (row, col) are set to 0.
In this way, for example, full adder (Fig. 3f) at (0, 0) is de-
graded to AND gate, the buffer (Fig. 3b) at (1, 0) becomes
the source of logic 0 etc.
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Figure 2. (a) Structure of a building block.
(row, col) determines the position of the
block in the grid – see part (b). The connec-
tion of the inputs depends on the type and
position of the block. (b) Grid of the building
blocks with m rows and n columns for the de-
velopment of generic multipliers.

The development of the circuit is performed by means
of a developmental program. This program, which is the
subject of evolution, consists of simple application-specific
instructions. The instructions make use of numeric liter-
als 0, 1, . . . ,max value, where max value is specified by
the designer at the beginning of evolution. In addition to
the numeric literals, a parameter and some variables of the
developmental system can be utilized. The parameter repre-
sents the width (the number of bits) of the operands – inputs
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Figure 3. Building blocks for the development
of combinational multipliers. (a, b) buffers,
(c) AND gate, (d, e) half adders, (f) full adder.
(row, col) denotes position in the grid. v0 and
v1 determine indices of primary input bits.
Connection of different inputs of the blocks
are shown. Unused inputs and outputs are
not depicted (they are considered as logic 0).

of the multiplier. The parameter is referenced by its sym-
bolic name w, whose value is specified by the designer at
the beginning of the evolutionary process. For example, in
case of designing a 4×4 multiplier, the parameter possesses
this value, i.e. w = 4. The values of parameter is invariable
during the evolutionary process. There are four variables
integrated into the developmental system denoted v0, v1, v2

and v3, whose values are altered by the appropriate instruc-
tions during the execution of the program (developmental
process). Table 1 describes the instruction set utilized for
the development. The SET instruction assigns a value de-
termined by a numeric literal, parameter or another variable
to a specified variable. Instructions INC, respective DEC
are intended for increasing, respective decreasing the value
of a given variable. The difference can be specified only
by a numeric literal. Simple loops inside the developmental
program are provided with the REP instruction whose first
argument determines the repetition count and the second ar-
gument states the number of instructions after the REP in-
struction to be repeated. Inner loops are not allowed, i.e.
REP instructions inside the repeated code are interpreted as
NOP (no operation) instructions. The GEN instruction gen-
erates a building block of the type specified in the argument.
Note that, if a block containing AND gate is generated (e.g.
AND gate itself, FA), the inputs of the AND gate are con-
nected to the primary inputs indexed by the values of vari-
ables v0, v1 as shown in Figure 3. In case when v0 or v1

exceeds the correct values, the appropriate input of AND
gate is connected to logic 0. If (row, col) do not exceed the
grid boundaries, the block is generated at that position, oth-
erwise no block is generated. After executing GEN, col is
increased by one.

In fact, the developmental program may consist of sev-
eral parts, which may consist of different number of instruc-
tions. Let us define the length of a program (or a part of a
program) as the number of instructions it is composed of.
These parts are executed on demand with respect to an en-



Instruction Arguments Description
0: SET variable, value Assign value to variable. variable ∈ {v0, v1, v2, v3}, value ∈ {0, 1, . . . ,max value,

w, v0, v1, v2, v3}.
1: INC variable, value Increase variable by value. variable ∈ {v0, v1, v2, v3}, value ∈ {0, 1, . . . ,max value}.
2: DEC variable, value If variable ≥ value, then decrease variable by value. variable ∈ {v0, v1, v2, v3},

value ∈ {0, 1, . . . ,max value}.
3: REP count, number Repeat count-times number following instructions. All REP instructions in number

following ones are interpreted as NOP instructions (inner loops are not allowed).
4: GEN block Generate block on the actual position (row, col); increase col by 1.
5: NOP An empty operation.

Table 1. Instructions utilized for the development

vironment. A single execution of a part of program is re-
ferred to as a developmental step. The meaning of the envi-
ronment is to enable the system to develop more complex
structures which may not be fully regular. The environ-
ment is represented by a finite sequence of values speci-
fied by the designer at the beginning of the evolution, e.g.
env = (0, 1, 2, 2). The number of different values in the
environment usually equals the number of parts of the de-
velopmental program. In addition, there is an environment
pointer (let us denote it e) determining a particular value in
the environment during the development time. Each part of
the program is executed deterministically, sequentially and
independently on the others according to the environment
values. However, the parameter and the variables of the de-
velopmental system are shared by all the parts of program.

