
Evolution of Cellular Automata
with Conditionally Matching Rules

Michal Bidlo
Brno university of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2
61266 Brno, Czech Republic
Email: bidlom@fit.vutbr.cz

Zdenek Vasicek
Brno university of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2
61266 Brno, Czech Republic
Email: vasicek@fit.vutbr.cz

Abstract—This paper introduces a method of representing
transition functions for the purposes of evolutionary design of
cellular automata. The proposed approach is based on conditions
specified in the transition rules that have to be satisfied in order
to determine the next state of a cell according to a specific rule.
The goal of this approach is to reduce the number of elements
needed to represent a transition function while preserving the
possibility to specify traditional transition rules known from the
conventional table-based representation. In order to demonstrate
abilities of the proposed approach, the replication problem and
pattern transformation problem in cellular automata will be
investigated. It will be shown that the evolution is able to design
transition functions for non-trivial behavior of two-dimensional
cellular automata that perfectly fulfil the specified requirements.

I. INTRODUCTION

Cellular automata (CA) represent a biologically inspired
computational model in which time and space are discrete.
The cells represent basic computational elements whose states
are considered as a means for storing and processing infor-
mation inside the CA. Their concept was originally invented
by Ulam and von Neumann in 1966 [1] in order to study
the behavior of complex systems, especially the questions
of whether computers can self-replicate. A two-dimensional
(2D) cellular automaton consists of a regular grid of cells,
each of which can occur in one state from a finite set of
states. In each developmental step of the CA, the states
are updated synchronously in parallel according to a local
transition function. The next state of a given cell depends
on the state of this cell and the combination of states in its
neighborhood.

For the purposes of this paper the following basic con-
cept of cellular automata will be considered. The cellular
neighborhood is represented by a 9-tuple and consists of
the investigated (central) cell and its immediate neighbors
in the horizontal, vertical and both diagonal directions. This
concept is referred to as Moore neighborhood and is illustrated
in Figure 1. The common form of the transition function
defines the next state of a given cell for every possible
combination of states in its neighborhood. Let us denote
NW N NE W C E SW S SE → Cnew a rule of the
transition function, where the symbols on the left of the arrow
(corresponding to the cells from Figure 1) represent actual

cell states of the Moore neighborhood and Cnew denotes the
next state of the investigated cell. Boundary conditions will be
considered because the implementation of cellular automata
considers a finite size of the cellular array. For that reason,
zero boundary conditions will be applied which means that
the non-existing neighbors of the cells at the boundary of
cellular structure are considered as cells in state 0. Every cell
will determine its next state according to a single transition
function, i.e. it is a case of uniform cellular automaton.

Fig. 1. Structure of Moore neighborhood in a cellular automaton. The
neighborhood includes the investigated (central) cell C and its immediate
neighbors. The numbers in parentheses denote the indices of cells in the
neighborhood that will be considered in this paper.

Wolfram studied the mathematical fundamentals of cellular
automata and analyzed their behavior from the theoretical
point of view. Moreover, he performed a broad survey of
various cellular automata applications and summarized the
results in [2]. Sipper studied, among others, non-uniform cel-
lular automata and proposed a specific evolutionary algorithm
called Cellular Programming for the automatic design of non-
uniform CA. Cellular Programming involves a population of
local transition functions whose evolution (using the genetic
operations of crossover and mutation) is carried out with
respect to the arrangement of cells in the CA and their local
interactions. Sipper demonstrated the success of this approach
in solving some typical problems related to cellular automata,
e.g. synchronization task, ordering task or random number
generation. A hardware accelerator of Cellular Programming
was also proposed [3]. Several works have dealt with evolving
cellular automata using genetic algorithms and similar evolu-
tionary techniques. Miller investigated the problem of evolving
a developmental program inside a cell to create multicellular
organisms of various sizes and characteristics. He presented

