
Functional-Level Development of Image Filters
by Means of Cellular Automata

Michal Bidlo
Brno university of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2
61266 Brno, Czech Republic
Email: bidlom@fit.vutbr.cz

Zdenek Vasicek
Brno university of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2
61266 Brno, Czech Republic
Email: vasicek@fit.vutbr.cz

Abstract—A developmental method based on one-dimensional
uniform cellular automaton is presented for generating image
filters at the level of functional blocks. The key idea is to enhance
the local transition function of cellular automaton in order to
enable its cells to generate functional blocks when determining
the new states during development. Simple genetic algorithm is
applied to find a suitable cellular automaton (its initial state and
the transition function) that is able in a finite number of steps
to generate a functional structure for image filtering. Several
sets of experiments are presented considering various settings of
parameters of the developmental system. The evolved filters are
evaluated using different types of grayscale images corrupted by
salt-and-pepper noise of various intensity. The obtained filters
are compared to some conventional median filters with respect
to the filtering quality.

I. INTRODUCTION

Evolutionary design represents a wide research area in
which non-trivial problems are solved using evolutionary
algorithms. Various techniques have been applied so far in
different areas (e.g. mechanical constructions, functional struc-
tures, analog and digital circuits and so on). One of the key
issue for successful evolutionary design is the representation
problem, i.e. how the candidate solutions (called phenotypes)
are encoded in evolutionary algorithms. For example, Miller’s
Cartesian Genetic Programming (CGP) [1] allows us to encode
graph-based structures (e.g. digital circuits or neural networks)
into linear strings whose information can directly be mapped
onto a candidate solution. However, the direct mapping may
be limiting for some application. For instance, Developmental
CGP was demostrated to be more powerful technique in case
of evolutionary design of large parity circuits [2]. Another
example of a successful application of indirect encoding
represents evolutionary design of generic sorting networks
using Instruction-Based Development [3]. Development can
also control the construction of a target object according to
external conditions [4].

The developmental approach was originally inspired by a
biological process of ontogeny. The ontogeny represents a
developmental process involving formation of a multicellular
organism from a zygote. It is influenced by genetic information
of the organism and the environment in which the development

is carried out. Computational development is usually consid-
ered as a non-trivial and indirect mapping from genotypes to
phenotypes in an evolutionary algorithm to provide a more
flexibility in the construction process of a candidate solution
than that is achievable by direct mappings. In such case the
genotype has to contain instructions (an algorithm) for the
construction of a target object. While the genetic operators
work with the genotypes, the fitness calculation (evaluation
of the candidate solutions) is applied on phenotypes created
by means of the development. The principles of the computa-
tional development together with a brief biological background
and selected application of this bio-inspired approach are
summarized in [5]. There are several approaches of how
to perform computational development, for example Miller’s
Developmental Cartesian Genetic Programming [2], Koza’s
Developmental Genetic Programming [6], Instruction-Based
Development [3] or cellular automata [7].

Several approaches have been published involving cellular
automata as a developmental model in order to solve a specific
task. Evolutionary algorithms have usually been applied to dis-
cover a suitable transition function of the cellular automaton.
For example, Miller investigated the problem of evolving a
developmental program inside a cell to create multicellular or-
ganism of an arbitrary size and characteristic [8]. He presented
a system in which the organism organizes itself into well
defined patterns of differentiated cell types (e.g. the French
Flag). Tufte and Haddow utilized a FPGA-based platform
of Sblocks [9] for the online evolution of digital circuits.
The system actually implements a cellular automaton whose
development determines the functions and interconnection of
the Sblock cells in order to realize a function [10]. The
evolutionary algorithm was utilized to design the rules for the
development of the CA [10]. In recent years cellular automata
were successfully applied in the task of circuit development at
the gate level. In this case genetic algorithms were applied in
order to design transition functions that are able to generate
various types of digital circuits, e.g. polymorphic circuits
[11], combinational multipliers [12], dividers [13] or sorting
networks [11], [14]. In addition, advanced representations of
transition function has also been studied [15], [14].

Cellular platforms have also been applied in the area of
image processing. For example, an asynchronous 2D cellular
automaton was evolved by Slatnia et al. in order to perform
edge-detection task [16]. Similar problem was solved in [17],
where an evolvable-hardware approach was considered to
implement a highly parallel platform for low-level image
processing. The problem of classification of satellite images
using cellular automata was studied in [18]. The authors
applied an approach based on the relationship between spectral
reflectances and physical attributes of the image. In [19] Paul
et al. proposed a cellular automata-based transform coding for
image compression.

