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Abstract

The thesis focuses on efficient computation of the two-dimensional discrete wavelet trans-
form. The state-of-the-art methods are extended in several ways to perform the transform
in a single loop, possibly in a multi-scale fashion, using a compact streaming core. This
core can further be appropriately reorganized to target the minimization of certain plat-
form resources. The approach presented here nicely fits into common SIMD extensions,
exploits the cache hierarchy of modern general-purpose processors, and is suitable for
parallel evaluation. Finally, the approach presented is incorporated into the JPEG 2000
compression chain, in which it has proven to be fundamentally faster than widely used
implementations.

Abstrakt

Práce se zaměřuje na efektivní výpočet dvourozměrné diskrétní vlnkové transformace.
Současné metody jsou v práci rozšířeny v několika směrech a to tak, aby spočetly tuto
transformaci v jediném průchodu, a to případně víceúrovňově, použitím kompaktního
jádra. Tohle jádro dále může být vhodně přeorganizováno za účelem minimalizace užití
některých prostředků. Představený přístup krásně zapadá do běžně používaných rozšíření
SIMD, využívá hierarchii cache pamětí moderních procesorů a je vhodný k paralelnímu
výpočtu. Prezentovaný přístup je nakonec začleněn do kompresního řetězce formátu
JPEG 2000, ve kterém se ukázal být zásadně rychlejší než široce používané implementace.
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Preface

I have always been fascinated by a construction of complex shapes composed of basic
building blocks. Indeed, Lego used to be my favorite toy when I was a child. These
dyadic blocks can be seen as wavelets in disguise. They come in different sizes (one, two,
and four). They are governed by multi-scale relations. This means that one can combine
the small sizes into to larger ones, and then engage them together. . .



Chapter 1

Introduction

Information contained in many different physical phenomena (e.g. sounds, images) can be
described using signals. Manipulation with these signals using computers is the subject of
the signal processing field, which uses a variety of mathematical tools to analyse, process,
and synthesize them. The wavelet transform is one of these tools, allowing for the time–
frequency signal analysis. In other words, one can view the information associated with
a particular time and frequency.

The thesis focuses on methods for computing the discrete wavelet transform. Specif-
ically, it extends existing single-loop methods to enable dealing with a two-dimensional
multi-scale decomposition and to efficiently utilize features of modern CPUs.

The discrete wavelet transform (DWT) is a signal-processing tool suitable to decom-
pose an analysed signal into several scales. For each such scale, the resulting coefficients
are formed in several subbands. In the one-dimensional case, the subbands correspond to
low-pass (a) and high-pass (d) filtered subsampled variants of the original signal. Plenty
of applications are built over the discrete wavelet transform. One of them, nevertheless,
stands out quite markedly. The transform is often used as a basis for sophisticated com-
pression algorithms. Particularly, JPEG 2000 is an image-coding system based on such
a wavelet compression technique. Unfortunately, there exists several major issues with
effective implementation of the discrete wavelet transform. This holds true in particular
for images with high resolution (4K, 8K, aerial imagery) decomposed into a number of
scales (e.g. 8 scales). These issues are discussed below.

In the case of the two-dimensional transform, one level of the transform can be realized
using the separable decomposition scheme. In this scheme, the coefficients are evaluated
by successive horizontal and vertical 1-D filtering, resulting in four disjoint groups (a, h,
v, and d subbands). A naive algorithm of 2-D DWT computation directly follows the
horizontal and vertical filtering loops. Unfortunately, this approach is encumbered with

12



CHAPTER 1. INTRODUCTION 13

several accesses to intermediate results. State-of-the-art algorithms fuse the horizontal
and vertical loops into a single one, which results in the single-loop approach.

One level of the just described 1-D transform can be computed utilizing a convolution
with two complementary filters. However, on most architectures there exists a more
efficient scheme to calculate the transforms coefficients. This scheme is called lifting and,
in contrast to convolution, it benefits from sharing intermediate results.

As indicated above, for high-resolution data decomposed into several scales by a typi-
cal separable transform, many CPU cache misses occur. These cache misses significantly
slow down the overall calculation. Moreover, in real implementations, a large image
block often needs to be buffered, which makes the transform memory-demanding. The
motivation behind this work is to overcome these issues.

The thesis contributes to the state of the art of discrete wavelet transform compu-
tation methods. The following paragraph particularly outlines the issues that are not
solved satisfactorily when using the existing methods.

The state-of-the-art approaches treat signal boundaries in a complicated and inflexi-
ble way. When we take these approaches into consideration, we find that parallelization,
SIMD vectorization, and the cache hierarchy exploitation are not handled well. This is
especially true in conjunction with multi-scale decomposition. Furthermore, the trans-
form fragments cannot be computed according to arbitrary application requirements.
For example, a particular transform block at a particular scale cannot be obtained with
minimal or no unnecessary calculations. Finally, these approaches do not address the
problem of scheme reorganization aimed at minimizing some of the platform’s resources
at the expense of others.

The thesis focuses on the CDF (Cohen-Daubechies-Feauveau) 5/3 and 9/7 wavelets,
which are often used for image compression (e.g. the JPEG 2000 or Dirac standards).
However, the methods are general and they are not limited to any specific type of trans-
form.

The rest of the thesis is organized as follows. Chapter Discrete Wavelet Transform
discusses the basic principles of discrete wavelet transforms and lifting scheme, and out-
lines the implementation issues. Chapter Computation Schedules iterates the existing
approaches of computing the two-dimensional lifting scheme on various contemporary
platforms comprising GPPs, FPGAs, and GPUs. Chapter Lifting Vectorization serves as
a bridge between the existing methods and my own work. The main contribution of this
thesis is presented in Chapter Lifting Core. Chapter Multi-Dimensional Cores extends
the core presented into multiple dimensions. The subsequent Chapter Evaluation pro-
vides performance evaluation and discussion of the approach presented above. Finally,
Chapter Conclusions concludes the thesis.



Chapter 2

Discrete Wavelet Transform

The discrete wavelet transform can be understood as a method suitable for the decom-
position of a signal into low-pass and high-pass frequency components through so-called
wavelets. This chapter introduces wavelet theory in a level of detail necessary to under-
stand the thesis.

Wavelets are functions generated from one basic function by dilations and trans-
lations. Many constructions of wavelets have been introduced in the literature in the
past three decades; for example [1]. As a key advance, I. Daubechies [2] constructed
orthonormal bases of compactly supported wavelets in 1988. Subsequently, in 1992,
Cohen–Daubechies–Feauveau (CDF) [3] biorthogonal wavelets provided several families
of symmetric (linear phase) biorthogonal wavelet bases. Earliery, in 1989, S. Mallat [4, 5]
demonstrated the orthogonal wavelet representation of images. It was computed with
a pyramidal algorithm based on convolutions with quadrature mirror filters (QMF). In
the mid-1990s, W. Sweldens [6, 7, 8] presented the lifting scheme which sped up decom-
position. He showed us how any discrete wavelet transform can be decomposed into a
sequence of simple filtering steps (lifting steps).

For a description of the filters, the well known z-transform notation is employed. The
transfer function of the one-dimensional FIR filter h(k) is defined as

H(z) =
∑
k

h(k) z−k. (2.1)

For a better insight, the discrete wavelet transform can be understood as the approx-
imation of a continuous signal by superposition of the individual wavelets. Generally,
the wavelets ψ ∈ L2(R) are continuous functions from the Hilbert space of finite energy
functions localized in both time and frequency. However, if we limit ourselves to the dis-
crete wavelet transform, the wavelets are further constrained by the following equations.
For illustration, two wavelets frequently used for DWT are plotted in Figure 2.1. The

14



CHAPTER 2. DISCRETE WAVELET TRANSFORM 15

Figure 2.1: Shape of CDF 5/3 and CDF 9/7 wavelets. CDF 5/3 situated on the left,
while CDF 9/7 on the right.

approximation is calculated through two conjugated quadrature filters often referred to
as h, g. The relation between the wavelet and these filters is

φ(t) =
√
2
∑
n

h(n)φ(2t− n), (2.2)

ψ(t) =
√
2
∑
n

g(n)φ(2t− n), (2.3)

where φ ∈ L2(R) is a scaling function, which was formulated [4, 9] by S. Mallat. As a
consequence of these equations, the multi-scale DWT can be computed by passing the
signal through a filter bank comprising the h̃, g̃ filters followed by subsampling. One
level of the decomposition linked with the synthesis is shown in Figure 2.2. The method
is also referred to as the multiresolution analysis (MRA).