At the beginning of the evolutionary process the value
of the parameter w and the form of the environment env

are defined by the designer. By the inspiration from con-
ventional multipliers the number of developmental steps
needed for creating a working multiplier and the length of
the environment will correspond to w. The developmental
program, whose number of parts and their lengths are also
specified a priori by the designer, is intended to operate over
these data in order to develop multiplier of a given size. As
evident, the different sizes of multipliers are created by set-
ting the parameter and adjusting the environment. Hence
the circuit of a given size is always developed from scratch;
it is a case of parametric developmental design. The fol-
lowing algorithm will be defined in order to handle the de-
velopmental process.

1. Initialize row, col, v0, v1, v2, v3 and e to 0.

2. Execute env(e)-th part of program.

3. Increase e and row by 1, set col to 0.

4. If neither e, nor row exceed, go to step 2.

5. Evaluate the resulting circuit.

4. Evolutionary System Setup

For the experiments presented herein a simple genetic al-
gorithm was utilized in combination with the developmental
system described in Section 3.

A chromosome consists of a linear array of the instruc-
tions, each of which is represented by the operation code
and two arguments (the utilization of the arguments de-
pends on the type of the instruction). The array con-
tains n parts of the developmental program stored in se-
quence, whose lengths (the number of instructions) cor-
respond to l0, l1, . . . , ln−1. The number of the parts and
their lengths are determined by the designer. In gen-
eral, the structure of a chromosome can be expressed as
i0,0i0,1 . . . i0,l0−1; . . . ; in−1,0in−1,1 . . . in−1,ln−1−1, where
ij,k denotes the k-th instruction of j-th part of program for
k = 0, 1, . . . , lj − 1 and j = 0, 1, . . . , n − 1. During the
application of the genetic operators the parts of the program
are not distinguished, i.e. the chromosome is handled as a
single sequence of instructions. The chromosomes possess
constant length during the evolution. The population con-
sists of 32 chromosomes which are generated randomly at
the beginning of evolution. Tournament selection operator
of base 2 is utilized.

Mutation of a chromosome is performed by a random
selection of an instruction followed by a random choosing
a part of the instruction (operation code or one of its ar-
guments). If the operation code is mutated, entire new in-
struction will replace the original one, otherwise one of its
arguments is mutated. The mutation is performed with the
probability 0.03, only one instruction per chromosome is
muated.

A special crossover operator was applied which exhibits
a significant positive influence on the evolutionary process
in comparison with standard one-point or uniform crossover
or with the case when no crossover is utilized. Two parent
chromosomes are selected and an instruction is selected ran-
domly in each of them (i1, i2). A position (index) is chosen
randomly in each of the two offspring (c1, c2). After the



crossover, the first, respective the second offspring contains
the original instructions from the first, respective the secont
parent with the exception of i1, respective i2, which is put at
the position c2 in the second offspring, respective c1 in the
first offspring. The crossover occurs with the probability
0.9 and is illustrated in Figure 4.
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Figure 4. Crossover of two chromosomes.
i1, i2 denote the instructions to be crossed,
c1, c2 pose the offspring positions the in-
structions will be placed to.

The fitness function is calculated as the number of bits
processed correctly by the multiplier developed by means
of the program stored in the chromosome. The experiments
were conducted with the evolution of programs for the con-
struction of 4 × 4 multipliers, i.e. the parameter w = 4.
There are 24+4 = 256 possible test vectors and the multi-
pliers produce 8-bit results. Therefore, the maximum fitness
representing a working solution equals 256 · 8 = 2048. If
a working solution is not evolved in two millions of gen-
erations in case of the first sort, possibly in one million of
generations in the second sort of experiments (see the next
section), the evolution is restarted with new population. Af-
ter the evolution the resulting program is verified in order
to determine whether it is able to create larger multipliers,
typically up to the size 14× 14 bits. This size of circuit was
determined experimentally, allowing to perform a sufficient
number of developmental steps for demonstrating the cor-
rectness of the evolved program and keeping a reasonable
verification time. If a program shows this ability, it will be
considered as general.