In this paper we will continue in the research devoted to
the circuit design by means of cellular automata. The goal
is to utilize one-dimensional uniform cellular automata for
the development of image filters whose purpose is to remove
a specific kind of noise from a corrupted image. A genetic
algorithm will be applied to design a transition function that
is able to generate the target filter in a finite number of steps
of the cellular automaton. In contrast with the aforementioned
approaches, we will consider functional-level development
rather than utilizing basic logic gates. Hence the building
blocks of the target filters implement more complex functions
which perform operations over integer values representing
pixel shades of the image to be filtered. It will be shown that
cellular automata can be designed by evolution that are able to
generate functional structures for image filtering. The obtained
results will be analysed with respect to the output quality of the
filtered images. A comparison with some existing conventional
approaches will also be performed.

II. CELLULAR AUTOMATA

Cellular automata are discrete dynamical systems in which
cells are organised in a regular structure. In case of one-
dimensional (1D) cellular automata, that are considered in this
paper, the cells constitute a finite linear structure. Each cell
may occur in one state from a finite set of states. The states
are updated synchronously in parallel in discrete time steps
according to a local transition function. An update of all cells
of a CA at a given time is referred to as a developmental
step. The next state of a cell depends on the combination
of states in the cellular neighborhood. In this paper we will
consider the cellular neighborhood consisting of a given cell
and its two immediate neighbors. Moreover, cyclic boundary
conditions will be considered which means that the left-most
and right-most cell of the CA are considered to be neighbors.
Therefore, the cellular structure may be viewed as a circle.
The local transition function defines a next state for every
possible combination of states in the cellular neighborhood.
Let us denote c1c2c3 → cn as a rule of the local transition
function, where c1c2c3 represents the combination of states of
the cells in the cellular neighborhood and cn denotes the next
state of the cell to be updated. Then the cell in the middle of
the neighborhood is updated from state c2 to state cn after a
developmental step. In case of uniform cellular automaton the
local transition function is identical for all the cells.

III. DEVELOPMENTAL MODEL FOR IMAGE FILTERS

In this section a developmental model will be described that
allows us to generate image filters by means of uniform 1D
cellular automata. The main idea of the CA-based structural
development is based on a suitable enhancement of local
transition function that enables the cells to generate functional
blocks during the CA development. In this paper the goal of
the developmental process is to design a functional structure
(image filter) that is able to calculate a filtered value using the
information contained in the local neighborhood of a given
pixel (so-called filter window). The filter will operate over
8-bit grayscale images. Hence we have proposed to enhance
each rule of the transition function to include, in addition to
the next state, an information specifying a functional block
and connection of its inputs to be generated by a given cell
when the cell determines its next state. The following form of
a rule of local transition function will be considered.

c1c2c3 → cn : f i1 i2

The part on the right of the colon specifies the functional block
to be generated, i.e. its function (f) and the indices of two
inputs (i1, i2) determining the connection of the block. Since
the update of cell states in a developmental step is performed
in parallel for all cells, one level of a target circuit is generated
in a single developmental step of the CA.

In case of the first step the inputs of the blocks being
generated are connected to the primary inputs of the target
filter (i.e. to specific pixels of the filtering window). In the
subsequent developmental steps the inputs of the functional
blocks are connected to the outputs of blocks generated in
the previous developmental step. After the last developmental
step the output of the block generated by the central cell is
considered as the output of the filter.

In order to enable the aforementioned possibilities of input
connections, i1 and i2 are encoded as integers from which
the specific index in the appropriate range is calculated using
the modulo division. Specifically, in order to determine the
connection of a block’s input that is generated in the first
developmental step, the values of i1 and i2 are divided by the
value 9 (i.e. the number of pixels in the filter window). For the
connection of inputs of blocks generated in subsequent steps,
the value W is applied in the division, where W equals the
number of CA cells.