a system in which the organism organizes itself into a well
defined patterns of differentiated cell types (e.g. the French
flag) [4]. Tufte and Haddow utilized an FPGA-based platform
for online evolution of digital circuits. Their approach is based
on a special architecture called Sblock that implements the cell
functionality [5]. The interconnection of Sblocks in the FPGA
actually implements a cellular automaton whose development
determines the functions and interconnection of the individual
Sblock cells in order to realize a specified behavior [6]. The
rules for the development of the Sblocks has been designed
using evolutionary algorithm. Kowaliw et al. proposed a sim-
plified model of biological embryogenesis instantiating a sub-
set of 2D cellular automata and a methodology for “growing”
the cells into agents utilizing only local interactions. The
Bluenome Developmental Model, as the authors denote this
approach, implements a grid of cells, each of which contains a
single piece of DNA-like data, which it interprets to decide its
next action. The rules of this model have been searched using
genetic algorithm [7]. Sometimes the traditional concept of
cellular automata has been adapted to solve a specific task. For
example, Random Boolean Networks represent a more general
approach to the development of cellular structure in which
the neighborhood of each cell is not limited to immediate
neighbors only but can be specified arbitrarily. Each cell can
even have different form of neighborhood. This concept was
originally developed as an abstract model for studying the
dynamics of gene regulation [8]. Similar technique related
to the genetic regulatory networks was proposed by Dellaert
et al. [9][10]. The authors implemented the process of gene
regulation using Boolean functions called operons inside the
genome the goal of which was to design an ambitious and
extensive model of development meant that is both biologically
defensible and computationally tractable.

In [11] a genetic algorithm-based approach was presented
for the deign of 2D cellular structures (called agents) that act
as building blocks for assembling more complex objects. The
cooperation between the agents during development exhibit a
self-assembling process of a target entity. The goal of this pro-
cess is to produce large stable structures by evolving rules and
parameters of the building blocks. Kayama has investigated a
network representation of binary cellular automata rules [12].
The goal was to focus on the effective relationships between
cells rather than the states themselves. This approach allows
the techniques of the network theory to be used for the inves-
tigation of CA behavior. An instruction-based representation
of the cellular automata rules was proposed in [13]. In this
case the transition function is encoded as a program consisting
of simple instructions whose aim is to modify the cellular
neighborhood in order to calculate the next cell state. It was
demonstrated that this approach is able to improve the process
of designing cellular automata by means of genetic algorithm
in comparison with the traditional encoding of the CA rules
by means of a table.

The process of designing a transition function according
to which the CA develops in order to achieve a specified
behavior is a challenging task. The problem is that the creation
of transition function is less intuitive than the traditional
algorithm design because the behavior of each cell depends on
its neighbors only and the cells operate in parallel during the
CA development. Moreover, the number of possible transition
functions grows exponentially with the increasing number of

cell states and the size of the cellular neighborhood. Therefore,
non-traditional approaches have often been applied both to the
representation of cellular automata rules and the method of
searching for a specific transition function.

This paper presents a continuation of the research intro-
duced in [13], where an instruction-based representation of
the transition function was proposed. We have determined that
if a suitable form of the transition rules is applied (instead
of the traditional table-based representation), it is possible
to reduce the time needed to design a specific CA to solve
a given task. For example, the replication problem and the
problem of developing a target pattern from a seed was
successfully solved by the instruction-based approach when
the program representing the transition function was designed
by mean of genetic algorithm. The input of the program is the
combination of states in the cellular neighborhood, the output
is a single value representing the next state of the investigated
cell [13]. However, the subsequent experiments showed that
if the program-based approach is applied, then the next state
actually represents a global result of the program execution
and it is difficult to detect states of the cellular neighborhood
for which specific or separate rules could be more suitable.
Therefore, the goal of this paper is to propose a method
of representing the CA rules that is (1) more efficient that
the traditional table-based approach and (2) yet allows us to
describe specific transition rules in a way naturally convenient
to cellular automata. This method will be designated as Con-
ditionally Matching Rules. We will show that this approach
is able to solve the replication problem (as one of the typical
task in CA) and the problem of a non-trivial transformation of
a given initial pattern to another target pattern whose solution
was not successful using the previously mentioned approaches.

The paper is organized as follows. Section II describes the
idea of conditionally matching rules. The evolutionary system
setup is summarized in Section III and the experimental results
are given in Section IV. Concluding remarks are stated in
Section V.

II. CONDITIONALLY MATCHING RULES FOR CELLULAR
AUTOMATA

Conventionally the local transition function is represented
by a table that specifies the next state of a cell for all the
possible combinations of states in its neighborhood. However,
if the number of cell states or the size of cellular neighbor-
hood increases, then the number of such combinations grows
exponentially and thus the representation and design of the
transition function becomes very difficult. It might be possible
to specify a subset of rules for the transition function (e.g.
only for the combinations of states that change the state of
the investigated cell) but the problem is how to determine the
set of rules for a given task especially for complex cellular
automata.