5. Experimental Results and Discussion

The experiments were conducted on a common PC
equipped with a 2.0 GHz processor, 512 MB RAM and run-
ning Gentoo Linux, kernel 2.6.18-r6. The evolution of a
single solution required 15–20 minutes in average.

In the first sort of experiments 3-part programs (6+12+12
instructions) were evolved utilizing the environment env =
(0, 1, 2, 2) for controlling the development. 1000 indepen-
dent experiments were conducted from which 67% working
solutions (i.e. the programs for constructing 4× 4 multipli-
ers) were evolved and 18% of them were classified as gen-
eral programs. Figure 5 shows a multiplier together with

detailed logic schemes of the building blocks (half adder
from Fig. 3e and full adder from Fig. 3f) involved by
the evolutionary algorithm. This multiplier was constructed
by means of one of the most efficient programs that was
evolved in this sort of experiments. The program is shown
in Table 2. Let us go through the program in order to under-
stand the developmental process.
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Figure 5. A 4 × 4 multiplier created by
means of evolved program shown in Ta-
ble 2 using the environment env = (0,1,2,2).
A0 . . .A3,B0 . . .B3 represent the bits of the
operands, P0 . . .P7 denote the bits of the
product. Logic schemes of the half adder and
full adder-based building blocks utilized by
the evolved program are shown. M1 and M2
denote the multiplicands whose partial prod-
uct represents the first operand of the full
adder, B denotes the second operand, Cin

poses the input carry, Sum and Cout repre-
sent the resulting sum and output carry.

At the beginning of the development, the following setup
is specified by the designer: w = 4, env = (0, 1, 2, 2). The
following initialization is performed by the system: v0 =
1, v1 = 0, v2 = 0, v3 = 0, row = 0, col = 0, e = 0.

At this point env(e) = 0, therefore, Part 0 of the pro-
gram will be executed. The instruction 0 should repeat zero
times instructions 1 and 2 (because v1 = 0), therefore, this
code has no effect. Instruction 3 will repeat four times (be-
cause w = 4) instructions 4 and 5 which create row 0 of
the multiplier (blocks HA-2) with the inputs of AND gates
of these blocks connected to the primary inputs (operands
of the multiplier) specified by the actual values of v0 and
v1. While v1 retains 0, v0 is increased by 1 by instruction
5 and col is increased by 1 automatically by the system in
each pass (in general, after executing a GEN instruction).
Since there are no more instructions to be executed in Part
0, the system increases row and e by 1 and the construction
of row 0 of the circuit is finished. Note that the variables



Line Part 0 Part 1 Part 2
0: REP v1 2 GEN FA REP v1 2
1: GEN FA SET v3 0 REP v0 2
2: INC v0 1 SET v0 v3 GEN ID-1
3: REP w 2 INC v1 1 GEN ID-1
4: GEN HA-2 REP w 2 INC v0 1
5: INC v0 1 GEN FA INC v1 1
6: INC v0 1 REP w 1
7: SET v1 0 SET v0 v2

8: GEN FA REP w 2
9: DEC v1 0 GEN FA

10: INC v1 1 INC v0 1
11: REP v0 2 GEN FA

Table 2. Evolved general program by means
of which the multiplier from Figure 5 was cre-
ated. In this case w = 4, the program con-
sists of 3 parts executed according to the en-
vironment env = (0,1,2,2).

hold their actual values, i.e. v0 = 4 and the others equal 0.
Now, env(e) = 1 for e = 1, therefore, Part 1 of the

