
Cellular Automata-Based Development of
Combinational and Polymorphic Circuits:

A Comparative Study

Michal Bidlo and Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 61266 Brno, Czech republic

{bidlom,vasicek}@fit.vutbr.cz

Abstract. Cellular automata-based evolutionary development is pre-
sented for the design of single-function and polymorphic (two-function)
combinational circuits. The impact of evolution of the cellular automaton
initial state on the success rate of the evolved solutions is investigated.
The experiments show that it is more suitable to fix a proper initial state
in order to increase the successfulness and speed of evolution. The pro-
posed developmental model is capable to design a wide range of both
single-function and polymorphic circuits.

1 Introduction

In recent years, many approaches were introduced for the evolutionary design
of digital circuits. Probably the most popular approach is Miller’s cartesian ge-
netic programming [1]. His approach represents typical direct mapping between
genotypes and phenotypes in the genetic algorithm for the evolution of digital
circuits. Developmental systems represent an other class of systems that may
be utilized for the circuits design. For example, Miller’s developmental cartesian
genetic programming [2], Tufte’s FPGA-based approach for evolving function-
ality in cellular systems [3] or Gordon’s developmental approach in evolvable
hardware [4] represent instances of evolutionary developmental systems.

1.1 Polymorphic circuits

Polymorphic circuits, introduced by Stoica’s team at JPL, are in fact multi-
functional circuits [5]. The change of their behavior comes from modifications
in the characteristics of components (e.g. in the transistor’s operation point)
involved in the circuit in response to controls such as temperature, power sup-
ply voltage, light, etc. (they are able to work in several modes of operation
corresponding to different operational conditions). It means that polymorphic
circuits are inherently multifunctional. The change of function does not require
any reconfiguration or multiplexing.

Some applications of polymorphic circuits are discussed in [6]. Polymorphic
electronics should allow engineers to build inherently adaptable digital circuits.



By changing the temperature, Vdd or some other conditions a circuit can change
its functionality immediately, with no reconfiguration overhead. The potential
applications include: special circuits that are able to decrease resolution of digi-
tal/analog converters or speed/resolution of a data transmission when a battery
voltage decreases, circuits with a hidden/secret function that can be used to en-
sure security, intelligent sensors and novel solutions for reconfigurable cells and
function generators in reconfigurable devices (such as FPGA and CPLD).

The design of polymorphic circuits is considered as a crucial problem be-
cause these circuits typically utilize normally unused characteristics of electronic
devices and working environment; conventional design techniques are not able
to deal with that. Therefore, evolutionary techniques have often been utilized.
Thompson has shown that unconstrained evolutionary design is able to produce
innovative designs that effectively utilize that characteristics [7]. Stoica et al.
introduced an evolutionary approach for the design of polymorphic gates at the
transistor level. Sekanina proposed a method for the evolutionary design of gate-
level digital polymorphic circuits in which polymorphic gates are considered as
building blocks [8]. In his paper, Miller’s cartesian genetic programming was ap-
plied. For instance, a circuit was evolved operating as 2-bit adder in environment
E1. This circuit can also work as 2-bit multiplier in environment E2. A typical
feature of polymorphic gate-level circuits is that their topology (i.e. connection
of components) is fixed; however, the components can change the functionality.
In other approach, Bidlo et al. applied an instruction-based development for the
evolutionary design of arbitrarily large polymorphic sorting networks [9]. The
polymorphic sorting networks are able to sort the input sequences into the non-
decreasing order in environment E1 and into the non-increasing order in environ-
ment E2. There is no innovation; human designer would construct the circuit in
the same way. However, the utilization of resources is potentially interesting. The
implementation of traditional AND as well as OR gate costs 6 transistors in the
standard CMOS technology. The cost of polymorphic AND/OR gate controlled
by temperature is also 6 transistors [5]. If one were able to build OR/AND gate
with the same cost, the resulting polymorphic sorting network would consist of
the same number of transistors as the original one whose behavior cannot be
changed.

1.2 Development

In nature, the development is a biological process of ontogeny representing the
formation of a multicellular organism from a zygote. It is influenced by the ge-
netic information of the organism and the environment in which the development
is carried out.