In order to overcome these issues, a new encoding of
cellular automata rules will be introduced. Let us call this ap-
proach as Conditionally Matching Rules (CMR). The encoding
of the local transition function using CMR is fundamentally
inspired by the table-based representation. It means that the
CMR encoding allows to specify the transition rules as usual
in the table-based approach but, in addition to that, more

general rules can be formulated whose interpretation covers
several common rules in a single CMR. In particular, each
rule of the CMR representation consists of a conditional part
and a next state. The conditional part encodes a state and
a condition for every cell in the cellular neighborhood. The
next state is assigned to the investigated cell if the given rule
“matches” to the combination of states in its neighborhood,
i.e. if all the conditions in the conditional part are satisfied.
For the purposes of this paper, the following conditions will be
considered in the CMR: equal (==), not equal (! =), greater or
equal than (>=), less or equal than (<=) and don’t care mask
(?). The structure of a conditionally matching rule for Moore
neighborhood and its relation to this form of neighborhood is
illustrated in Figure 2.

Fig. 2. Structure and interpretation of a conditionally matching rule

The local transition function of a CA consists of a finite
sequence of conditionally matching rules. The process of
determining the next state of a cell using the CMR-based
transition function is the following. The rules are evaluated
sequentially one after another. In each rule the items of the
conditional part are evaluated with respect to the corresponding
cell states in the cellular neighborhood. If all the conditions
are satisfied, then the rule is said to match with the state
of cellular neighborhood and the next state from this rule
represents the result of the transition function (i.e. the new state
of the investigated cell) and no more rules in the sequence need
to be evaluated. If none of the rules representing the transition
function matches, then the cell keeps its current state.

For example, consider a CMR-based transition function
that ought to be applied to determine the next state of central
cell of a given cellular neighborhood (Figure 3). In this case
the transition function consists of three conditionally matching
rules denoted as #1, #2 and #3. In order to determine the
next state, the evaluation of the rules starts with the CMR
#1. The state of cell (1) in the cellular neighborhood shown
in Figure 3 satisfies the condition == 1 in the condition (1)
of rule #1. Condition (2) of rule #1 is a don’t care mask (?)
which means that this condition is also satisfied with respect
to the state of cell (2). Condition (3) is also satisfied because
the state of cell (3) is less than or equal to state 0 specified
in this condition. However, condition (4) assumes that the

Fig. 3. Example of CMR-based transition function consisting of three
conditionally matching rules

state of cell (4) does not equal 0 which is not true because
the state of this cell possesses 0. Therefore, this condition is
not satisfied which means that rule #1 can not match to the
cellular neighborhood and can not be applied to determine the
next state. The execution of the transition function continues
by evaluating rule #2. As all the conditions of this rule are
satisfied with respect to the corresponding cell states in the
neighborhood, the next state specified in rule #2 represents
the result of the transition function and hence the cell (5) will
possess state 2 in the next step. In this case rule #3 does not
need to be evaluated because the next state has already been
determined.

Considering the concept of the CMR-based transition func-
tion, several advantageous features may be identified. Firstly,
the size of representation of CMR-based transition function can
be reduced in comparison with the conventional table-based
format. It is based on the possibility to use relational operators
(especially ! =, <=, >=) and the don’t care mask (?). In fact,
a single CMR with some of those conditions represents sev-
eral rules of the conventional table-based transition function.
Secondly, the CMR approach is deterministic which is given
by the convention that if a rule from the sequentially evaluated
sequence matches, then its next state represents the result of
the transition function, otherwise the investigated cell keeps
its current state. And finally, CMR-based transition functions
can be deterministically transformed to the complete table-
based representation. If all the possible combinations of states
are generated for a given type of cellular neighborhood, then
for each combination a next state is calculated using the CMR
that corresponds to a specific item in the table-based transition
function. Therefore, the CMR encoding fully preserves the
features of traditional cellular automata.

III. EXPERIMENTAL SETUP

Simple genetic algorithm (GA) was utilized for the evolu-
tion of CMR-based transition function in order to achieve a
specific behavior.