H̃(z−1) a

d

↓ 2

+

G̃(z−1) ↓ 2

↑ 2 H(z)

↑ 2 G(z)

Figure 2.2: Analysis and synthesis part of DWT using FIR filters.

2.1 Lifting Scheme

DWT decomposes the signal into low-pass (a) and high-pass (d) frequency components
using two analysis filters – h̃ (low-pass) and g̃ (high-pass) – followed by subsampling. The
inverse transform first upsamples the a and d components and then uses two synthesis
filters h (low-pass) and g (high-pass). The signal-processing view of such a decomposition
and analysis is shown in Figure 2.2. Readers not very familiar with DWT are referred to
the excellent book [10] by S. Mallat. For details about the lifting scheme, see [8, 7].
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The polyphase representation [11, 8] is a convenient tool to express the h, g, h̃, g̃ filters
as a sum of shorter filters formed by even (e) and odd (o) coefficients of the original ones.
Having these filters, the assembled polyphase matrix

P (z) =

He(z) Ge(z)

Ho(z) Go(z)

 (2.4)

expresses the inverse transform. Such a polyphase matrix can be factorized (e.g. using
the Euclidean algorithm [12]), so that

P (z) =
I−1∏
i=0


1 Si(z)

0 1

 1 0

Ti(z) 1


K 0

0 1/K

 , (2.5)

where K is a non-zero constant, and polynomials Si(z), Ti(z) for 0 ≤ i ≤ I − 1 represent
the individual lifting steps. Since the DWT has the perfect reconstruction property

P (z) P̃ (z−1)T = I, (2.6)

where I is the identity matrix and ·T denotes the transposition, the dual polyphase matrix

P̃ (z) =
I−1∏
i=0


 1 0

−Si(z−1) 1

1 −Ti(z−1)

0 1


1/K 0

0 K

 (2.7)

describes the analytical part of DWT (forward transform). The −Ti(z−1) is called the
predict, whereas −Si(z−1) is called the update. The system is illustrated in Figure 2.3.

Let us take a closer look to the decomposition. At first, the input signal is split into
two disjoint groups a, d, typically using even/odd sample indices. Then, the individual
lifting steps are performed d

a

 = P̃ (z−1)T

d
a

 (2.8)

resulting in a, d subbands.

a

d

split P̃ (z−1)T P (z) merge

Figure 2.3: Analysis and synthesis part of DWT using lifting schemes.
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α

β

γ

δ

Figure 2.4: Data-flow diagram of CDF 9/7 lifting scheme. The blank bullets represent
d coefficients, whereas the solid ones a coefficients. The solid arrows denote multiply
operations. The dotted arrows just forward the value. The arrows are accumulated into
the bullets.

Focusing on the CDF 9/7 wavelet as an example, the forward transform can be
expressed [8] by the dual polyphase matrix

P̃ (z) =

1 α
(
1 + z−1

)
0 1

 1 0

β (1 + z) 1


1 γ

(
1 + z−1

)
0 1

 1 0

δ (1 + z) 1

ζ 0

0 1/ζ

, (2.9)

where ζ is called the scaling constant. The α, β, γ, δ, ζ are real constants [8] specific to
the CDF 9/7 transform. The forms (1 + z−1) and (1 + z) of the polynomials indicate
symmetry of the lifting steps as well as the original filters. The corresponding data-flow
diagram is shown in Figure 2.4 (scaling is omitted for simplicity). It should be noted
that this particular wavelet is widely used in image processing, for example, in JPEG
2000 compression standard.

2.2 2-D Decomposition

S. Mallat [4] demonstrated the wavelet representation of two-dimensional signals com-
puted with a pyramidal algorithm based on convolutions with quadrature mirror filters.
One level of such a 2-D pyramid leads to a quadruple of wavelet coefficients (a, h, v, d) as
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a h

v d

horizontal vertical

Figure 2.5: Illustrative 2-D decomposition using double sequence of 1-D transforms.
From left: horizontal pass, vertical pass, the resulting subbands.

outlined in Figure 2.5.1 The transform is defined as the tensor product of 1-D transforms.
In this case, the two-dimensional transform consists of horizontal and vertical filtering
steps. Considering the lifting scheme [8], the order of these steps has some constraints,
but it is not strictly fixed (the horizontal and vertical steps can be interleaved). The
decomposition is repeatedly applied on a subband which leads to the pyramidal decom-
position. It should be noted that a naive algorithm implementing this 2-D scheme could
perform a series of 1-D transforms horizontally, followed by a series of 1-D transforms
vertically (or vice versa). The above mentioned 1-D transform could be implemented
through the filter bank (convolution) or the lifting scheme.

The following discussion considers the situation in the context of a naive implemen-
tation. It does not matter whether the convolution or the lifting scheme is used. In both
cases, the data coefficients are accessed at least twice (firstly for horizontal, secondly
for vertical pass). Thus, the approach is inherently burdened with several accesses to
intermediate results. More sophisticated algorithms [13] could perform these separable
steps joined together which could even lead into a single-loop transform. In any case, the
decomposition is further applied to a subband in order to get multi-scale representation.
As in the previous case, individual scales of the decomposition can be performed in an
interleaved manner. Performing the multi-scale decomposition in this way is described
as the multi-scale single-loop approach.

This decomposition can be naturally applied to images. Images can be understood as
finite two-dimensional arrays (matrices), where the values of individual elements repre-
sent image pixels. As these matrices are finite, a problem with an appropriate treatment
of transform margins arises.

1The notation has the following meanings: a for image approximation, h, v for horizontally and
vertically filtered features, d for diagonal features (residual signal)
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2.3 Non-Separable Lifting Scheme

As stated above, the two-dimensional transform is defined through a series of one-
dimensional steps. From the implementation point of view, this construction offers the
possibility to merge and reorganize the underlying operations in order to minimize some
of the consumed resources.

For instance, M. Iwahashi et al. [14, 15, 16] presented the non-separable lifting
scheme employing two-dimensional (thus genuinely spatial) filtering steps. As a result,
they reduced the number of lifting steps at the cost of increasing the total number of
arithmetic operations.

To keep consistency with [16], the H∗(zm, zn) = H(zn, zm) denotes a filter transposed
to the H(zm, zn). Furthermore, the H(zm, zn) = H(z−1

n , z−1
m ) denotes a filter reversed

along the m- as well as n-axis. Coupled together, the H∗
(zm, zn) denotes a transposed

and reversed filter to the original H(zm, zn).
For the CDF 5/3 and CDF 9/7 factorizations, their filtering steps take the following

form 
Hc

H∗
c

HcH
∗
c

 =


c (1 + zm)

c (1 + zn)

c2 (1 + zm + zn + zmzn)

 , (2.10)


Hc

H
∗
c

HcH
∗
c

 =


c (1 + z−1

m )

c (1 + z−1
n )

c2 (1 + z−1
m + z−1

n + z−1
m z−1

n )

 . (2.11)

In this scheme, it is no longer possible to distinguish between vertical and horizontal
filtering. In their construction, the authors derived the non-separable 2-D scheme for
CDF 5/3 and subsequently CDF 9/7 transforms. As an initial step of the CDF 5/3
transform, the input signal is split into quadruples (a, h, v, d).

x =
[

a h v d
]T

y =
[

a h v d
]T (2.12)

Then, spatial lifting steps leading to the calculation d coefficients are performed. This
is followed by parallel computation of the h and v coefficients. In the third step, the a
coefficient is updated. Formally, these steps are compressed [15, 16] into the matrix in
(the notation is, strictly speaking, incorrect)

y = Cα,β x, (2.13)
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where

Cα,β =


1 Hβ H

∗
β −HβH

∗
β

Hα 1 0 H
∗
β

H∗
α 0 1 Hβ

HαH
∗
α H∗

α Hα 1

 . (2.14)

The scheme for CDF 9/7 comprises two such connected transforms (α, β substituted for
γ, δ).