In order to illustrate the proposed developmental model, let
us consider an example of 3-cell binary cellular automaton for
generating a filter that works with 3x3-pixel window (Figure
1a). Let an initial CA state be 100 and let a specific rules of
local transition function be given (Figure 1b). The resulting
filter is generated as follows. The top cell of the CA calculates
its next state according to rule II, hence the state of this cell
during the first developmental step is 1 and a block performing
function 2 is generated whose inputs are connected to pixels
in the filter window specified by the last two integers of that
rule, i.e. the first input is connected to pixel 203 mod 9 = 5
and the second input to pixel 253 mod 9 = 1. The middle

TABLE I
SET OF FUNCTIONS REPRESENTING THE BUILDING BLOCKS OF IMAGE

FILTERS

Code Function Description
0 in1 value from input 1
1 in2 value from input 2
2 min(in1, in2) minimum
3 max(in1, in2) maximum
4 255− in1 inversion
5 in1/1 division by 2
6 in2/2 division by 4
7 in1 + in2 addition
8 in1 +S in2 addition with saturation
9 (in1 + in2)/2 average value
10 |in1 − in2| absolute difference

Fig. 1. Example of image filter development using 3 steps of cellular
automaton.

cell gains its new state 1 according to rule IV and generates
function 2 with its inputs connected to pixels 8 mod 9 = 8 and
138 mod 9 = 3. The same approach is utilized to calculate
next state of the bottom cell.

The second developmental step differs from the first step
in the mapping of the block’s inputs that are only allowed
to connect to the outputs of blocks generated in the previous
developmental step. The top cell determines its next state 0
according to rule III and generates a block with function 3 with
its inputs connected to the top block (index 78mod 3 = 0) and
bottom block (index 128mod 3 = 2) generated in the previous
step. Similarly, the middle cell in the second step applies rule
VI giving the new state 1 and generating function 3 with both
its inputs connected to index 164 mod 3 = 176 mod 3 = 2.
The same principle is applied to calculate the last step of CA
after which the output of the middle block is considered as
the filter output (i.e. the filtered value of pixel 4 in the filter
window). Note that there are some rules — specifically rule
O and rule VII — in the transition function marked in gray
which means that those rules have not been applied during the
3-step development of CA. In the filter structure developed by
the CA the gray functional blocks represent filter elements
that have no effect on the filter output and hence they can be
removed. In particular, it is a case of middle block from the
second step and top and bottom block generated in the third
step.

IV. EVOLUTIONARY DESIGN OF CELLULAR AUTOMATA
FOR FILTER DEVELOPMENT

A simple genetic algorithm (GA) was utilized for the evo-
lutionary design of cellular automata that are able to generate
image filters at the functional level. Each chromosome of
the GA encodes an initial CA state and its complete local
transition function. The rules of the transition function are
represented by a 4-tuples, each of which contains the next
cell state, function of a block to be generated and indices of
its two inputs. The index (position) of the rule in genome
is specified implicitly by means of the value expressed by
the number representing the combination of states in the
cellular neighborhood. The base of this number equals the
number of possible cell states. Therefore, if we consider the
general form of the rule c1 c2 c3 → cn : f i1 i2, only the
part on the right of the arrow is encoded in the genome.
For example, if a cellular automaton with 2 cell states and
the cellular neighborhood consisting of 3 cells ought to be
evolved, there are in total 23 rules of the transition function.
Consider rule 0 1 1 → 0 : 2 0 1. Since the combination
of states 0 1 1, according to which new cell state will be
calculated, corresponds to binary representation of number 3,
this rule will be placed in the chromosome at position 3 of the
local transition function. Note that such rule will be encoded
as a sequence of integers 0 2 0 1.

The population consists of 50 chromosomes which are
initialized randomly at the beginning of evolution. The chro-
mosomes are selected by means of the tournament operator
with the base 4. No crossover operator is applied. Considering
the mutation, our previous experiments showed that if only
one gene per chromosome is mutated, then the convergence
of the evolution can be very slow. Therefore, more genes
will be allowed to mutate as follows. In each chromosome
6 candidate genes are chosen randomly. Every candidate gene
undergoes mutation with probability 0.96. If a gene ought to be
mutated, then a new value of the gene is generated randomly
for which replaces the original value. A gene is understood
as a single value representing a cell state or function code or
input index. The high mutation rate was chosen in order to
enable a larger change in the genome because of omitting the
crossover operator. A single evolutionary run is performed for
500 thousands of generations and after this period the best
solution in the population is considered as a resulting filter.

The fitness evaluation of candidate solutions is performed
as follows. A given number of steps is performed by cellular
automaton according to its specification encoded in each
chromosome. Since it is impossible to evaluate all the input
test vectors in the fitness function (for example, there are in
total 2569 different combinations for 3x3-pixel window in 256
degrees of grayscale), it is necessary to use a training image.
The obtained filter, that is generated by the CA development, is
applied on a corrupted image Ic in order to produce a filtered
image If whose quality is evaluated by comparing it to a
reference image Ir (i.e. the uncorrupted version of Ic).