In the area of computer science and evolutionary algorithms in particular,
the computational development has been inspired by that biological phenomena.
Computational development is usually considered as a non-trivial and indirect
mapping from genotypes to phenotypes in an evolutionary algorithm. In such
case the genotype has to contain a prescription for the construction of target



object. While the genetic operators work with the genotypes, the fitness calcu-
lation (evaluation of the candidate solutions) is applied on phenotypes created
by means of the development. The principles of the computational development
together with a brief biological background and selected application of this bio-
inspired approach are summarized in [10].

1.3 Cellular automata

Cellular automata, originally invented by Ulam and von Neumann in 1966 [11],
represent a mathematical model originaly intended as a formal framework to
study the behavior of complex systems, especially the questions of whether com-
puters can self-replicate. Cellular automata may also be considered as a biolog-
ically inspired technique to model and simulate the cellular development.

The fundamental principles of CAs is as follows. A cellular automaton (CA)
consists of a regular structure of cells, each of which can occur in one state from
a finite set of states. The states are updated synchronously in parallel according
to a local transition function. Let us call a developmental step of the CA the
synchronous update of all the cells of the CA. The next state of a cell depends on
the combination of states in the cellular neighborhood. In this paper we consider
the cellular neighborhood consisting of the cell and its two immediate neighbors.
Moreover, cyclic boundary conditions will be considered, i.e. the left neighbor
of the first cell is the last cell of the CA. Similarly, the right neighbor of the
last cell is the first cell of the CA. The local transition function defines a next
state of the cell being updated for every possible combination of states in the
cellular neighborhood. Let us denote c1c2c3 → cn as a rule of the local transition
function, where c1c2c3 represents the combination of states of the cells in the
cellular neighborhood and cn denotes the next state of the middle cell. In case
of uniform cellular automata, the local transition function is identical for all the
cells.

Cellular automata have been applied to solve many complex problems in dif-
ferent areas. A detailed survey of the principles and analysis of various types
of cellular automata and their applications is summarized in [12]. Sipper [13]
investigated the computational properties of CAs and proposed an original evo-
lutionary design method for the “programming” the cellular automata called
cellular programming. He demonstrated the successfulness of this approach to
solve some typical problems related to the cellular automata, e.g. synchroniza-
tion, ordering or the random number generation. In the recent years, scientists
have been interested in the design of cellular automata for solving different tasks
using the evolutionary algorithms. Dellaert et al. introduced a method for the
evolutionary development of complete autonomous agents using random boolean
networks. In fact, random boolean network can be understood as a binary cel-
lular automaton whose cellular neighborhood is not limited by the structure
of the automaton. The successful evolutionary development was presented that
constructs complete autonomous agents which perform the line following task
[14]. Corno et al. applied the cellular automaton as a generator of the binary
test vectors for BIST (Built-In Self Test) units to detect stuck-at faults inside



a Finite State Machine circuit. According to the results presented in [15], this
method is able to overcome the fault coverage than that can be achieved using
current engineering practice. Miller investigated the problem of evolving a de-
velopmental program inside a cell to create multicellular organism of arbitrary
size and characteristic. He presented a system in which the organism organizes
itself into well defined patterns of differentiated cell types (e.g. the French Flag)
[16]. Tufte and Haddow utilized a FPGA-based platform of Sblocks [17] for the
online evolution of digital circuits. The system actually implements a cellular au-
tomaton whose development determines the functions and interconnention of the
Sblock cells in order to realize a function. Note that the evolutionary algorithm
is utilized to design the rules for the development of the cellular automaton [3].

1.4 Objectives of the paper

Since the polymorphic gates were discovered and the concept of polymorphic
circuits was introduced [5], the design of polymorphic circuits represents a pop-
ular research domain. In order to identify the possibilities of different design
methods with respect to the relations to the conventional circuits, more research
is needed in this area.