2.4 Capabilities of Lifting Scheme

Many irreplaceable lifting scheme applications can be found in the literature. Several of
them are discussed in this section. All these algorithms fit into the framework presented
in this thesis. This is because the algorithms are of local nature, and can consequently
be computed in a single loop with appropriate coefficients sharing. In other words, these
can be incorporated into the presented computation scheme.

Unlike a convolution scheme, the lifting allows [17, 18, 19] the formulation of trans-
forms mapping the integers to integers. For example, JPEG 2000 defines the reversible
CDF 5/3 transform as

y(2n+ 1) = x(2n+ 1)−
⌊
x(2n) + x(2n+ 2)

2

⌋
, (2.15)

y(2n) = x(2n) +

⌊
y(2n− 1) + y(2n+ 1) + 2

4

⌋
. (2.16)

After these two steps, the even samples x(2n) will correspond to subband a, whereas the
odd ones x(2n+ 1) to subband d. Only additions, subtractions and shifts are needed to
implement this particular transform. Many other integer-to-integer transforms can be
found in [18, 19].

R. Fattal recently proposed [20] a new family of wavelets constructed using a robust
data-prediction lifting scheme. This family, referred to as edge-avoiding wavelets (EAW),
exhibits a better decorrelation of the data compared to the conventional lifting scheme.
In their shape, the new wavelets encode the edginess of the analysed image at every scale.
More specifically, EAW [20] use the edge-stopping function to define the control weights

w(p, q) =
(
|x(p)− x(q)|a + ϵ

)−1
, (2.17)

where a is between 0.8 and 1.2, and ϵ = 10−5. These weights attenuate the coefficients of
the subsequent lifting scheme. The effectiveness of this construction is demonstrated on
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m

n

Figure 2.6: Quincunx lattices. Two lattices corresponding to r and b samples (analogously
to a and d samples). The original input 2-D raster was split into these two groups.

various applications, including dynamic-range compression, or edge-preserving smooth-
ing.

In [21], G. Uytterhoeven presented a construction of so-called Red-Black wavelets.
These are constructed using a lifting scheme on 2-D grid where the samples are divided
into two groups – red (r) and black (b) samples – forming so-called quincunx lattice (see
Figure 2.6). The construction is based on two spatial lifting steps

b(m,n) = b(m,n)

−
(
r(m− 1, n) + r(m,n− 1) + r(m,n+ 1) + r(m+ 1, n)

4

)
,

(2.18)

r(m,n) = r(m,n)

+

(
b(m− 1, n) + b(m,n− 1) + b(m,n+ 1) + b(m+ 1, n)

8

)
.

(2.19)

This construction is rotated by 45 degrees on the next decomposition level. The wavelets
show less anisotropy.2 As a result, compared to a similar separable wavelets, image
denoising performs better for lines that are not horizontal, vertical, or diagonal.

Denoising techniques based on the discrete wavelet transform (see Chapter 11 of [10])
use a thresholding operator which is applied separately to each wavelet coefficient. For
example, the hard thresholding operator

ρhardλ (d) =

d |d| ≥ λ

0 |d| < λ
(2.20)

2The wavelet coefficients respond to arbitrarily oriented edges.
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with λ threshold is often implemented. Donoho et al. [22] derived λ = σ
√
2 lnN for

Gaussian white noise of variance σ2.
Except the last one, it would be very difficult to built the algorithms described in

this section over the convolution scheme. Roughly speaking, the lifting scheme is nicely
connectable with other algorithms.



Chapter 3

Computation Schedules

This chapter discusses existing methods of computing the 2-D discrete wavelet trans-
form on various platforms, especially contemporary general-purpose processors (GPPs).
With the exception of GPPs, implementations using programmable hardware and mod-
ern graphics cards are reviewed. The GPP and FPGA approaches are based on the same
principles. Unlike them, the GPU approaches operate quite differently.

3.1 Processors

The thesis is mainly focused on contemporary processors (GPPs), especially on the x86
architecture. A type of the CPU cache is present in all modern platforms. An excellent
introduction to this topic can be found in [23]. The cache is usually organized as a
hierarchy of more cache levels. In the cache hierarchy, the individual coefficients of the
transform are stored inside larger and integral blocks – cache lines, typically 64-bytes
long. A hardware prefetcher attempts to speculatively load these lines in advance, before
they are actually required. Moreover, due to a limited cache associativity, it is also
impossible to hold in the cache lines corresponding to the arbitrary memory location
at the same time. In detail, the cache lines are divided into several sets according to
an associativity of the cache (e.g. four sets for typical 4-way associativity). The cache
associativity indicates the number of lines from a particular set which can be held in
the cache at one time. When more lines from this set are accessed, the older lines are
evicted in favour of the new ones. Considering such cache, a memory address is split
into three parts. Such an address structure is outlined in Figure 3.1. Typically, the low
six1 bits specify the offset in a cache line. A few upper bits specify the associativity
set of the cache. The rest of the bits represent a tag stored for each individual cache

1for 64-bytes lines, log2(64) = 6

23
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set offset
LSB

tag
MSB

Figure 3.1: Address structure in relation to the CPU cache. The sizes of the individual
parts depend on the particular architecture.

line. Another notable features typical for modern GPPs are SIMD extensions, symmetric
multiprocessing, large virtual memory address space, paging, or a highly sophisticated
branch prediction.

Originally, the problem of efficient implementation of the 1-D lifting scheme was
addressed in [24] by Ch. Chrysafis and A. Ortega. Their approach is very general and
is not focused on parallel processing. Nonetheless, this is essentially the same method
as the on-line or pipelined method mentioned in other papers (although not necessarily
using the lifting scheme nor the 1-D transform). The key idea is to make the lifting
scheme causal, so that it may be evaluated as a running scheme without buffering of the
whole signal.

Many authors have tried to find an efficient schedule for calculating the 2-D lifting
scheme. Having the input 2-D image in the main memory, different strategies of 2-D
transform implementation can be used. These strategies can be divided into three groups
– row-column (fully separable), block-based, and line-based methods. The groups will
be discussed with the individual techniques below. Aside from these basic strategies,
several techniques were independently presented in several papers. All of them led to
performance improvements. These techniques will be discussed now.

The separable implementation of the 2-D transform is performed by two passes of the
1-D transform – the horizontal and vertical pass. The horizontal pass densely visits the
coefficients likely prefetched in the cache. Usually, there is no bottleneck in the horizontal
pass. However, the vertical pass accesses the coefficients using a stride that prevents the
hardware prefetcher from doing its job well. Moreover, usually only one coefficient from
each cache line is accessed; the rest remains unused. Finally, considering the vertical
access pattern, the coefficients lying in a particular column are likely mapped into the
same cache set, especially considering the power-of-two [25, 13] data sizes.

In order to solve the last of the mentioned issues, several authors [25, 13, 26, 27, 28]
suggested adding a padding after each data row (or the resulting subband row in some
cases). This row extension causes the coefficients in a particular column to be mapped
into different sets with a high probability. In particular, the odd or prime strides are
often used.

Another technique to address the limited cache associativity is the loop fission used
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by A. Shahbahrami in [26, 27, 28]. This technique splits the vertical loop so it accesses at
most as many rows as the cache associativity. As a consequence, several vertical passes
are needed. Nevertheless, the pipelined [24] lifting scheme often does not need to access
too many coefficients in a single processing step. So, this particular technique is broadly
useful for a convolution-based transform only, where longer FIR filters are employed.

Since only one of the coefficients settled in each cache line is used in a vertical pass,
many authors [25, 29, 30, 28] discovered a technique leading to a better utilization of
cache lines. This technique is referred to as the aggregation, strip-mine, or loop tiling.
Using such a technique, several adjacent columns are filtered concurrently, likely using
all the coefficients in each cache line.