(a) reference image (b) corrupted image

Fig. 2. Training image used to evaluate candidate filters during evolution.

The training image that was used in this paper is an artificial
image whose corrupted version considers 20% salt-and-pepper
noise (Figure 2). The training vectors were generated as 9-
tuples from the corrupted image and the corresponding correct
values from the reference image. In particular every 8-bit
pixel value of the filtered image is calculated using the value
of the corresponding pixel in the corrupted image and its
immediate neighbouring pixels (i.e. the filter works with 3x3-
pixel window).

In order to evaluate the quality of the filter in fitness
function, mean absolute error (MAE) will be considered as
the only criterion. If the corrupted image is of the size R×C
pixels and 3x3-pixel filter window is used, then the number of
filtered pixels is equal to the (R−2)× (C−2) (the boundary
pixels are not considered). Formally the fitness function can
be represented by Equation 1.

fit(If , Ir) =
1

(R− 2)(C − 2)

R−2∑
i=1

C−2∑
j=1

|If (i, j)− Ir(i, j)| .

(1)
The goal of the evolutionary algorithm is to design a filter

which minimizes the difference between If and Ir, i.e. the
fitness function calculates absolute error of If with respect
to Ir. Note that the training image data, represented byt the
pair of images Ic and Ir, are used to determine the quality
of the candidate filters during the evolutionary design process.
In order to evaluate the robustness of the resulting (evolved)
filters, a set of various test images (corrupted by a given type
of noise) is considered as will be described in Section V-B.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The goal of the experiments was to find a CA that is able to
generate image filter for salt-and-pepper noise using building
blocks from Table I. Several sets of experiments were con-
ducted considering various settings of the cellular automaton,
i.e. the number of cells, cell states and developmental steps.
The ranges of these parameters were determined experimen-
tally according to analysis of the filtering quality of resulting
filters and time requirements of evolutionary experiments. For
example, we determined that only 2 cell states do not provide
sufficient scope for generating filters with reasonable filtering

TABLE II
STATISTICAL RESULTS OF THE DEVELOPMENT OF IMAGE FILTERS USING

CELLULAR AUTOMATA. THE BLOCK COUNT IS PRESENTED FOR THE BEST
AND WORST SOLUTIONS WITH RESPECT TO THEIR FITNESS.

CA configuration Fitness value (MAE) Block cnt.
cells states steps best worst mean best worst

9 3 5 1.787 4.498 2.539 ± 0.51 18 12
9 3 7 1.612 4.661 2.654 ± 0.55 34 10
9 3 9 1.682 4.393 2.708 ± 0.55 44 36
9 4 5 1.536 3.791 2.124 ± 0.41 23 10
9 4 7 1.418 4.693 2.372 ± 0.66 26 15
9 4 9 1.534 4.961 2.591 ± 0.67 34 34
9 8 5 1.306 6.243 2.460 ± 1.00 20 14
9 8 7 0.926 6.813 2.229 ± 1.07 35 24
9 8 9 0.939 13.416 3.014 ± 1.94 24 42

7 3 5 1.695 5.167 2.482 ± 0.54 16 10
7 3 7 1.581 4.581 2.502 ± 0.55 26 21
7 3 9 1.698 4.285 2.698 ± 0.60 26 27
7 4 5 1.485 4.091 2.044 ± 0.37 20 12
7 4 7 1.177 4.004 2.181 ± 0.61 19 20
7 4 9 1.235 5.949 2.322 ± 0.63 42 38
7 8 5 1.079 5.431 2.397 ± 0.91 14 11
7 8 7 0.756 10.194 2.696 ± 1.63 28 31
7 8 9 0.911 14.675 2.906 ± 2.11 36 36

5 3 5 1.491 4.979 2.758 ± 0.55 15 16
5 3 7 1.771 4.441 2.742 ± 0.57 27 22
5 3 9 1.828 5.373 2.924 ± 0.67 30 27
5 4 5 1.339 6.203 2.385 ± 0.64 16 15
5 4 7 1.235 4.487 2.446 ± 0.60 23 21
5 4 9 1.470 6.101 2.707 ± 0.75 27 21
5 8 5 1.355 6.970 2.875 ± 0.92 15 17
5 8 7 1.024 10.142 3.165 ± 1.64 19 11
5 8 9 1.191 15.652 3.549 ± 2.31 30 22

quality. Therefore, 3 states were identified as the minimal
number of states. For each setup 100 independent evolutionary
runs were performed.