In this paper, an evolutionary developmental method based on uniform one-
dimensional cellular automata is presented for the design of combinational cir-
cuits at the gate level. The experiments are devoted to design (1) single-function
combinational circuits and (2) two-function polymorphic circuits consisting of
conventional and polymorphic gates. The results of both sorts of experiments are
compared. A genetic algorithm is utilized to design a suitable cellular automaton
by means of which a given circuit is developed. It is demonstrated that the pre-
sented developmental approach is able to design both classes of combinational
circuits. Moreover, the impact of evolution of initial state of the cellular automa-
ton on the success rate and computational effort of the evolutionary process is
investigated.

2 Development of Digital Circuits

In order to design combinational circuits using a cellular automaton, a logic gate
is assigned to each rule of the local transition function. Therefore, the rule of the
CA that is capable to generate the circuits is in the form c1c2c3 → cn : f i1 i2,
where the part on the right of the colon specifies the function (f) of the gate and
the indices of its two inputs (i1, i2). This specification corresponds to the cellular
automata generating single-function combinational circuits. In order to generate
polymorphic circuits, it is needed to specify other functions the circuit should
be able to perform. In this paper, only two-function polymorphic circuits will be
considered. The form of a rule of the local transition function for polymorphic
circuits possesses the form c1c2c3 → cn : f1 f2 i1 i2, where f1 and f2 denote the
functions of the polymorhic gate and the rest of the rule has the same meaning
as stated above.



A gate is generated by each cell during the development of the CA. The gate
to be generated is specified by the rule that is applied to determine the next state
of the cell depending on the combination of states in the cellular neighborhood.
Therefore, one level of the circuit is generated in one developmental step of the
CA. The number of cells of the CA equals to the number of primary inputs of
the circuit. In case of the first developmental step, the gates being generated
connect their inputs to the primary inputs of the target circuit and the outputs
of the gates generated in the last step are connected directly to the appropriate
primary outputs of the circuit. Note that the utilization of the outputs depends
on the type of the circuit to be developed. The inputs are referenced by the
indices. Similarly, the outputs of the gates generated by the cells are denoted
by the indices of the cells in the CA (the indices are identical to the indices of
the primary inputs of the circuit). The inputs of the gates generated since the
second step of the CA are connected to the outputs of the gates generated in
the previous developmental step (in fact, it corresponds to l− back parameter in
Miller’s cartesian genetic programming whose value equals 1 in this case). This
restriction reduces the search space substantially while preserving the possibility
of generating various instances of circuits for the comparative study presented
in this paper.

Table 1 shows the set of basic logic gates utilized for the development, which
also constitute the building blocks for two-function polymorphic gates.

Gate Inputs Description

0: AND a, b two-input AND gate

1: OR a, b two-input OR gate

2: XOR a, b two-input exclusive-OR gate

3: NAND a, b two-input inverted AND gate

4: NOR a, b two-input inverted OR gate

5: NXOR a, b two-input inverted XOR gate

6: IDA a, x one-bit buffer (identity function)
of the first input

7: IDB x, b one-bit buffer (identity function)
of the second input

Table 1. Gates utilized for the development. Note that x represents an unused input.
Every arbitrary pair of gates may constitute a polymorphic gate utilized for the devel-
opment of polymorphic circuits (including the gates with two identical functions which
actually represent conventional logic gates in polymorphic circuits).

Figure 1a shows an example of the cellular automaton generating two-level
2x2-bit combinational multiplier. The primary inputs of the multiplier and the
cells of the CA are denoted by the indices 0, 1, 2 and 3. The development of the
circuit is performed as follows. At the beginning of the development, the CA is
initialized by a suitable initial state, in this case 1 1 0 0. Considering the cyclic
boundary conditions, the state of each cell is updated according to the local



(a)

0 0 1 → 1 : AND 1 2 0 1 1 → 0 : AND 2 3
0 2 1 → 1 : XOR 2 3 1 0 0 → 1 : AND 3 0
1 0 2 → 2 : IDA 0 1 1 1 0 → 2 : AND 0 1
1 1 2 → 2 : XOR 3 0 1 2 2 → 0 : IDA 3 3
2 1 1 → 1 : IDA 1 0 2 2 1 → 1 : IDB 0 2

(b)