So far, the input as well as the output data were stored using a linear-memory layout
(particularly, the row-major layout). Several authors investigated the influence of more
complicated (mallat,2 recursive), possibly non-linear memory layouts (4-D, Morton). The
4-D, Morton layouts are internally organized into blocks and thus imply the block-based
strategy mentioned above. The working set for each block can now fit into the cache. The
performance of these layouts was investigated in [31, 32, 33]. The mallat layout utilized
in [30, 29] uses an auxiliary matrix in order to store the results of the horizontal filtering.
As a result, no rearrangement stage is needed after the transform, since the coefficients
can be directly stored at arbitrary locations in the original memory area. Using the
recursive layout, each subband is laid out contiguously in the memory. This is especially
useful for multi-scale decomposition, where the resulting subbands are transformed once
more. This layout was employed in [30, 29].

2In the literature, the lower case initial letter is used.
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δ

Figure 3.2: Single-loop vectorization of CDF 9/7 lifting scheme. The highlighted area is
evaluated in a single iteration of the loop. Note that some intermediate results need to
be forwarded into next iteration.



CHAPTER 3. COMPUTATION SCHEDULES 26

F
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Figure 3.3: A core of the single-loop approach. Already read/written area is shown in
light/dark gray.

Among all these disclosed techniques, probably the most important one is to interleave
processing of the vertical and horizontal loop. This 2-D technique is often referred to as
the pipelined, line-based, or single-loop transform. Some granularity (e.g. several input
lines, large blocks) is used for interleaving of the loops. For instance, D. Chaver [34]
used the block-based interleaving with a non-linear 4-D memory layout. Moreover, in
[34, 35, 36, 37, 38], the line-based interleaving was used (at least two lines are needed).
The most sophisticated techniques were investigated by R. Kutil in [13], which focused
on CDF 9/7 wavelet and SIMD vectorization. In Kutil’s work, one step of the lifting
processing requires two values (a pair) to perform a loop iteration (see the data-flow
graph in Figure 3.2). Thus, the algorithm needs to perform two horizontal filterings (on
two consecutive rows) at once. For each row, a low-pass and a high-pass coefficient is
produced, which makes 2 × 2 values in total. The image processing by this "core" is
outlined in Figure 3.3. The lag F = 4 coefficients can be recognized from the data-flow
graph in Figure 3.2. The algorithm passes four values from one iteration to the other
in the horizontal direction for each row (eight in total). In the vertical direction, the
algorithm needs to pass four rows between iterations. The length of the corresponding
prolog as well as epilog phases is 4 coefficients. The situation is illustrated in Figure 3.4.
This algorithm can be vectorized by handling the coefficients in blocks. Special prolog
and epilog parts are needed (at least nine variants, if even/odd signal lengths are not
considered).

Another important group of techniques covers the parallelization. Basically, two kinds
of parallelization can be identified in the literature – the fine-grained and coarse-grained.
The fine-grained parallelization refers to exploiting the SIMD extensions (namely, MMX,
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Figure 3.4: Simplified view of the single-loop approach showing the prolog and epilog
phases. The length F of these phases is 4 (vertical vectorization) or 10 (diagonal one)
coefficients.

and SSE). This kind was investigated at various levels in [32, 34, 29, 35, 27, 39, 36, 40,
41, 13, 42]. The most efficient solutions are presented in [13]. In this work, the author
reads two 8× 4 blocks and performs filterings and transpositions on them by exploiting
the SIMD instructions. The main problem are the arduous prolog and epilog phases.
The latter kind of parallelization was investigated, e.g., by D. Chaver in [33]. Moreover,
various implementation details are occasionally considered in some papers; for example,
loop unrolling and data alignments in [32]. Note that a slightly different viewpoint on
strategies used to implement the transform is discussed in [43].

Furthermore, many papers exist which present an efficient 3-D DWT implementa-
tion. Let me to mention the most significant works. In [44], Bernabe et al. presented
two methods reducing the 3-D transform execution time. However, in both of these
methods, they employed the convolution scheme that does not take advantage of the
benefits of the lifting scheme. In their first method, they split the original 3-D volume
into several independent sub-volumes. Thus, they have performed several independent
transforms (introducing a block effect) which is a different and easier task, compared to
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what is proposed in this thesis. On the other hand, such a method benefits from a small
working set of the transformed data. The independent transforms can be further applied
in an overlapped and non-overlapped manner. The second method is just a modifica-
tion of the first, where the independent transforms are applied on cuboid sub-volumes
instead of cubes. The method should better exploit the memory locality occurred due
to their particular memory layout. The authors also exploited a fine-grained parallelism
by vectorizing loops using the SSE instructions. Unfortunately, their methods are far
away from the single-loop approaches. In [45], Bernabe et al. exploited the advantages
of a parallel processing using multiple threads. The work is closely focused on hyper-
threading (HT) technology. However, the principles of the methods employed remained
the same as in previous paper. In [46], Lopez et al. introduced a fast frame-based 3-D
DWT video encoder with low memory usage. The authors used the convolution scheme.
In their approach, the video frames are continuously consumed by the 2-D DWT algo-
rithm. Then, this transformed frame is stored in a buffer. Unfortunately, this buffer
must be able to hold as many frames as the number of taps for the FIR filter in the
temporal direction. Although their encoder reduces memory as well as computational
requirements compared to the original 3D-SPIHT algorithm, it is still far away from
the true 3-D pipelined transform. In another two papers [47, 48], the authors applied
separately 2-D spatial and 1-D temporal transform. Both of the works deal with video
compression. As in the previous case, their approaches still need several input frames to
be accumulated in a buffer in order to filter the frames along the third dimension.

3.2 Field-Programmable Gate Arrays

The efficient implementation of DWT was also extensively studied on hardware platforms.
This section focuses on Field-Programmable Gate Arrays (FPGAs).

Programmable logic devices (FPGAs) are one of the platforms suitable for implemen-
tations of the wavelet transformation. From the external memory bandwidth point of
view, they cannot be compared to current GPGPU cards. Moreover, the advantage of
FPGA implementation is mainly in small embedded devices, such as cameras which are
already based on FPGA and/or have a fixed requirements on real-time processing, dimen-
sions, low resource and power consumption and where the GPGPU or other platforms
simply cannot be deployed.

Considering the 2-D signals, such as images, the transform can be computed using sev-
eral strategies. These are typically referred to as the separable transform (row–column),
the block-based transform, and the line-based transform. These strategies will now be
briefly reviewed. Their detailed description can be found, e.g., in [49].
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The simplest strategy is to perform the separable transform using sequential hori-
zontal and vertical passes over the whole input image. This approach requires the use
of large off-chip memory blocks to store the intermediate results. Unlike this strategy,
the two following strategies do not require to store the intermediate results into off-chip
memory. The block-based and line-based strategies perform the horizontal and vertical
filtering onto smaller image fragments. These fragments consist of rectangular areas or
small groups of lines in case of the block-based or the line-based strategy, respectively.

In all the previous strategies, the output coefficients are generated in chunks of various
sizes. None of them generate the coefficients continuously with granularity corresponding
to the essence of 2-D DWT. Note, please, that this elementary granularity of DWT is a
quadruple of a, h, v, and d coefficients.

In this paragraph, several significant works on FPGA implementation of 2-D DWT are
analysed. In [50], the authors implemented separable transform using the convolution
rather than the lifting scheme. However, their implementation was able to deal with
images of the size of 512×512 samples only, although, as the authors showed, bigger tiles
are also possible for the price of much higher BRAM consumption. In [51], the authors
proposed a line-based architecture with focus on JPEG 2000. Similarly to previous work,
this architecture was able to process images of size 512 × 512. However, the transform
is implemented using the lifting scheme. Another work focused on JPEG 2000 was done
in [52]. As in the previous two cases, this implementation can deal with the tiles of size
512× 512 pixels. Similarly, it is build upon the lifting scheme and processes images line
by line. Yet another line-based 2-D wavelet transform implementation of JPEG 2000 was
proposed in [53]. Again, it is based on the lifting scheme. This time, the implementation
deals with 256 × 256 images. Many other papers can be found. However, none of them
address the problem of efficient processing of high resolution, e.g. Full HD or 4K UHD,
images.

3.3 Graphics Processing Units

The implementation of DWT was comprehensively studied on various platforms, includ-
ing the modern programmable graphics cards (GPUs).