Several sets of experiments were performed considering
various numbers of rules encoded in a chromosome. Each

chromosome represents a candidate transition function repre-
sented as a finite sequence of conditionally matching rules. The
structure of each CMR is identical to that shown in the top
part of Figure 2. Each CMR is encoded as a finite sequence of
integers representing the conditional parts (i.e. codes of states
and condition operators) and the next state.

In all experiments, the population consists of 8 individuals
that are initialized randomly at the beginning of evolution-
ary process. The chromosomes are selected by means of
tournament operator with the base 4. Each pair of selected
chromosomes (parents) undergo one-point crossover with the
probability 50% in order to generate two offspring. In case
that the crossover has not been performed, the offspring are
identical to the parents. The following mutation operator is
applied on each offspring. 6 integers are chosen randomly in
the chromosome, each of which is mutated independently with
the probability 50% by generating a new valid random value.

For each set of experiments (considering different num-
ber of CMR the transition function is composed of) 100
independent runs of the GA were performed. The evolution
is terminated if a desired behavior of the candidate CA is
observed (i.e. its chromosome obtained the maximal fitness
value for a given problem) or if a given limit of generations
is reached (this parameter is specific for the problems to be
solved – see the next section).

A binary 2D uniform cellular automaton was used con-
sisting of 24x24 cells. The evaluation of its behavior was
performed within 16 developmental steps. The initial state of
the CA is set as a fixed pattern (in this paper the initial state
is not a subject of evolution, it is specified by the designer).
The selection of the initial pattern and the way of calculating
the fitness function depends on the problem to be solved and
their description is covered in Section IV.

IV. RESULTS AND DISCUSSION

For the purposes of this paper several problems were
chosen (i.e. a specific behavior of the cellular automaton) for
which the transition function has been designed by means
of genetic algorithm in combination with the CMR-based
representation. In this section, it will be shown that the
evolution is able to design transition functions for non-trivial
problems in CA using the 9-cell Moore neighborhood. In the
simplest case of binary CA there are in total 29 = 512 different
transition rules and hence the search space contains 2512

possible transition functions if the conventional table-based
representation is considered. As we demonstrated in [13], the
success rate of evolving the tables for the replication problem
and pattern development problem is substantially lower in
most cases compared to advanced program-based transition
function. For some problems the table-based representation
even did not provide any working solution. In this section
we propose results for the replication problem and pattern
transformation problem using the CMR encoding of transition
functions.

A. The Replication Problem

The goal of replication is to develop a copy of a given
structure represented as a finite-size initial pattern in a finite
number of development steps. The genetic algorithm was

best_fitness = 0 # fitness out of all development steps
const REPLICS = 2 # the minimal number of required replics

initialize the CA by the pattern to be replicated
FOR int step = 1 TO DEVEL_STEPS DO
{

fitness = 0 # fitness in one development step
replics_cnt = 0 # num. of replics found in a devel. step
ca_step(ca1, genome->prog);

FOR row = 0 TO CA_HEIGHT - PATTERN_HEIGHT DO
{

FOR col = 0 TO CA_WIDTH - PATTERN_WIDTH DO
{

partial_fitness = 0 # fitness in specific part of CA
FOR pr = 0 TO PATTERN_HEIGHT - 1 DO

FOR pc = 0 TO PATTERN_WIDTH - 1 DO
IF ca[row+pr][col+pc] == pattern[pr][pc] THEN

partial_fitness = partial_fitness + 1
save the partial_fitness value
IF found perfect pattern at position (row, col) THEN

replics_cnt = replics_cnt + 1
}

}
fit = sum of the REPLICS best saved partial fits
add a bonus if the solution produces more replics
fit = fit + replics_cnt * PATTERN_HEIGHT * PATTERN_WIDTH

save the best fitness out of all development steps
IF fitness > best_fitness THEN

best_fitness = fitness
}

RETURN best_fitness

Fig. 4. The fitness function used for the replication problem (the
same as in [13]). The pattern dimensions PATTERN WIDTH and
PATTERN HEIGHT include a border consisting of a single line of
inactive (zero-state) cells on each side because we required the replicated
structures to be separated each other.

applied to design a transition function by means of which the
CA develops so that there is a given number of copies of the
initial structure after a finite number of development steps.
One of the simplest techniques able to replicate an arbitrary
structure is based on additive transition rules [2]. As we shown
in [13], if such kind of transition function is discovered for a
specific pattern used for training the CA, then the transition
function is able to replicate different structures that were not
considered during evolution. However, in [13], we were able
to evolve only the aforementioned type of replication function.