Statistical results of the experiments are summarized in
Table II. The best filter was identified in every set of results
considering mean average error (MAE) of the filtered image
with respect to the reference image as the only criterion.

As evident, the fitness values do not exhibit any noticeable
dependence on the CA parameters. Both the best fitness and
mean values mostly have only small differences considering
various setups. Greater differences can be observed for higher
number of states which is probably caused by the fact that
the search space becomes very huge and evolution may need
longer time (i.e more generations of the GA) to find a
reasonable solution. Despite of this fact, two fittest filters were
discovered only for the setups with higher number of cell
states and developmental steps (marked in bold in Table II).
In fact, this observation may be expectable because there are
more possibilities of how to map the functional blocks on
the rules of transition function for higher number of states.
Nevertheless, it is not generally true that the more cells the
better filters can be found because the best filters from all the

Fig. 3. Example of image filter generated by means of cellular automaton whose function is preserved for a limited number of developmental steps that
were not considered during evolution. The blocks whose output will permanently be 0 are marked by shaded circles.

sets of experiments were developed for 7 cells which is the
median of the number of cells considered in the experiments.
The setup that generated the fittest filter, that was discovered in
this paper, is marked in bold italic in Table II. This table also
contains information about the number of effective functional
blocks of the best filter found in each specific setup. It can
be seen that the number of blocks varies substantially (from
14 to 44) which is mostly dependent on the number of cells
and steps. What may be interesting, however, is the fact that
most of the best filters consist of about mean value of the
aforementioned range.

A. Filters Generated by the Evolved Cellular Automata

The structure of the best evolved filter is depicted in Figure
4. This filter consists of 30 blocks and utilizes the whole filter
window to calculate the filtered value. We evaluated the CA
discovered for the construction of this filter also for more
developmental steps and investigated the filtering properties
of the resulting functional structures. Unfortunately, no other
reasonable filtering function was observed. If more levels of
the filter are generated using this CA, then its function is
degraded and filtering quality decreases substantially.

6

2

6

7

7

9

5

8

10

0

2

0

4

4

10

3

3

7

0

3

2

2

3

4

3

4

3

2

8

2

3

2

3

7

4

3

8

2

8

8

2

4

0

1

8

7

2

2

3

Fig. 4. The best filter evolved from all the experiments.

It was shown that although the evaluation of the filters
during evolution is performed after a given number of devel-
opmental steps, the filtering function in some cases provides
reasonable quality even if the development continues. For
example, a CA was discovered that exhibits the ability to

preserve filtering quality of the generated functional struc-
ture obtained by some additional developemntal steps. The
resulting filter circuit is depicted in Figure 3. There were 9
developmental steps of the CA performed during evolution
after which the filter function was evaluated. The filter output
is connected to the output of the block with index 51. Subse-
quent analysis showed that the same function has already been
observable after the eighth developmental step (i.e. at output
46). Moreover, if the development of evolved CA continues,
the generated circuit is able to preserve its function also for
the 10th (output 56) and 11th (output 61) developmental step
(i.e. some steps that were not considered during evolution).
This feature is based on the fact that the result of function
10 (absolute difference) at output 34 will always provide 0
because its inputs are connected to the same block. This result
is propagated through the identity function blocks (outputs 42
and 47). This zero at output 47 is then connected in the 9th
steps to blocks of function 2 (minimum) which ensures that 0
is propagated as minimal value at outputs 49 and 53. In the
10th step the output 56 of functional block 7 (addition) will
always possess the value of function from output 51 which
preserves the filtering quality also in the 10th step. Finally,
zero is propagated through block 8 (addition with saturation)
at output 57 and because block 3 (maximum), generated in
the 11th step, takes as its first input the zero from output 57
and as its second input the filtered value from output 56, its
result at output 61 will again provide the filtered value that
represents the results of the evolved filter function. In fact,
blocks with outputs 49, 53, 56, 57 and 61 only enables the
filtered value from output 46 to be propagated through the
circuit structure generated in the 10th and 11th step. It was
determined that by subsequent development of the CA (i.e. the
12th, 13th,. . . step) the evolved function is destroyed because
of generating unsuitable block functions.