This section is focused on the implementation of DWT using modern graphics cards
capable of a general-purpose computing. In these architectures, the GPU contains thou-
sands of stream processors that are clustered into blocks. All processors in such a block
execute the same instruction with different operands at one time. The blocks are grouped
into multiprocessors which form the basic functional units of the GPUs. The thread
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scheduler allocates as many work-groups to multiprocessors as their resources allow. The
work-groups are defined as an allocatable pack of threads that can interoperate with each
other using the local memory and memory barriers. Thus, resources such as the local
memory size should be minimized. The multiprocessor contains blocks of processors,
warp schedulers, local memory, load store units, etc. The allocated work-groups created
by the OpenCL framework is then divided into warps (hardware blocks with 32 threads).
Execution instructions of these warps on blocks of processors are provided using warp
schedulers dynamically. Due to the fact that each instruction is executed on the whole
warp at once, recommendations for ensuring good performance of memory operations ex-
ist. Global memory indices in warp should be coalesced. For explanation, the thread in
warp issues a coalesced memory access using 1–16-bytes width memory operation where
neighboring threads access to neighboring addresses. Otherwise, additional memory op-
erations are executed. Local memory is organized into banks. Access to the same banks
from warp causes serialization. This issue is referred to as the bank conflict. The bank
conflict is caused by a memory access from threads of the same warp to different positions
of same bank in the shared memory. The serialization of local memory operations and
uncoalesced global memory access can cause a degradation of performance.

This thesis is further focused on the OpenCL framework. OpenCL is a framework for
general-purpose parallel programming across multiple device types (like GPUs, CPUs).
In this framework, a platform independent executable program is called the kernel. The
kernel is executed on the required number of threads that identify their data and control
flow by their indices. These threads are organized into work-groups with an identical
user-defined number of threads. The threads in such a group can cooperate with each
other through local memory and barriers.

Considering implementations on modern GPUs, the input image has to be initially
transferred from main memory into memory on the graphics card. Similarly, the resulting
coefficients could be transferred back. Having the input 2-D image in the GPU global
memory, different strategies of 2-D DWT implementation can be used. These strategies
can be divided into three groups – row–column, block-based, and pipelined methods.

The row–column method applied on the entire 2-D image was used for instance in
[54, 55, 56, 57, 58, 59]. In [56] and [57], a data transposition was performed in between
the horizontal and vertical series of 1-D transforms. In [54] and [55], Tenllado et al.
adapted the discrete wavelet transform on fragment shaders of GPU. They used the
Cg programming language, and mapped the input image into textures. As this thesis
is focused on the OpenCL framework, their paper is not discussed in more detail. The
other cited papers are focused on the CUDA architecture. In [56], the convolution scheme



CHAPTER 3. COMPUTATION SCHEDULES 31

is applied on each row. Then, the image matrix is transposed and the convolutions
are applied on each column. Finally, the image is transposed back. In [58] and [59],
V. Galiano et al. compared several CUDA implementations of DWT. They used the
CDF 9/7 wavelet and convolution-based algorithm on entire rows/columns. Their fastest
implementation uses the coalesced memory access.

In [57], Blazewicz et al. presented two wavelet transform approaches. The first of
them calculates the wavelet transform through 4 kernels. The first kernel performs an
image transposition using work-groups of size 16×16, where each single thread processes
exactly one image element. To ensure coalesced global memory access, transposition is
used in the shared memory, rather than directly in the global memory. In the second
kernel, the vertical wavelet transform is performed as follows. The image is divided into
multiple chunks. The size of such chunk is chosen as a work-group size × a number of
pixels per one thread. Each thread in the work-group loads its elements from the global
memory and stores them into the shared memory. Then, the adjacent elements that
are required for the computation of the output coefficient are loaded from the shared
memory into registers. The threads compute their output coefficients using 4 steps of
the wavelet scheme independently to each other (with no synchronization). When the
computation is finished, the output coefficients are written back to the global memory.
To ensure the correct results, a symmetric border extension is used. The third and the
fourth kernel calculates the image transposition and the horizontal wavelet transform in
the same way as the first two kernels. The calculations that are done by a single thread
in the previously described approach can be seen in Figure 3.5b (one pair of coefficients
per thread) and Figure 3.5c (four pairs of coefficients per thread).

The pipelined approach was used in [60] and [61]. In [60], Laan et al. accelerated the
Dirac video codec using the CUDA platform. In [61], the authors provided a detailed
analysis of the DWT implementation using the lifting scheme on the CUDA platform.
They focused on 2-D and 3-D methods of DWT implementation using several wavelets
including CDF 9/7. In the horizontal part of their transform, each work-group is mapped
to a single image row. Each thread computes one coefficient for each step and shares it
with other threads. Because of non-atomic instructions being issued in the whole group,
a memory barrier is needed in between each two steps. See Figure 3.5a. The vertical
part of their transform maps each work-group to multiple vertical strips with a width
that ensures coalesced global memory accesses and bank-conflict-free shared memory
transfers.

On modern GPUs, the direct implementation of 3-D DWT was also studied. For
instance, the authors of [62] and [63] used a convolution scheme which keeps transforms
separated along three dimensions.
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Figure 3.5: A portion of the data-flow graph attributable to a single thread. The method
of (a) Laan et al. and two methods used by Blazewicz et al. – (b) with one pair, (c) with
four pairs.

Approaches in [64] as well as [57] are focused on CDF wavelets and the lifting scheme.
Their implementations splits the image into small tiles and performs several independent
transforms on each of them. Thus, they have performed several independent transforms
(introducing a block effect). Finally, let me note that the extension of the above-discussed
methods will be presented in the subsequent chapters.



Chapter 4

Lifting Vectorization

This chapter should serve as a bridge between the above-described methods and my own
work, presented in the following chapters. Although some parts of my work are presented
here, it should not be considered the main contribution of the thesis.

Let me now focus on the data-flow diagrams of signal-processing algorithms. Vector-
ization is the process of evaluating these diagrams using operations that are applied to
whole vectors instead of individual coefficients. Many GPPs have vector instruction sets
which apply the same operation simultaneously to several coefficients in such a vector.
Exploiting these instruction sets can be a particular reason of the vectorization. The vec-
tor instruction sets are also called SIMD sets or SIMD extensions. Intel’s SSE (Streaming
SIMD Extensions) or AVX (Advanced Vector Extensions) are frequent examples of such
sets. Even if no vector instructions can be utilized, dividing the diagram into the vectors
may be useful thanks to data locality in such vector.

One particular example of this technique can be found in [65] where the author
considered the vectorization of FIR filtering (i.e. convolution). Basically, he identified
three methods of the vectorization in the convolution

y(n) =
∑
k

x(n− k)h(k) (4.1)

data-flow diagram. In the equation above, two loops can be seen – the inner one for k
and the outer for n variable. The causality of the scheme and dependencies of these loop
iterations in principle allow three vectorization methods. In [65], these are denoted as A,
B, and C. In method A, several consecutive inner loop iterations are combined into one
vectorized iteration. In this iteration, a sample of the signal is associated with a sample of
the filter coefficient. Unfortunately, dependencies between iterations break the possibility
to utilize a parallel evaluation. In method C, a sample of the signal is associated with a
vector of several distinct filter coefficients. This allows for parallel processing. However,

33
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Figure 4.1: Vectorizations of CDF 9/7 lifting scheme. In all cases, the highlighted areas
are evaluated in a single iteration of the loop.

several shuffle operations are required to implement this method. In method B, several
input samples are associated with a vector of the same filter coefficient. Also this method
allows for parallel processing.

Now, consider the data-flow diagram of the lifting scheme for CDF 9/7 wavelet.
Three analogous methods can be identified here as well. For their understanding, please
refer to the Figure 4.1. The terminology will be outlined with respect to this figure.
The dashed green area corresponds to so-called vertical vectorization. This method was
employed under different names in many papers, e.g. in [41]. The method can be seen
as an analogy to the method A from the previous paragraph. The dash–dot blue area
corresponds to the diagonal vectorization which was proposed in [IV]. It can be seen as
an analogy to the method C. Finally, similarly to method B, the dotted red area depicts
the horizontal vectorization which was investigated in [V]. The performance comparison
of the presented vectorizations is postponed into Chapter 7.