Fig. 1. Example of the circuit development using a cellular automaton from the initial
state 1100: (a) developed 2x2-bit multiplier, (b) rules of the local transition function
of the CA applied to the development of the multiplier.

transition function (see Fig. 1b). During the first developmental step, the actual
state 1 of the first (top) cell is updated according the rule 0 1 1 → 0 : AND 2 3.
The AND gate is generated having its inputs connected to the primary inputs
2 and 3. The next state of the second cell is computed according to the rule
1 1 0 → 2 : AND 0 1, generating the AND gate whose inputs are connected
to the primary inputs 0 and 1. The same principle is applied to generate the
other gates in the first developmental step. After the first step the state of the
CA is 0 2 1 1. In the second developmental step, for instance, the XOR 2 3 is
generated by the rule 0 2 1 → 1 : XOR 2 3 and the identity function of the first
gate input (IDA 1) is generated according to the rule 2 1 1 → 1 : IDA 1 0.
Note that the input index 0 is meaningless since the IDA gate passes only the
first input (labeled by 1) which is connected to the output of the AND gate
generated by the cell 1 in the previous developmental step. After the next (and
last, third) developmental step, the circuit is completed and the outputs of the
gates generated in this step represent the primary outputs of the multiplier.

3 Evolutionary System Setup

The simple genetic algorithm was utilized for the evolutionary design of the cellu-
lar automaton that generates a specified circuit. Basically, there are two sorts of
experiments presented regarding to the development of single-function combina-
tional circuits and two-function polymorphic combinational circuits. Moreover,
each of these sorts of experiments is divided into two subparts that differ in



the subject of evolution of the CA. In the first sort, the initial state and the
local transition function of the CA is evolved. In the second sort, only the lo-
cal transition function is evolved and the initial state is fixed at the beginning
of evolution according to the experience from the evolution of both parts of the
CA. The experiments showed that the number of different combinations of states
in cellular neighborhods of the CA should be maximized in order to develop a
working circuits. This is not surprising sice there are more rules to be applied,
hence more different gates are to be generated and more complex behavior of
the CA is possible to exhibit a satisfactory complexity required for the target
circuit. If the number of different combinations in the initial state was low, the
CA would be not able to develop complex structures and no working circuit
would emerge.

The chromosome of the genetic algorithm contains the rules of the local tran-
sition function and the initial state of the CA (if intended to evolve). The initial
state is encoded in the chromosome as a finite sequence of integers representing
the initial states of cells. An encoded rule of the local transition function consists
of the next state, a function of the gate to be generated and two indices of inputs
of the gate. The structures of chromosomes regarding all the sorts of experiments
are shown in Figure 2. The index (position in the genome) is specified implicitly
by means of the value expressed by the number representing the combination of
states in the cellular neighborhood. The base of this number equals the number
of possible states of the cell. Therefore, if we consider the general form of the
rule c1 c2 c3 → cn : f i1 i2, only the part on the right of the arrow is encoded
in the genome. For example, if a cellular automaton with 2 different states and
the cellular neighborhood consisting of 3 cells ought to be evolved, there are 23

rules of the local transition function. Consider the rule 0 1 1 → 0 : OR 0 1.
Since the combination of states 0 1 1 corresponds to the binary representation
of number 3, this rule will be placed in the chromosome at the position 3 of the
local transition function.

In all the experiments, the population consists of 200 chromosomes which are
initialized randomly at the beginning of evolution. The chromosomes are selected
by means of the tournament operator with the base 4. The crossover operator
is not applied. The following mutation operator is utilized. In each chromosome
selected by the tournament operator, 5 genes are chosen randomly and each of
them is mutated with the probability 0.96. A gene is understood as a single value
representing the state or the gate function or the input index. If the initial state
of the CA is mutated, then the two initial states being evolved are compared in
order to avoid the evolution of two identical initial states.

The fitness function is calculated as the number of correct output bits of the
target circuit using all the binary input test vectors. For example, if a 4-input
circuit ought to be developed, there are 24 test vectors. Therefore, the fitness of
a perfect solution possessing 4 primary outputs equals 4 · 24 = 64. If no solution
is evolved in a given limit of the number of generations (which is specific for
different sorts of experiments) the evolution is finished.