Figure 5 shows an example of filter created by means of
another evolved cellular automaton. The developed functional
structure was evaluated during evolution after the ninth step
of the CA. Similarly to the example described in the previous
paragraph, this CA is also able to produce filters with the
same fitness values using less number of developmental steps.
However, its exact function seems to be much more difficult

Fig. 5. Example of image filter developed by means of cellular automaton whose function is preserved for arbitrary number of developmental steps that
were not considered during evolution. The periodically repeated structure, that is generated by the CA, is marked by shaded rectangles.

to analyze. As evident from Figure 5, the CA generates in the
third and fourth developmental step a two-level block structure
that is repeating periodically during the subsequent steps. If
the fitness value of filters generated for several developmental
steps is analyzed, we can observe decreasing fitness values.
The reasonable fitness value is obtained after the seventh step
(1.8625). This value is then slightly improved in the ninth
step to 1.8196. After that, the value no longer changes with
subsequent development of the CA. It demonstrates that the
CA is able to periodically generate a circuit structure whose
function is able in the first phase to optimize the filtered value
and in the second phase to preserve the optimized value during
subsequent development.

B. Evaluation of the Filtering Quality

In order to determine the filtering properties of the evolved
filters, we have used a set of common test images (airplane,
baboon, barbara, bird, bridge, camera, crosses, goldhill, lena,
peppers, squares) consisting of 256× 256 pixels corrupted by
various intensity of the salt-and-pepper noise. Table III shows
average MAE values for the fittest five evolved filters and
some conventional filters. We have used common median filter
(denoted as medN) and advanced method known as adaptive
median filter (denoted as amedN). It can be seen that the
evolved filters are in most cases better or at least of the same
quality in comparison with the conventional solutions utilized
to suppress the salt-and-pepper noise. Very good results of the
evolved filters are observed not only for higher but also for
lover noise intensities. Note that the filters were trained for
20% salt-and-pepper noise. The problem of common median
filter is that filtering images tend to be smudged. Moreover,
the larger filter window the worse image quality. This issue
is observable in Table III, where the average MAE values of
the median filters represent the worst results. On the contrary,
the evolved filters are able to remove substantial part of
noise while preserving image details. This fact is clearly
demonstrated by the presence of the best MAE values for
lower noise intensity (up to 10%).

The filtering capability of the best evolved filter using lower
noise intensity (10%) is illustrated at Figure 6. This example
actually represents a special case of a test image used to
evaluate the detail preserving capabilities of the image filters.

TABLE III
AVERAGE MAE VALUES FOR THE BEST FIVE EVOLVED FILTERS

EVALUATED ON A SET OF TEST IMAGES IN COMPARISON WITH SOME
CONVENTIONAL MEDIAN FILTERS. THE NUMBER OF CELLS (W), CELL

STATES (S) AND STEPS (T) ARE UTILIZED FOR UNIQUE IDENTIFICATION
OF EVOLVED FILTERS. THE CONVENTIONAL FILTERS CONSIDERED FOR

THE EVALUATION INCLUDE STANDARD MEDIAN FILTER WITH 3X3
WINDOW (MED9) AND 5X5 WINDOW (MED25) AND ADAPTIVE MEDIAN

FILTER WITH 3X3 WINDOW (AMED9) AND 5X5 WINDOW (AMED25).

Noise level
Filter 1% 5% 10% 15% 20%

W7S8T7 (0.756) 0.108 0.345 0.880 1.572 2.476
med9 3.557 3.761 4.030 4.369 4.855
med25 5.670 5.774 5.903 6.043 6.219
amed9 1.313 1.388 1.529 1.760 2.179
amed25 1.574 1.525 1.583 1.703 1.943

W7S8T9 (0.911) 0.589 0.474 1.148 1.954 2.938
med9 3.557 3.761 4.030 4.369 4.855
med25 5.670 5.774 5.903 6.043 6.219
amed9 1.313 1.388 1.529 1.760 2.179
amed25 1.574 1.525 1.583 1.703 1.943

W9S8T7 1 (0.926) 0.148 0.343 0.875 1.587 2.594
med9 3.557 3.761 4.030 4.369 4.855
med25 5.670 5.774 5.903 6.043 6.219
amed9 1.313 1.388 1.529 1.760 2.179
amed25 1.574 1.525 1.583 1.703 1.943

W9S8T9 (0.939) 0.148 0.400 1.015 1.823 2.957
med9 3.557 3.761 4.030 4.369 4.855
med25 5.670 5.774 5.903 6.043 6.219
amed9 1.313 1.388 1.529 1.760 2.179
amed25 1.574 1.525 1.583 1.703 1.943

W9S8T7 2 (0.971) 0.058 0.343 0.896 1.677 2.795
med9 3.557 3.761 4.030 4.369 4.855
med25 5.670 5.774 5.903 6.043 6.219
amed9 1.313 1.388 1.529 1.760 2.179
amed25 1.574 1.525 1.583 1.703 1.943

In this case it is possible to emphasize the robustness of the
evolved filter in comparison with the conventional solutions.
As evident from Figure 6f, the evolved filter was able to nearly
completely remove 10% noise while preserving sharp thin
lines in the filtered image. On the contrary, the median filters
failed because substantial part of the image was destroyed.