In this section, we demonstrate that some other replication
processes can be found that (1) are not universal, i.e. the CA
is able to replicate the pattern it was trained for but it fails
if another pattern is specified, and (2) the replicated patterns
can overlap. The fitness evaluation algorithm that was utilized
during evolution is shown in Figure 4. In these experiments,
we required to develop at least two instances of the initial
pattern.

Statistical results related to the replication problem are
summarized in Table I. The maximal number of generations
was set to 500 thousands. If no solution is found within
this limit, the evolution is stopped. For each experiment with
a specific number of conditionally matching rules encoded
in a chromosome 100 independent evolutionary runs were
performed. The success rate, number of generations and rules
of the evolved transition function (in the conventional table-
based representation) was measured with respect to the number
of CMR encoded in a chromosome during evolution. As the
results show the success rate increases with increasing the
number of conditionally matching rules. It indicates that there
are more valid solutions in the search space that is represented
by higher number of conditionally matching rules. An inter-
esting phenomenon can be observed in the number of rules
of the evolved transition functions in the table representation.
The minimal number of rules tend to decrease slightly for

the increasing number of CMR. This observation is unusual
because the more the CMR the more the table-based rules
can be potentially generated. On the other hand, the maximal
number of table-based rules exhibits rather an opposite trend.
It indicates that the complexity of evolved transition functions
transformed into the table representation rather depends on
the general complexity of the CMR representation than on
the number of CMR. Moreover, the lower number of CMR
in general does not mean a reduction in complexity of the
corresponding table-based transition function.

TABLE I. STATISTICAL RESULTS FOR THE REPLICATION PROBLEM
CONSIDERING THE CMR-BASED APPROACH. THE NUMBER OF TABLE

RULES REPRESENTS HOW MANY RULES COMPRISE THE CONVENTIONAL
TABLE-BASED TRANSITION FUNCTION WHOSE APPLICATION MODIFIES

THE STATE OF INVESTIGATED CELL.

Number of Success Mean number Number of table rules:
CMR rate of gen. (std. dev.) mean min. max.
08 27 252390 (131598) 265 232 288
10 39 173072 (124653) 267 197 298
12 43 196924 (135305) 265 205 294
14 64 163372 (110220) 264 188 302
16 70 168246 (92543) 270 193 337
18 70 135745 (101820) 267 195 330
20 82 125458 (95564) 270 218 330
22 89 139410 (92700) 260 195 319
24 86 152829 (99917) 260 196 341
26 94 146169 (101447) 258 203 320

In order to design a transition function for the replication
problem, an initial (training) pattern was used as shown in
Figure 5, part I. Figure 5 also shows one of the solutions
that was found using genetic algorithm for the replication
task. As evident, pattern I. is replicated after 8 steps and the
CA produces more copies if the development continues. The
replics are isolated each other – there is at least one line of
zero-state cells between the neighboring rectangles delimiting
the replicated structures. Part II. of Figure 5 shows another
example of development using the same transition function.
However, although the initial pattern is very simple and the
CA is possible to produce some copies during development,
the result is not the desired replication of the original pattern.
More complex pattern is depicted in part III. of Figure 5. As
the CA development shows, this transition function is not able
to produce any copy of this structure because the shape of the
original is destroyed. Hence the evolved replication function
is not universal. In fact, the CA was trained for a specific
pattern that was used for evaluating the candidate solutions. A
specific feature of this result is that the process of development
produces active cells only on the right of the initial pattern (i.e.
there is no active development to the other sides). It seems
that this solution is the simplest one for obtaining two replics
in a limited number of steps. However, the obtained results
contain solutions that replicate to one of the other sides which
indicates that the evolution is able to find symmetric rules in
order to create copies of the initial structure into the “empty”
(zero-state) cells that are available inside the CA.

Another example of a successful result is shown in Figure
6. The same initial structure was used to train the CA during
evolution. However, the replication process is different. In
this case the direction of the replication is on the north-west
side and the first complete replics arise after the fourth step.
Although the shapes of the replics are isolated, their delimiting
rectangles overlap by three cells (including the one-line of
zero-state cells on each side of the shape). The experiments

Fig. 5. Replication of some selected initial structures in a cellular automaton.
This case represents an example of non-universal replicator, some structures
are not replicated correctly.

showed that this kind of replication is much less common in
the obtained results which indicate either a need of a more
complex transition function or that this kind of transition
function is rare in the search space. Similarly to the previous
example, a result replicating into the opposite direction was
also observed.