4.1 Horizontal Vectorization

In [V], a general approach of lifting scheme vectorization evaluated on an FPGA-based
Application-Specific Vector Processor (ASVP) was presented. This platform was pre-
sented in [66], [67], [68], and [69]. This unit can be classified as SIMD computer in
Flynn’s taxonomy. This platform uses several vector units referred to as Basic Com-
puting Elements (BCEs). BCEs are able to accelerate simple operations (like addition
or multiplication) on long single-precision floating-point vectors. Considering the dotted
red area in 4.2, the lifting of CDF 9/7 transform can be directly adapted on them.
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α

β

γ

δ

Figure 4.2: Horizontal vectorization of CDF 9/7 lifting scheme. The highlighted area is
successively evaluated in the direction from the inputs to the outputs.

Consider the decomposition of the signal of length of N samples. Without loss of
generality one can assume only signals with even length N . Possible remaining coefficient
can treated separately in the prolog or epilog phases together with border extension.
Thus, the transform contains N/2 pairs of resulting wavelet coefficients (a, d). The
a coefficients represent the smoothed signal. On the contrary, the d coefficients form
a difference or detail signal. When coefficient scaling is omitted, the calculation of a
pair of the DWT coefficients at the position n (sn and dn) is performed through four
lifting steps. Intermediate results (a(i)n and d

(i)
n ) can be appropriately shared between

neighbouring pairs of coefficients (an and dn).
Let me now review the lifting scheme of the CDF 9/7 wavelet [8] from Chapter 2.

P̃ (z) =

1 α
(
1 + z−1

)
0 1

 1 0

β (1 + z) 1


1 γ

(
1 + z−1

)
0 1

 1 0

δ (1 + z) 1

ζ 0

0 1/ζ

. (4.2)

The general diagram of these lifting steps is shown in Figure 4.3. This particular
factorization leads to the following implementation. To simplify the description, the
scaling is omitted.

dn = dn + α (an + an+1) (4.3a)

an = sn + β (dn + dn−1) (4.3b)

dn = dn + γ (an + an+1) (4.3c)

an = sn + δ (dn + dn−1) (4.3d)
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z−N/2

z−N/2

−Si(z)−Ti(z)

a

dz−N/2

z−N/2

Figure 4.3: Block diagram of the horizontal vectorization. The parts bound with a dashed
line correspond to the areas of parallel computation.

This algorithm requires several reads and writes of the intermediate results an and dn.
Considering the GPP implementation together with long signals, these intermediate re-
sults will be evicted several times from the CPU cache [23] in favor of other intermediate
results. Consequently, many cache misses during such a computation will occur. Con-
sidering the vector processor implementation, the individual equations (4.3) correspond
to several elementary vector operations (data move, addition, multiplication).

4.2 Vertical Vectorization

Another way of lifting data flow graph evaluation is the vertical vectorization. In the
literature, this approach can be found under various names, e.g. the double-loop approach
in [13]. Earlier, it was described in [24] with focus on low memory systems. This method
was evaluated in [IV, V].

Any discrete wavelet transform with finite filters can be factored into a finite sequence
(I pairs) of predict and update convolution operators Ti and Si. As stated earlier, this
decomposition can be described by the dual polyphase matrix

P̃ (z) =

m∏
i=1


 1 0

−Si(z−1) 1

1 −Ti(z−1)

0 1


1/K 0

0 K

 , (4.4)

where each predict operator Ti corresponds to a filter t(i)k and each update operator Si
to a filter s(i)k , i.e.

Ti(z) =

gn∑
k=−ln

t
(i)
k z−i, (4.5)

Si(z) =

fn∑
k=−mn

s
(i)
k z−i. (4.6)
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Let me note that this factorization is not unique. For symmetric filters, this non-
uniqueness can be exploited to maintain symmetry of lifting steps.

The Ti(z) and Si(z) filters need not be causal. In general, non-causal systems require
storing of the whole input signal into memory (as can be seen from Figure 4.1). This is not
suitable for fast or memory limited signal processing, nor for a vectorization. Therefore,
it would be appropriate to convert non-causal lifting steps (Ti and Si) to causal systems.
The key to force these filtering steps to be causal is the introduction of appropriate
delays. The transition from non-causal to causal system introduces [24] a delay z−li on
both inputs of the prediction filtering step Si. In the bottom input a, the delay can be
distributed into both branches. This leads to a causal system

Si(z) = z−liSi(z) =

gi+li∑
k=0

s
(i)
k−li

z−k. (4.7)

Similarly, a delay of mi samples is introduced on both inputs of update step Ti. Again,
this delay can be distributed into branches of upper input d. The resulting equation is
given as

Ti(z) = z−miTi(z) =

fi+mi∑
k=0

t
(i)
k−mi

z−k. (4.8)

For simplicity, the adjacent delays can be combined into a single one. Finally in

ηi = li, (4.9a)

µi = li +mi, (4.9b)

νi = mi, (4.9c)

the delays of ηi, µi, and νi samples appear around each pair of filtering steps Si and Ti.
The resulting block diagram is shown in Figure 4.4.

z−νi

z−µi

−Si(z)−Ti(z)

z−ηi

a

d

Figure 4.4: Block diagram of vertical vectorization. The area bound by the dashed line
corresponds to the area of parallel computation.



CHAPTER 4. LIFTING VECTORIZATION 38

α

β

γ

δ

Figure 4.5: Vertical vectorization of CDF 9/7 lifting scheme. The highlighted area moves
from the left to the right. Due to the internal data dependencies, the area cannot be
computed in parallel.

In this method, the lifting computation is transformed into one loop, instead of
multiple loops over all of the coefficients. Therefore, one pair of lifting coefficients an
and dn is computed in each iteration. However, the computations within each of these
areas cannot be directly parallelized due to data dependencies. Even so, this procedure is
advantageous because the coefficients are read and written only once. Consequently, this
prevents unnecessary cache misses. In 1-D case, the SIMD vectorization of this method
lies in processing of several adjacent areas in parallel, like in [40]. The data flow graph
is split into vertical areas of width of two coefficients as in Figure 4.5.

4.3 Diagonal Vectorization

In [IV], the diagonal vectorization of the lifting scheme was proposed and subsequently
evaluated. It can be appropriate for limited memory scenarios because it can start
iteration of the vectorized loop immediately after a new pair of coefficients is available.

The subsequent lifting operations Si and Ti inside the area of vectorization above can-
not be computed in parallel due to data dependencies. To eliminate these dependencies
another delay of one sample is introduced on both lines a and d, see Figure 4.6. Similarly
to the case of vertical vectorization, multiple loops of the naive approach are transformed
into the single loop over all of the coefficients. One pair of resulting coefficients a and d is
produced in each iteration. Unlike the vertical vectorization, the elementary lifting oper-
ations evaluated in single loop iterations are shifted with respect to each other. This shift
removes the data dependency within this loop iteration. Therefore, the elementary oper-
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z−µi−1

z−νi−1

z−1

−Ti(z) −Si(z)

z−1z−ηi

a

d

Figure 4.6: Block diagram of diagonal vectorization. The lifting operators can be evalu-
ated in parallel.

α

β

γ

δ

Figure 4.7: Diagonal vectorization of CDF 9/7 lifting scheme. The highlighted area
moves from left to right. The operations inside this area can be computed in parallel.

ations can be now computed in parallel. The corresponding slice of the data flow graph
is depicted in Figure 4.7. In contrast to the vertical vectorization, the proposed method
does not require buffering of the input samples into groups of width corresponding to
the used SIMD instruction set. A pair of resulting coefficients is available immediately
after processing a pair of input samples. On the other hand, it is necessary to choose a
wavelet with such a lifting factorization which has the same number of lifting steps (i.e.
2I) as the number of components of the SIMD set (R). Depending on the instruction
set being used, more shuffling instruction may be needed to implement the proposed
diagonal vectorization (which is the case of Intel’s SSE utilized in [IV]).