(a) original image (b) corrupted image

(c) median filter 3x3 (d) median filter 5x5

(e) adaptive median filter 3x3 (f) evolved filter 3x3

Fig. 6. Filtering a test image (crosses) corrupted by 10% salt-and-pepper
noise using the best evolved filter W7S8T7 and selected conventional median
filters.

Figure 7 demonstrates the filtering quality of the best
evolved filter for high noise intesity (20%). As expected,
the adaptive median filter (Figure 7f), designed to provide
resonable results while preserving image details, provides
the best result. However, the evolved filter (Figure 7b) also
provides very good result that is comparable to adaptive
median filter utilizing the same filter window (i.e. 3x3 pixels).
Whilst minor part of noisy pixels remained, closer look at
Figure 7b may indicate that the evolved filter is able to provide
better contrast and level of detail. Although all the noisy pixels
were removed by common median filters, these filters failed
with respect to their output quality because the filtered images
exhibit a noticeable loss of details.

(a) corrupted image (b) evolved filter 3x3

(c) median filter 3x3 (d) median filter 5x5

(e) adaptive median filter 3x3 (f) adaptive median filter 5x5

Fig. 7. Filtering a test image (baboon) corrupted by 20% salt-and-pepper
noise using the best evolved filter W7S8T7 and selected conventional median
filters.

VI. CONCLUSIONS

A developmental model based on uniform 1D cellular
automaton was presented for generating image filters at the
level of functional blocks. In fact, it is the first case when
cellular automata were applied for generating circuit structures
in the area of image processing. Simple genetic algorithm was
utilized in order to find a suitable cellular automaton (i.e.
its initial state and local transition function) that is able in
a finite number of steps to generate a functional structure
that exhibit a reasonable filtering quality. It was determined
that although the evaluation of the filters during evolution is
performed after a given number of developmental steps, the
filtering function in some cases provides reasonable quality
already after lower number of steps which was not explicitly
required during evolution. This feature enables to reduce the

number of functional blocks as well as delay of the filters after
the evolutionary process. Moreover, some cellular automata
demonstrated an ability to preserve the filtering function if
the CA development continues.

The evolved filters were evaluated on a set of test images
corrupted by salt-and-pepper noise of various intensity and
their quality was compared to some conventional median filters
that are usually applied to eliminate this type of noise. It
has been shown that the filters developed by mean of cellular
automata exhibit in many cases the best results in comparison
with the conventional filters. We have demonstrated that the
best evolved filter is able to remove substantial part of noise
even for higher intensity (20%), to preserve details of the
filtered image and provide exceptional result when filtering
special (nearly black-and-white) images in which case the
median filters failed.

In general, the proposed approach has shown as a promising
developmental model for the design of a wide range of func-
tional structures (multipliers, dividers, image filters and many
others. In case of using uniform CA, it is needed to design a
transition function that is common for all cells. It means that
the process of creating the target structure emerges from the
CA development which is a result of inherent local interactions
between the cells. This approach may be especially beneficial
for tasks whose organization of building blocks is not strictly
defined or whose resuts may not be exact by nature (e.g. image
processing or so-called approximate computing). However, the
problem of utilizing a specific CA setup (the number of states,
interpretation of the transition rules with respect to additional
information that need to be evolved) seems to be a challenging
task whose solution is mainly a subject of experimental work.

The CA-based developmental model was, in fact, considered
with basic settings which include the following. The maximal
number of cells was limited to the number of circuit inputs
considering 3x3 filter window, i.e. there were in total 9
input values. The development of CA generated a single
level of filter structure per a developmental step, the inputs
on functional blocks were allowed to connect to the filter
inputs (only in case of the first step of CA) or to outputs
of blocks generated during the immediately previous step.
These parameters may be modified in order to extend the
evolutionary search space and potentially increase the quality
of evolved solutions. Therefore, these issues will constitute
a basis for our future research in which different application
domains will be considered.

ACKNOWLEDGMENT

This work was supported by the Czech science founda-
tion project P103/10/1517, the research programme MSM
0021630528, the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070 and the BUT projects FIT-S-11-1 and
FIT-S-12-1.