Fig. 6. Diagonal replication of an initial structures using the transition
function from Figure 7

Fig. 7. Evolved CMR-based transition function for the replication process
from Figure 6 Each row represents a conditionally matching rule. The numbers
in parentheses denote indices of cells in Moore neighborhood (according to
Figure 1) whose states are evaluated within the conditions. Note that the cell
indices are shown for convenience only, they are considered implicitly by the
positions of conditions in the rules.

The proposed results show that various solutions exist for
the replication of a given structure. In general, they may not
be considered as universal replicators because some of them
fail in replication of other structures. This feature is caused by
the fact that a single specific pattern was considered during
evolution of the transition function and, in fact, the CA is
trained to this pattern only. It also means that the replication
process itself may be specific for a given pattern. This issue
might be interesting, for example, from a computational point
of view. One of the hypotheses of this kind of research may be
whether are there suitable structures whose replication could
be considered as an efficient computation algorithm for a given
task using CA in addition to currently known solutions (e.g.
Tempesti Loops [14]).

B. The Pattern Transformation Problem

The objective of the pattern transformation problem is to
find a transition function for a CA that is able to transform
a specific pattern (represented by the initial state of the CA)
into a given target pattern in a finite number of steps. For the
purposes of this experiment, a counter-clockwise rotation by 90
degrees of the initial pattern will be considered. Note that this
transform represents one of the problems whose solution was
not successful using other CA design approaches (i.e. evolution
of the transition function as a table or a program investigated
in [13]).

Statistical results related to the pattern transformation prob-
lem are summarized in Table II. The maximal number of
generations was set to 1 million. If no solution is found within
this limit, the evolution is stopped. Similarly to the replication
problem, the success rate tends to increase in most cases
with the increasing number of CMR although the maximum
observed success rate is significantly lower. However, the
number of table rules exhibits an opposite trend compared to
the replication experiments. For the increasing number of CMR
both the minimal and maximal number of table rules tend to
increase. It may indicate that the pattern transformation task is
robust, i.e. the solution can be achieved in many different ways
(both less and more complex) and the more CMR the more
complex transition function can be found. This observation
can also be confirmed by the resulting CA behavior for which
(as shown later) different number of steps may be needed to
transform the given pattern using variable transition functions.

TABLE II. STATISTICAL RESULTS FOR THE PATTERN
TRANSFORMATION PROBLEM CONSIDERING THE CMR-BASED APPROACH.
THE NUMBER OF TABLE RULES REPRESENT HOW MANY RULES COMPRISE

THE CONVENTIONAL TABLE-BASED TRANSITION FUNCTION WHOSE
APPLICATION MODIFIES THE STATE OF INVESTIGATED CELL.

Number of Success Mean number Number of table rules:
CMR rate of gen. (std. dev.) mean min. max.
08 21 406258 (486154) 115 58 178
10 34 353064 (425202) 119 67 250
12 27 299977 (319499) 140 100 214
14 45 250068 (229413) 147 88 221
16 47 229491 (213390) 147 87 318
18 48 224394 (227729) 152 96 209
20 60 180913 (204358) 163 124 234
22 64 158919 (156925) 169 81 273
24 45 163746 (168598) 187 99 338
26 53 208153 (213602) 175 110 270

The initial pattern used in our experiments is described
in the upper-left part of Figure 8. The structure to be rotated
is represented by a 10x10-cell shape including one line of
zero-state cells on each side delimiting the given structure.
The fitness evaluation is performed as follows. After each
step of the CA a partial fitness is calculated as the number
of cells in correct state in the 10x10-cell region. Note that
the target state of each cell is determined according to the
known pattern which represents the rotated initial 10x10-cell
structure by 90 degrees counter-clockwise. The fitness value
of a candidate transition function is the maximum from the
partial fitness values. The pattern transformation is not a trivial
task considering the fact that only local cell interactions are
involved during the CA development. It means that the global
behavior representing the process of rotation is an emergent
feature of the CA.