Fig. 2. Structures of the chromosomes for experiments regarding to the design of (a)
combinational circuits including evolution of the initial state of the CA, (b) combi-
national circuits dealing with a fixed initial state, (c) polymorphic circuits including
evolution of the initial state of the CA, (b) polymorphic circuits dealing with a fixed
initial state. In cases (a) and (b) a rule of the local transition function consists of the
next state, logic function of the gate to be generated and indices of two inputs of the
gate respectively. In cases (c) and (d), the next state is followed by two logic functions
of a polymorphic gate and indices of its two inputs.

4 Experimental Results

Experiments have been conducted in order to demonstrate the ability of the
proposed developmental system to design single-function and two-function poly-
morphic combinational circuits at the gate level. Moreover, the initial state of
the CA and its impact on the circuit development has been investigated. Two
different sorts of experiments have been conducted for both the design of single-
function and polymorphic circuits. In the first sort, the initial state has been
fixed at the beginning of evolution and only the local transition function has
been evolved. In the second sort, both the initial state and the local transition
function have been evolved.

If the initial state is fixed, it is important to choose a proper one from which
a working circuit may be developed. For the number of different combinations of
states in the cellular neighborhood that is lower than the number of cells of the
CA, the circuit development is expected to be very difficult (or even impossible)
because the number of different gates that may be generated by the cells is
low (more identical rules of the local transition function have to be applied)
and more complex circuit structure can not be developed. This assumption was
confirmed by the conducted experiments. Therefore, the initial state of the CA
is chosen in which cells possess mutually different combinations of states in their
neighborhood.

For example, if cyclic boundary conditions are considered, the initial state
1, 1, 0, 0 of a four-cell CA develops according to the rules based on combinations
of states in the cellular neighborhoods 011, 110, 100, 001. As evident, the next
state of each cell is determined according to different rule, different gates may
potentially be generated by each cell in a single step (i.e. more complex circuit
structure) and therefore sequences possessing this feature is considered as proper
initial states with respect to the information stated in the previous paragraph.



4.1 Development of single-function combinational circuits

The first sort of experiments deals with the development of single-function com-
binational circuits by means of a cellular automaton. In all these experiments,
the whole set of gates shown in Table 1 was considered for the development.
Thousand independent experiments were conducted for each type of circuit and
for the two approaches to the specification of initial state of the CA (evolved and
fixed. If no working solution is found in one million of generations, the evolution
is finished.

The results of evolution are summarized in Table 2. The abbreviations in the
first column of Table 2 correspond to the following circuits: median circuit (med),
multiplier (mult), even parity circuit (par), sorter (sort), half adder (h.adder) and
full adder (f.adder). As the results show, the success rate is better in most cases
for a fixed initial state of the CA. Similarly, the average number of generations
needed to evolve a working solution is lower if the initial state is fixed, i.e. it
leads to a speed-up of evolution.

Parameters Succ. rate Avg. #gener. Min. rules used

Circuit #inputs #steps #states evolved fixed evolved fixed evolved fixed

med 5 6 2 97.8 100 120453 70920 5 5

mult 4 3 3 84.2 88.8 159408 135028 7 7

par 9 4 3 100 100 409 309 6 8

sort 4 3 2 85 98.2 105081 60535 6 6

sort 5 5 4 5.2 9.6 274141 375871 10 10

h.adder 4 3 4 88.8 86 85363 82364 7 8

h.adder 5 4 4 52 59.2 256543 224348 11 14

f.adder 5 4 4 34 45.2 291329 264390 10 12
Table 2. Comparison of the success rate and the number of generations needed to
develop working single-function circuits by means of an evolved CA for evolving and
fixed initial state of the CA. Values marked in italic represent the better results with
respect to the given manner of specifying the initial state of the CA.