Table 4.1 shows the comparison of the different algorithms in terms of memory con-
sumption. Each of the methods require several samples (2nd column) to start iteration
of the vectorized loop and several memory cells (3rd column) to store intermediate re-
sults. The number in the 4th column indicates the number of operations that can be
evaluated in parallel in each iteration. The horizontal vectorization requires an entire
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vectorization samples coefficients operations

horizontal N N N/2

vertical 2R (8) 2I (4) R (4)

diagonal 2 (2) 6I (12) 2I (4)

Table 4.1: Memory consumption of vectorization methods for two-tap lifting steps. The
numbers in parentheses are related to SSE implementations of the CDF 9/7 transform.

signal of N samples (N/2 pairs of coefficients) to be loaded into memory. On this signal,
up to N/2 independent operations can evaluated in parallel. In contrast, the vertical
vectorization needs only 2R samples to start iterating over the vectorized loop in which
R lifting operators can be evaluated in parallel. In the case of 2-tap T and S operators,
this vectorization needs only 2I memory words to store intermediate results between such
subsequent iterations. Finally, the diagonal vectorization requires only two new samples
for each iteration which evaluates 2I lifting operators in parallel.

This chapter discussed three fundamental vectorizations of the lifting scheme. The
simplest horizontal vectorization directly follows lifting scheme steps. However, several
passes through the data are required in this case. Considering a limited cache size, this
strategy would lead to extensive cache misses. The other two vectorizations (vertical
and diagonal) allow for the computation the scheme in a single pass. Consequently, no
unnecessary cache misses can be expected here.



Chapter 5

Lifting Core

The main contribution of the thesis is presented in this chapter. The contribution is a
formulation of a computation unit built over the lifting scheme technique. The direct
consequence of this formulation is the possibility of reorganizing operations in order to
minimize the requirements for certain resources. Moreover, several other possibilities
arise – for example, an elegant treatment of signal boundaries, or, in the case of multi-
dimensional signals, a variety of allowed processing orders. The presented unit is further
referred to as the core. In this chapter, the core is formally specified. Additionally,
the subsequent chapter extends this core into multiple dimensions. To keep these two
chapters compact, the evaluation and experiments are presented in Chapter 7.

In this paragraph, some terminology necessary for understanding the following text is
clarified. Lag F describes a delay of the output samples with respect to the input samples.
The stage is used in the sense of the scheme step, usually the lifting step. In linear algebra,
such a stage can be described by the linear operator (a matrix) mapping the input vector
onto the output vector. In this context, the operation denotes the multiply–accumulate
(MAC) operation. Considering the output coefficient, the most demanding operation is
identified as the operation having the highest number of operands. Please note that the
notation is slightly different in some parts of this chapter – using a subscript for indexing
the signals.

41
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The following part of the chapter leads to the formulation of the core. Although the
thesis has focused on image processing, the one-dimensional transform will be discussed
first. The multi-scale discrete wavelet transform decomposes the input signal(

a0n0

)
0≤n0<N0

(5.1)

of size N0 = N samples into J > 0 scales giving rise to the resulting wavelet bands(
djnj

)
0≤nj<Nj

, (5.2)

the temporary bands (
ajnj

)
0≤nj<Nj

, (5.3)

at scales 0 < j < J , and the residual signal(
aJnJ

)
0≤nJ<NJ

, (5.4)

at the topmost scale J .
In order to solve the issues summarized at the beginning of this thesis, a unit which

continuously consumes the input signal aj and produces the output aj+1, dj+1 subbands
is proposed. This unit was also presented in [VI]. As mentioned above, this unit is
referred to as the "core" in this thesis. As a consequence of the DWT nature, the core
has to consume pairs of input samples. The input signal is processed progressively from
the beginning to the end, therefore in a single loop. It should be noted that it is also
possible to run these cores parallel – this possibility is discussed at the end of the chapter.
The corresponding output samples are produced with lag F samples depending on the
underlying computation scheme. For each scale 0 ≤ j < J , the core requires access to an
auxiliary buffer Bj . These buffers hold intermediate results of the underlying computation
scheme. At each scale, the size of the buffer can be expressed as κ coefficients, where κ
is the number of values that have to be passed between adjacent cores.

Considering the single-loop approach, the vertical and diagonal vectorizations formu-
lated in the previous chapter can be understood as baseline examples of the underlying
computation scheme. However, the possibilities are much larger, as disclosed below in
the thesis.

The characteristic attributes of the simplest cores are listed in Table 5.1. Although the
core built above the vertical vectorization does not have the ability of SIMD evaluation, it
is possible to link several such cores into longer "supercore" in order to fit the operations
to SIMD instruction set. The last column indicated depth of calculations inside the core.
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vectorization lag F buffer κ SIMD-capability latency

vertical 2I 2I no 2I

diagonal 6I − 2 6I yes 1

Table 5.1: Attributes of the baseline single-loop cores. Valid for two-tap lifting steps.

This number corresponds to the number of data dependent blocks of data-flow graph
inside the core.

To simplify relations, two functions will be introduced given by

Θ(n) = n+ F, and Ω(n) = ⌈n/2⌉. (5.5)

The function Θ(n) maps core output coordinates onto core input coordinates with the
lag F . The function Ω(n) maps the coordinates at the scale j onto coordinates at the
scale j + 1 with respect to the chosen coordinate system. Note that the Ω(n) can be
defined in many ways.

The core transforms the fragment Ijn of an input signal onto the fragment Oj
n of an

input signal

Ijn =
(

ajΘ(n) ajΘ(n+1)

)T
, (5.6)

Oj
n =

(
aj+1
Ω(n) dj+1

Ω(n+1)

)T
, (5.7)

while updating the auxiliary buffer. Finally, operations performed inside the core can be
described using a matrix C as the relationship

y = C x (5.8)

from the input vector

x = Ijn ∥ Bj (5.9)

onto the output vector

y = Oj
n ∥ Bj , (5.10)

where ∥ denotes the concatenation operator. The (5.8) is the most fundamental equation
of this thesis. In this linear mapping, the matrix C defines the core.

The meaning and the number of individual coefficients in Bj is not firmly given.
The choice of the matrix C is a degree of freedom of the presented framework. Partic-
ularly, this matrix can be reorganized in order to minimize some of the resources (e.g.
memory cells, operations, latency). An illustrative example of such a reorganization is
demonstrated in the next section.
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a(0)d(0)a(0) d(0) a(0) d(0) a(0) d(0)

a(1) d(1) a(1) d(1) a(1) d(1)a(1) d(1)

Figure 5.1: Implementation of CDF 5/3 transform. The core is the highlighted region.
Circles represent the results of operations.

5.1 Core Reorganization

The following discussion is focused on a single pair of lifting steps of the vertically vec-
torized core. Since such a core consists of two lifting steps (predict and update), two
data dependent blocks of operations have to be evaluated. This section demonstrates
how to reduce the depth of the calculation per the output coefficients. These ideas were
also presented in [III]. The basic principles of this idea is disclosed discussing the CDF
5/3 transform.

At the beginning, the CDF 5/3 lifting scheme is described. This description is related
to Figure 5.1 (the notation in accordance with [8]). As in [8], CDF 5/3 lifting scheme is
defined using α and β constants. The resulting core has 2 independent stages suitable for
hardware pipelining. The core consists of 5 operations in total. The number of operands
of the most demanding expression is 3 in both stages. The lag F = 2 or F = 1 can
be obtained by a trivial reorganization of coefficients stored in the auxiliary buffer. The
following discussion focuses on the latter case.

In more detail, the core transforms the vector x into y. These two vectors are
composed of two samples of input signal and some specific intermediate results as

x =
[

a
(0)
n d

(0)
n · · ·

]T
,

y =
[

a
(.)
n−1 d

(.)
n · · ·

]T
.

(5.11)

The individual stages correspond to predict Tα and update Sβ steps, respectively. The
core can be then described in matrix notation as

y = Cα,β x = Sβ Tα x. (5.12)
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a(0) d(0) a(0) d(0) a(0) d(0)d(0)a(0)

a(2) d(1) a(2) d(1) a(2) d(1)a(2) d(1)

a(1)

Figure 5.2: The 1-D implementation of CDF 5/3 filter with reduced latency. The circles
in different color correspond to a(1) coefficients from (5.16). The core is highlighted.