program will be executed in order to develop row 1 of the
multiplier. Instruction 0 of Part 1 generates full adder (FA
block), where the inputs of AND gate of this block should
be connected to bits 4 and 0 of the operands (according to
the variables v0 = 4, v1 = 0). Note, since v0 exceeds the
operand width, the first input of AND gate of this FA block
will be considered as logic 0 causing permanent logic 0 at
the output of the AND gate, i.e. the AND gate of this block
is meaningless (see Fig. 5). Instructions 1 and 2 actually
set v0 to 0. Then, v1 is increased by 1 by instruction 3. In-
structions 4, 5 and 6 generate four FA blocks with the inputs
of AND gates of these blocks connected to the appropriate
operand bits. Note that instruction 7 sets v1 to 0 which,
in fact, voids the result of instruction 3. An FA block is
generated by instruction 8 (again, its AND gate is mean-
ingless). Instruction 9, decreasing v1 by 0, has no effect,
v1 is increaded by 1 by instruction 10 and instruction 11 is
meaningless since there is no instructions to repeat. Row 1
is completed with the actual values of v0 = 4, v1 = 1 and
other variables possessing zeros.

The row 2 of the circuit will be constructed using Part
2 of the program according to the next environment value
env(e) = 2 for e = 2. Instruction 0 initiates a loop repeat-
ing once instructions 1 and 2. Instruction 1 is interpreted
as no operation because inner loops are not allowed and in-
struction 1 generates an ID-1 block. In addition, instruction
3 creates one more ID-1 block in the next column. Value
of v0, respective v1 is increased by one by instruction 4,
respective 5. In fact, the only effect of the loop initiated
by instruction 6, repeating instruction 7, is to set v0 to 0

(according to v2 which equals 0). This operation actually
voids the result of instruction 4. Four FA blocks are gener-
ated by instruction 9 inside the loop started by instruction
8. Instruction 9, which is also a part of the loop body, deter-
mines the connection of the inputs of AND gates generated
inside these blocks. The last instruction 11 generates an FA
block with a redundant AND gate. Now row 2 is finished.
The variables v0 = 4, v1 = 2 and the other ones equal 0.

According to env(e) = 2 for e = 3 the last row of the
circuit will be generated by executing Part 2 of the program.
The development proceeds in the same way as described in
the previous paragraph, considering the values of variables
resulted from the previous developmental step.

This program showed the ability to construct generic
multipliers. Note that, in general, for w-bit operands the
environment would have the form env = (0, 1, 2, . . . , 2)
containing w−2 twos and w developemntal steps would be
needed to construct a working multiplier.

It is evident that the multiplier shown in Fig. 5 could be
optimized considering the inputs of the building blocks. For
instance, half adders in row 0 of the circuit can be replaced
by simple AND gates since the first input of these adders
are permanently connected to logic 0. Similarly, full adders
at positions (1, 1), (1, 4), (2, 2) and (3, 3) actually represents
half adders and full adders at positions (1, 0), (1, 5), (2, 6)
and (3, 7) can be replaced by identity functions. In fact, the
circuit corresponds to the conventional multiplier after this
optimization (compare with Figure 1).

The second sort of experiments was devoted to evolu-
tionary design of 1-part developmental program consist-
ing of 10 instructions. A new form of the environment
was specified in order to demonstrate the adaptation of the
program being evolved to the new conditions of creating
generic multipliers. Again, 1000 independent experiments
were conducted from which 97% working solutions were
obtained. 85% of the evolved programs were classified as
general. An evolved 4 × 4 multiplier adapted to the new
environment env = (0, 0, 0, 0) is shown in Figure 6. Ta-
ble 3 shows the appropriate developmental program. This
program showed the ability to construct generic multipliers.
Note that, in general, for w-bit operands the environment
would have the form env = (0, . . . , 0) containing w twos
and w developemntal steps would be needed to construct a
working multiplier.

Experiments for the evolution of 3 × 3 multipliers were
conducted, however, no general solution was obtained. Al-
though basic AND gates and ID functions were available
in the set of building blocks, they were rarely used in the
design and adders were generated instead. This behavior
could be explained by predominating occurence of adders
which pushes the evolution to design regular structures, uti-
lizing the properties of the building blocks and their inter-
connection. The evolved programs exhibit certain degree
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Figure 6. A 4 × 4 multiplier created by
means of evolved program shown in Table 3
adapted to the environment env = (0,0,0,0).
A0 . . .A3,B0 . . .B3 represent the bits of the
operands, P0 . . .P7 denote the bits of the
product. Logic scheme of the fundamental
full adder-based building block (see Fig. 3f)
utilized by the evolved program is shown. M1
and M2 denote the multiplicands whose par-
tial product represents the first operand of
the full adder, B denotes the second operand,
Sum and Cout represent the sum and output
carry of the full adder.