Several perfect results have been obtained using the CMR-
based approach. One of the results is shown in Figure 8.
As evident, the initial pattern is precisely rotated after 13th
step. Of course, no subsequent rotation will take place if
the development continues because it represents another task
for the CA that was not considered during evolution. In this
case, the rotated pattern is destroyed during the next steps
and the CA gets into a loop in which several states alternate
periodically. The transition function that was evolved for the
CA from Figure 8 is shown in Figure 9. The table-based
representation of this transition function consists of 58 rules
that change the state of the investigated cell which represents
the most compact solution that was evolved in this paper.

Fig. 8. Counter-clockwise rotation by 90 degrees in a cellular automaton.
The pattern to be rotated is represented by the initial state. The rotation is
performed in 13 steps using the transition function from Figure 9.

Fig. 9. Evolved transition function for counter-clockwise rotation of an initial
structure from Figure 8. Each row represents a conditionally matching rule.
The numbers in parentheses denote indices of cells in Moore neighborhood
(according to Figure 1) whose states are evaluated within the conditions. Note
that the cell indices are shown for convenience only, they are considered
implicitly by the positions of conditions in the rules.

Another perfect solution is shown in Figure 10 and the
corresponding CMR-based transition function in Figure 11.
This transformation shows a more intricate process; the initial
pattern is precisely rotated after the 16th step. Moreover, if the
development continues, another remarkable pattern emerges in
step 30 - a triangular structure that was not explicitly consid-
ered during evolution. The “fate” of this triangle in this CA is
not very good – it is going to disappear completely. However,
the process during which it happens could be interesting. As

shown in Figure 10 (Step 50), a stair-like pattern is formed
that successively removes the active cells at the hypotenuse of
the original triangle. Although the triangle in step 30 consists
of only 36 active cells, it takes in total 64 steps before it
disappears.

Fig. 10. Counter-clockwise rotation by 90 degrees in a cellular automaton
according to the transition function from Figure 11

Fig. 11. Evolved transition function for counter-clockwise rotation of
an initial structure from Figure 10. Each row represents a conditionally
matching rule. The numbers in parentheses denote indices of cells in Moore
neighborhood (according to Figure 1) whose states are evaluated within the
conditions. Note that the cell indices are shown for convenience only, they are
considered implicitly by the positions of conditions in the rules.

The same process can be observed for such triangles of
different sizes. An example of a complete development is
shown in Figure 12 for the triangle whose size (i.e. each
its side) is represented by 4 active cells. This triangle is
going to disappear after the 16th step which is interesting
from a computational point of view. It can be observed that
the number of steps for the triangle to disappear is equal to
the square of the number of cells representing its size. For
example, the triangle whose each side consists of 10 active
cells needs 102 = 100 steps to disappear. Note that this feature
was not considered during evolution of the CA (the goal was
only to perform rotation of the initial structure).

Fig. 12. Example of a process of disappearing a triangle whose number
of steps represents the square of size of the triangle. The development is
performed according to the transition function from Figure 11.

The solutions that were presented for the pattern rotation
problem work in cellular automata of arbitrary size that is
sufficient for representing the initial pattern. For example, if
a 100x100-cell CA is used whose central region is initialized
by the structure to be rotated, the transformation process will
be performed correctly. However, other solutions have been
observed whose functionality is limited only to the CA whose
size corresponds to that considered during evolution. It means
that some results can not be considered as general with respect
to the CA size. The reason of this issue lies in the fact that
only CA of finite sizes can be practically implemented in
which a form of boundary conditions has to be applied. In our
experiments, zero-boundary conditions were considered which
in fact influences the CA development in a limited cellular
space. In some cases the evolution utilized this feature and
adapted the solution to the conditions of a finite CA size.

V. CONCLUSIONS

In this paper a method for representing transition func-
tions for cellular automata has been presented. The proposed
approach is based on introducing conditions into the transition
rules that have to be satisfied in order to match the rule (i.e. to
use it for determining the next state of a cell). One of the main
features of this representation is that the number of elements
needed to represent a transition function can be reduced in
comparison with the conventional table-based representation.
Yet, the possibility of specifying traditional transition rules (as
in the table-based approach) is preserved which is suitable in
situations when it is needed to determine a new cell state for
a specific combination of states in the cellular neighborhood.