REFERENCES

[1] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
of the 3rd European Conference on Genetic Porgramming, Lecture Notes

in Computer Science, vol 1802. Berlin Heidelberg New York: Springer,
2000, pp. 121–132.

[2] ——, “A developmental method for growing graphs and circuits,” in
Proc. of the 5th Conf. on Evolvable Systems: From Biology to Hardware
(ICES 2003), Lecture Notes in Computer Science, vol. 2606. Berlin
DE: Springer-Verlag, 2003, pp. 93–104.

[3] M. Bidlo and J. Škarvada, “Instruction-based development: From evo-
lution to generic structures of digital circuits,” International Journal of
Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 3,
pp. 221–236, 2008.

[4] M. Bidlo and L. Sekanina, “On impact of environment on the complexity
generated by evolutionary development,” in MENDEL 2010 - 16th
International Conference on Soft Computing. Faculty of Mechanical
Engineering BUT, 2010, pp. 501–508.

[5] S. Kumar and P. J. Bentley (eds.), On Growth, Form and Computers.
Elsevier Academic Press, 2003.

[6] J. R. Koza and M. A. Keane and M. J. Streeter and W. Mydlowec and J.
Yu and G. Lanza, Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers, 2003.

[7] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[8] J. F. Miller, “Evolving developmental programs for adaptation, morpho-
genesis and self-repair,” in Advances in Artificial Life. 7th European
Conference on Artificial Life, Lecture Notes in Artificial Intelligence,
volume 2801. Dortmund DE: Springer, 2003, pp. 256–265.

[9] P. C. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping
for digital FPGAs,” in Proc. of the 3rd NASA/DoD Workshop on
Evolvable Hardware. Los Alamitos, CA, US: IEEE Computer Society,
2001, pp. 109–115.

[10] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp. 387–
416, 2005.

[11] M. Bidlo, Z. Vasicek, and K. Slany, “Sorting network development
using cellular automata,” in Proc. of the 9th International Conference
on Evolvable Systems: From Biology to Hardware (ICES 2010), Lecture
Notes in Computer Science, vol. 6274. Berlin Heidelberg New York:
Springer, 2010, pp. 85–96.

[12] M. Bidlo and Z. Vasicek, “Investigating gate-level evolutionary devel-
opment of combinational multipliers using enhanced cellular automata-
based model,” in Proc. of The 2009 IEEE Congress on Evolutionary
Computatio, CEC 2009. IEEE Computer Society, 2009.

[13] ——, “Comparison of the uniform and non-uniform cellular automata-
based approach to the development of combinational circuits,” in Proc.
of The 4th NASA/ESA Conference on Adaptive Hardware and Systems,
AHS 2009. IEEE Computer Society, 2009, pp. 423–430.

[14] ——, “Cellular automaton as a sorting network generator using
instruction-based development,” in Cellular Automata for Research
and Industry, ser. Lecture Notes in Computer Science Volume 7495.
Springer Verlag, 2012, pp. 214–223.

[15] ——, “Instruction-based development of cellular automata,” in Proc.
of The 2012 IEEE Congress on Evolutionary Computatio, CEC 2012.
IEEE Computer Society, 2012.

[16] S. Slatnia, M. Batouche, and K. E. Melkemi, “Evolutionary cellular
automata based-approach for edge detection,” in Proceedings of the 7th
international workshop on Fuzzy Logic and Applications: Applications
of Fuzzy Sets Theory. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
404–411.

[17] G. Hollingworth, A. Tyrrell, and S. Smith, “Simulation of evolvable
hardware to solve low level image processing tasks,” in In Proc. of
the Evolutionary Image Analysis, Signal Processing and Telecommuni-
cations Workshop, Lecture Notes in Computer Science Volume 1596.
Springer-Verlag, 1999, pp. 46–58.

[18] M. Espnola, R. Ayala, S. Leguizamn, and M. Menenti, “Classification
of satellite images using the cellular automata approach.” in World
Summit on the Knowledge Society, WSKS 2008, ser. Communications
in Computer and Information Science, vol. 19. Springer, 2008, pp.
521–526.

[19] K. Paul, D. R. Choudhury, and P. P. Chaudhuri, “Cellular automata based
transform coding for image compression,” in Proceedings of the 6th
International Conference on High Performance Computing, ser. HiPC
’99. London, UK: Springer-Verlag, 1999, pp. 269–273.