4.2 Development of two-function polymorphic circuits

The second sort of experiments have been devoted to the development of two-
function polymorphic circuits. Although only a few polymorphic gates have still
been realized, we consider an arbitrary two-function polymorphic gate to be
a building block of the target polymorphic circuits. Therefore, every arbitrary
pair of gates from Table 1 may constitute a polymorphic gate and the pairs
consisting of two identical gates represent conventional gates in the poltmorphic
circuits. The function of polymorphic gates is determined by a control bit which is
common to all polymorphic gates in the circuit. Figure 3 illustrates the function
of a sample polymorphic gate by means of the control bit.



Fig. 3. The concept of polymorphic gate utilized in the experiments. If control bit is
in logic 0, the gate performs function F1, otherwise it performs function F2.

In general, the proposed developmental approach based on the uniform 1D
cellular automaton showed the ability to develop polymorphic circuits of different
classes. Similarly to the development of single-function combinational circuits,
the impact of the CA initial state on the success rate and the number of genera-
tions of the genetic algorithm needed to evolve a solution was investigated. Table
3 summarizes the statistics of the evolutionary development of polymorphic cir-
cuits. In each sort of experiments (i.e. the design of a given circuit with a given
approach to the initial state), 1000 independent experiments were conducted.
The maximal number of generations for the evolution was set to 1.5 million.
Although the success rate of the design of circuits possessing more outputs is
very low in comparison with the evolution of single-function circuits, it is not
surprising since two different functions are required in a single circuit topology.
The statistics show that in most cases the success rate is higher if the CA initial
state is fixed during the evolution. Moreover, the average number of generations
needed to evolve a working solution is lower in this case.

Parameters Succ. rate Avg. #gener. Min. rules used

Circuit #inputs #steps #states evolved fixed evolved fixed evolved fixed

med/par 5 5 4 57,1 68,3 143046 111645 5 5

med/par 7 7 5 41,9 47,1 391925 362545 20 19

sort/med 5 6 5 22,1 22,6 561783 568536 19 23

sort/mult 6 6 4 1,3 1,4 785710 687403 19 16

sort/mult 7 7 4 0,9 0,8 608839 905209 15 16

sort/parity 5 5 5 14,5 16,2 482018 462758 20 20

sort/parity 6 6 6 8,2 9 672306 598862 33 28

sort/h.adder 4 4 3 4,6 4,6 515076 441353 8 7

sort/h.adder 4 4 4 44,1 47,5 413029 353368 11 12

sort/f.adder 5 7 5 3,6 5,6 935358 867781 28 27

h.adder/mult 4 5 4 3,6 4,2 682657 643104 16 16

f.adder/med 5 5 5 19,3 18,3 388150 509391 18 19
Table 3. Comparison of the success rate and the number of generations needed to
develop working polymorphic circuit by means of an evolved CA for evolving and fixed
initial state of the CA. Values marked in italic represent the better results with respect
to the given manner of specifying the initial state of the CA.



5 Conclusions

We presented an evolutionary developmental method based on the concept of
cellular automata for the design of combinational circuits. It was demonstrated
that this approach is capable to design both single-function and polymorphic
combinational circuits at the gate level. The proposed method was tested on a
wide range of circuits, e.g. multipliers, adders, sorters, median and parity cir-
cuits and their combinations in case of development of two-function polymorphic
circuits. The experiments showed that it is more suitable in most cases to fix
the initial state of the CA at the beginning of evolution in order to increase the
success rate and decrease the number of generations needed to evolve a working
solution.

The results obtained herein and in [18] show that cellular automata provides
capabilities for generating gate-level digital circuits. In addition, it is possible to
utilize other useful features of the developmental system, e.g. adaptation to dif-
ferent initial states. Although the design of polymorphic circuits is very difficult
in general and this approach is not scalable (i.e. no working solution was devel-
oped for increasing number of inputs of the target circuit), the results indicate
that this area is worth of future research. Therefore, the current results will be
analyzed and the knowledges obtained herein will be applied in order to deter-
mine their impact on the possibility of designing more complicated structures
(e.g. for more number of inputs, at a higher level of abstraction etc.). Moreover,
the possibility of increasign the l−back parameter and decreasing the restrictions
of the development process will be investigated.