In the case study considering the replication problem,
several solutions were designed using a genetic algorithm.
It was determined that the CA is able to replicate a given

structure but failed in replicating some other structures that
were not considered during evolutionary search of the tran-
sition function. It means that the evolution utilized specific
features of the input pattern for which the replication rules
were adapted. Therefore, other replication schemes may exist
for different patterns which could be potentially useful, for
example, for the purposes of performing computations using
cellular automata.

The pattern transformation problem involved a counter-
clockwise rotation by 90 degrees of a given structure in
a cellular automaton. This task belongs to some previously
studied problems whose solution failed using other approaches
to the cellular automata design. In this paper, several perfect
results were obtained demonstrating various solutions of the
pattern transformation. It was determined that in some cases a
computationally interesting behavior (specifically, calculation
the square of a number representing the size of the input
pattern) can be observed that was not explicitly considered
during evolution.

This work was focused on binary cellular automata with
Moore neighborhood. However, the results of our subsequent
experiments indicate that the proposed approach can be ap-
plied for the design of cellular automata working with higher
number of states. Therefore, our next research will be devoted
to the design of complex cellular automata for which the
conventional approaches do not provide satisfactory results.
In particular, more non-trivial patterns will be studied in the
replication problem (including self-replicating loops) and the
resulting cellular automata will be also analysed with respect
to their computational properties. Another interesting research
area could be the CMR approach itself in which each CMR
might be evaluated in order to determine its contribution to
achieve a given CA behavior. A study of these features might
enable to optimize the evolvability of the CMR representation.

ACKNOWLEDGMENT

This work was supported by the Czech Science Founda-
tion project P103/10/1517 and the IT4Innovations Centre of
Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[2] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[3] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular
Programming Approach, Lecture Notes in Computer Science, volume
1194. Berlin: Springer-Verlag, 1997.

[4] J. F. Miller, “Evolving developmental programs for adaptation, morpho-
genesis and self-repair,” in Advances in Artificial Life. 7th European
Conference on Artificial Life, Lecture Notes in Artificial Intelligence,
volume 2801. Dortmund DE: Springer, 2003, pp. 256–265.

[5] P. C. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping
for digital FPGAs,” in Proc. of the 3rd NASA/DoD Workshop on
Evolvable Hardware. Los Alamitos, CA, US: IEEE Computer Society,
2001, pp. 109–115.

[6] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp.
387–416, 2005.

[7] T. Kowaliw, P. Grogono, and N. Kharma, “Bluenome: A novel develop-
mental model of artificial morphogenesis,” in Proc. of the Genetic and
Evolutionary Computation Conference, GECCO 2004, Lecture Notes in
Computer Science, part I., volume 3102. Springer-Verlag, 2004, pp.
93–104.

[8] S. A. Kauffman, “Metabolic stability and epigenesis in randomly
constructed genetic nets,” Journal of Theoretical Biology, vol. 22, pp.
437–467, 1969.

[9] F. Dellaert and R. Beer, “Toward an evolvable model of development for
autonomous agent synthesis,” in Proc. of the 4th International Workshop
on the Synthesis and Simulation of Living Systems (Artificial Life IV).
MIT Press, 1994, pp. 246–257.

[10] ——, “A developmental model for the evolution of complete au-
tonomous agents,” in Proc. of the 4th International Conference on
Simulation of Adaptive Behavior. Cambridge, MA: MIT Press-
Bradford Books, 1996, pp. 393–401.

[11] Y. Guo, G. Poulton, G. James, P. Valencia, V. Gerasimov, and
J. Li, “Designing stable structures in a multi-agent self-assembly sys-
tem,” in Intelligent Agent Technology, 2004. (IAT 2004). Proceedings.
IEEE/WIC/ACM International Conference on, 2004, pp. 405–408.

[12] Y. Kayama, “Network view of binary cellular automata,” in Cellular
Automata for Research and Industry, ser. Lecture Notes in Computer
Science Volume 7495. Springer Verlag, 2012, pp. 224–233.

[13] M. Bidlo and Z. Vasicek, “Evolution of cellular automata using
instruction-based approach,” in 2012 IEEE World Congress on Compu-
tational Intelligence. IEEE Computer Society, 2012, pp. 1060–1067.

[14] G. Tempesti, “A new self-reproducing cellular automaton capable of
construction and computation,” in Advances in Artificial Life, Proc. 3rd
European Conference on Artificial Life, ser. Lecture Notes in Artificial
Intelligence, vol. 929. Springer Verlag, 1995, pp. 555–563.