of redundancy, which is caused by the determination of the
program length based on the conventional design. There-
fore, there is an additional posibility for reducing the search
space. Despite the worse level of evolvability as seen in the
progress of the average population fitness shown in Figure
7, a very good success rate was observed both in the case of
the evolution of initial solutions and the occurence of gen-
eral programs among these solutions after verification espe-
cially in the second sort of experiments, which indicates the
suitability of the proposed representation to evolve generic
structures. However, the selection of building blocks rep-
resent a crucial issue for successful evolution of this kind

0: REP v1 1 4: INC v0 1 8: SET v0 v2

1: GEN ID-1 5: INC v3 0 9: GEN ID-2
2: REP p1 2 6: INC v1 1
3: GEN FA 7: SET v3 v0

Table 3. Evolved general program by means
of which the multiplier from Figure 6 was cre-
ated. In this case w = 4, there is only one
program part operating in the environment
env = (0,0,0,0).

of circuits. Both the programs presented herein showed
the ability to construct generic multipliers, which has never
been seen before in the field of the evolutionary design.

An environment was integrated into the developmental
model in order to allow the system to construct irregular
structures (inspired by the conventional multipliers). The
system demonstrated a capability of adaptation to another
environment that allowed to design generic multipliers ex-
hibiting a high level of regularity in their structures using a
program consisting of only one part. Moreover, the adap-
tation was observed to many other irregular environments
and even to random binary environments (i.e. the environ-
ments consisting only of values 0 and 1), retaining the abil-
ity of the system to develop generic multipliers by means
of a single program, whose parts are executed according
to the environment. Note that this feature is significantly
influenced by the grid chosen for representing the circuits
and by the general structure and properties of a building
block, particularly the facility of degradation of more com-
plex blocks (e.g. full adders) to simpler blocks (e.g. AND
gates, ID functions etc.) according to the inputs of the
blocks. However, this is a significant information with re-
spect to the future research. For example, the development
of generic combinational multipliers possessing exactly that
structure shown in Figure 1 would not be possible without
applying the environment. A variety of building blocks ex-
ist which could be involved in the design process in order
to develop more complex generic circuits exibiting irregu-
larities. Therefore, the approach utilizing a form of envi-
ronment suggests a big space deserving of the subsequent
investigation.
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Figure 7. A typical progress of the fitness
during the evolution of multipliers using the
proposed developmental system

6. Conclusions

In the paper an evolutionary developmental method was
presented for the design of generic multipliers. A specific
form of environment was integrated into the developmental



model representing an external control of the developmen-
tal process which is intended as a tool enabling the design
of irregular structures. The approach presented herein poses
the first case of the evolutionary design of generic structures
of multipliers using the development. Moreover, the en-
vironment was utilized in order to demonstrate adaptation
of the development, retaining its ability to design generic
multipliers. The experiments confirmed the capability of
adaptation in connection with the proposed circuit repre-
sentation. General programs were evolved for the construc-
tion of multipliers which exhibit a high degree of regularity
in the circuit structure. Since the multipliers of different
sizes are constructed every time from scratch by means of
an evolved program, utilizing the bit width of the operands
as a parameter for determining the circuit structure, it is a
case of parametric developmental design.

Although the building blocks and the grid for the circuit
representation were chosen with the inspiration from the
structure of classical combinational multipliers, it is possi-
ble to adjust them for the development of other circuits. Ex-
periments have been now conducted devoted to the design
of so-called carry-save combinational multipliers which ex-
hibit better properties, in particular the delay of the circuit,
in comparison with the classical ones (see [17], pages 446–
449 for details). In addition, more sophisticated circuits
could be designed as the building blocks for the develop-
ment of other classes of circuits, e.g. adders, medians, par-
ity circuits and so on. The advanced experiments may even
include the building blocks into the evolutionary process to-
gether with the developmental programs. Furthermore, fit-
ness landscape could be investigated in different cases of
circuits design by means of this system. These issues repre-
sent the central items for our future research.
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