Acknowledgement

This work was partially supported by the Grant Agency of the Czech Republic
under contract No. 102/06/0599 Methods of Polymorphic Digital Circuit Design,
No. 102/05/H050 Integrated Approach to Education of PhD Students in the Area
of Parallel and Distributed Systems and the Research Plan No. MSM 0021630528
Security-Oriented Research in Information Technology.

References

1. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proc. of the 3rd Eu-
ropean Conference on Genetic Porgramming, Lecture Notes in Computer Science,
vol 1802, Berlin Heidelberg New York, Springer (2000) 121–132

2. Miller, J.F., Thomson, P.: A developmental method for growing graphs and cir-
cuits. In: Proc. of the 5th Conf. on Evolvable Systems: From Biology to Hardware
(ICES 2003), Lecture Notes in Computer Science, vol. 2606, Berlin DE, Springer-
Verlag (2003) 93–104

3. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular com-
puting machine. Natural Computing 4(4) (2005) 387–416



4. Gordon, T.G.W., Bentley, P.J.: Towards development in evolvable hardware. In:
Proc. of the 2002 NASA/DoD Conference on Evolvable Hardware, Washington
D.C., US, IEEE Press (2002) 241–250

5. Stoica, A., Zebulum, R.S., Keymeulen, D.: Polymorphic electronics. In: Proc.
of International Conference on Evolvable Systems: From Biology to Hardware,
Lecture Notes in Computer Science, volume 2210, Springer-Verlag (2001) 291–302

6. Stoica, A., Zebulum, R.S., Keymeulen, D., Lohn, J.: On polymorphic circuits and
their design using evolutionary algorithms. In: Proc. of IASTED International
Conference on Applied Informatics, AI2002, Innsbruck AU (2002)

7. Thompson, A., Layzell, P., Zebulum, R.: Explorations in design space: Unconven-
tional electronics design through artificial evolution. 3(3) (1999) 167–196

8. Sekanina, L.: Evolutionary design of gate-level polymorphic digital circuits. In:
2nd European Workshop on Evolutionary Computation in Hardware Optimisation
(EvoHOT 2005), Lecture Notes in Computer Science vol. 3449, Springer (2005)

9. Bidlo, M., Sekanina, L.: Providing information from the environment for growing
electronic circuits through polymorphic gates. In: Proc. of Genetic and Evolu-
tionary Computation Conference – Workshops 2005, Association for Computing
Machinery (2005) 242–248

10. S. Kumar (ed.), P. J. Bentley (ed.): On Growth, Form and Computers. Elsevier
Academic Press (2003)

11. von Neumann, J.: The Theory of Self-Reproducing Automata. A. W. Burks (ed.),
University of Illinois Press (1966)

12. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign IL (2002)
13. Sipper, M.: Evolution of Parallel Cellular Machines – The Cellular Programming

Approach, Lecture Notes in Computer Science, volume 1194. Springer-Verlag,
Berlin (1997)

14. Dellaert, F., Beer, R.: A developmental model for the evolution of complete au-
tonomous agents. In: Proc. of the 4th International Conference on Simulation of
Adaptive Behavior, Cambridge, MA, MIT Press-Bradford Books (1996) 393–401

15. Corno, F., Reorda, M.S., Squillero, G.: Evolving cellular automata for self-testing
hardware. In: Proc. of the International Conference on Evolvable Systems: From
Biology to Hardware, ICES 2000, Lecture Notes in Computer Science, volume 1801,
Springer (2000) 31–39

16. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis and
self-repair. In: Advances in Artificial Life. 7th European Conference on Artificial
Life, Lecture Notes in Artificial Intelligence, volume 2801, Dortmund DE, Springer
(2003) 256–265

17. Haddow, P.C., Tufte, G.: Bridging the genotype–phenotype mapping for digital
fpgas. In: Proc. of the 3rd NASA/DoD Workshop on Evolvable Hardware, Los
Alamitos, CA, US, IEEE Computer Society (2001) 109–115

18. Bidlo, M., Vasicek, Z.: Gate-level evolutionary development using cellular au-
tomata. In: Proc. of The 3rd NASA/ESA Conference on Adaptive Hardware and
Systems, AHS 2008, IEEE Computer Society (2008)