The computation inside the SβTα may be implemented as

d(1)n = d(0)n + α
(
a
(0)
n−1 + a

(0)
n

)
, (5.13)

a
(1)
n−1 = a

(0)
n−1 + β

(
d
(1)
n−1 + d

(1)
n

)
. (5.14)

For a better understanding, the slice of computation is depicted in Figure 5.1.
The reference implementation above has latency of 2 lifting steps. In the same single-

loop framework, one can reduce [III] this latency to just one step. Such a core still uses the
auxiliary buffer of κ = 2 coefficients, has the lag of one sample and produces numerically
exactly the same results. However, the operations inside the core are appropriately
reorganized. The key idea is a direct calculation of a coefficient from one intermediate
coefficient and two current input samples. The intermediate coefficient is forwarded by
previous core iteration through the auxiliary buffer. As a result, all the operations inside
can be computed in parallel. The auxiliary buffer covers the values of (a(0), a(1)). The
resulting data-flow graph is shown in Figure 5.2. For clarity, a new constant γ = 1+2αβ

was introduced. The core implementation consists of

d
(1)
n = d

(0)
n + α

(
a
(0)
n−1 + a

(0)
n

)
, (5.15)

a
(1)
n = γa

(0)
n + αβa

(0)
n−1 + βd

(0)
n , (5.16)

a
(2)
n−1 = a

(1)
n−1 + βd

(0)
n + αβa

(0)
n . (5.17)

This new scheme is fundamentally different from the original one described earlier. In
the original scheme, the a coefficient was calculated based on the value of the d coefficient.
Unfortunately, the d coefficient had first to be calculated from the input samples. This
process implied a delay of 2 steps. However, the newly formed core has a latency of 1
step. Note that the new scheme cannot be evaluated using the horizontal vectorization
due to the formation of the new intermediate results a(1). On the other hand, the core
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core lag F buffer κ latency max. operands total operands

vertical lag-2 2 2 2 5 6

vertical lag-1 1 2 2 5 6

reorganized 1 2 1 3 9

Table 5.2: Attributes of CDF 5/3 cores. Only the cores based on the vertical vectorization
are shown. The latency is the number of subsequent steps, max. operands identifies the
most demanding operation of the core.

consists of 9 operations in total. See Table 5.2 for the comparison of all three mentioned
cores. The total depth of the entire calculation is smaller (as the number of subsequent
stages was halved) than in the original case. In matrix notation, the reorganized core
can be expressed as

y = Cα,β x. (5.18)

The core reorganization takes new depths with the increasing number of dimensions.
Before switching to multiple dimensions, further in the text, a graceful signal border
treatment is demonstrated.

5.2 Treatment of Signal Boundaries

In order to keep the total number of wavelet coefficients equal to the number of input
samples, symmetric border extension is widely used. A particular variant of this extension
is employed in JPEG 2000 standard. Please, consult particular details with [70].

This section describes the core calculating the CDF 5/3 transform. The core described
in the previous section consumes the input signal

(
ajn, a

j
n+1

)
per fragments of two sam-

ples. After performing the calculations, the
(
dj+1
Ω(n), a

j+1
Ω(n+1)

)
is produced with a lag F .

For the purposes of the following discussion, only even length signals are considered. The
core consists of two stages suitable for hardware pipelining.

As mentioned earlier, the core processes the signal in a single loop. The naive way
[VIII] of border handling is described first. Due to the symmetric border extension, the
core begins the processing at a certain position before the start of the actual signal.
Analogously, the processing stops at a certain position after the end of the signal. The
samples outside the actual signal are mirrored into the valid signal area. This processing
introduces the need for buffering of the input, at least at the beginning and end of
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the signal. This buffering breaks the ability of simple stream processing, especially
considering the multi-scale decomposition. All the approaches described in Chapter 3
also suffer from this issue.

The situation can be neatly resolved changing the core near the signal border. In more
detail, the "mutable" core performs 5 different calculations depending on the position of
the input signal. Therefore, the core comprises 2 × 5 slightly different steps (stages) in
total. As in the previous section, each of them is implemented by a linear transformation
operating with four-component vectors. This can be written in matrix notation as

y = Sβ,Θ(n) Tα,Θ(n) x, (5.19)

where Tα,Θ(n), Sβ,Θ(n) are the linear transformations of the predict and update stages per-

formed at the subsampled output position Θ(n). Moreover, x =
[

ab db an dn

]T
and y =

[
ab db an−1 dn−1

]T
are the input and output vectors, respectively.

Here, the b superscript denotes the content of the auxiliary buffer. These coefficients
are generated in Tα,Θ(n) so that these can be used by Tα,Θ(n+2) at the same time when
Sβ,Θ(n+2) runs. It is essential that the coefficients ab, db are initially set to zero. The
output signal is generated with a lag F = 1 sample with respect to the input signal. The
input a samples outside of the input signal are treated as zeros. Similarly, the output
a, d coefficients outside of the output signal are discarded. The following table describes
the individual Tα,Θ(n), Sβ,Θ(n) transformations. The transform is defined using the α, β
constants. Table 5.3 enumerates the individual core stages. In addition, Figure 5.3 illus-
trates theirs usage. As a result, the signal is transformed without buffering, possibly on
a multi-scale basis.

d a d a d a d a d a d a d a d a d a d

0

d a d a d a d a d a d a d a d a d a d a

2 n N − 2 N

0 0

n n n n n n

a

Figure 5.3: Signal processing using the mutable core. The input position on the original
position n is shown. The first and last two cores (highlighted) differ from the others.
The very first and last cores access outside the signal. The input samples already split
into a, d subbands.
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Θ(n) T−1
α,Θ(n) S−1

β,Θ(n) Tα,Θ(n) Sβ,Θ(n)

0


0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0




0 0 1 0

0 0 2α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0



1


0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 2β 1 0

0 1 0 0




0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0



Θ(n)


0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0




0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0



Θ(N − 2)


0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0




0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0



Θ(N)


0 0 1 0

2α 0 0 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 β 1 β

0 1 0 0




0 0 1 0

α 0 α 1

1 0 0 0

0 1 0 0




1 0 0 0

0 1 0 0

0 0 1 2β

0 1 0 0


Table 5.3: Individual linear transformations inside the mutable CDF 5/3 core. Also
inverse lifting steps T−1

α,Θ(n), S
−1
β,Θ(n) are shown. Changes are displayed in different color.
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5.3 Lifting Scheme Choice

So far, only the CDF 5/3 and 9/7 wavelets have been discussed as illustrative examples.
However, the presented computation unit is general. The following paragraph generalizes
the developed framework to other wavelets.

One can identify the core in arbitrary underlying lifting schemes. However, its im-
plementation can be obscure in some cases mainly due to the increasing number of
intermediate results in auxiliary buffers. For his reason, a lifting factorization employing
steps in the form of two-tap filters having degree 1 is a proven choice. Many such fac-
torizations of various wavelets have been presented in the literature, e.g. [8]. Moreover,
the symmetric filters with lengths 2L± 1, as is the case for the CDF 5/3 and 9/7 filters,
can be implemented through some sequence of lifting steps having this particular form.
See Chapter 6 of [70] for details. More precisely, exactly L = 2I such symmetric two-tap
lifting steps are obtained.

In [8], the authors demonstrated three different implementations of a 4-tap orthonor-
mal filter with two vanishing moments (often referred to as D4 wavelet). The correspond-
ing data-flow diagrams are shown in Figure 5.4. For simplicity, the scalings are omitted.
Suitable examples of one-dimensional single-loop cores are highlighted. However, these
are not the only possible cores which can be identified in given data flows. Some obser-
vations can be made from these diagrams. The core in the first implementation needs
to pass 3 coefficients between iterations. Similarly, the cores in the second and third
implementations need to pass 2 values. All the cores have latency of three lifting steps.
The first two cores have a lag of 2 signal samples relative to the input signal. The third
core has a lag of one sample.

One particular implementation will be presented here, for the purpose of illustra-
tion. Thanks to the small amount of forwarded values and the smallest lag, the third
implementation has been chosen. At the beginning, the fragment of the input signal is
split into the pair (a, d)(0). Then, the sequence of predict d(1)n , update a(1)n−1 and predict

d
(2)
n operations is performed. Finally, the coefficients are scaled resulting into (an−1, dn).

The (d(1), a(1)) coefficients are forwarded into subsequent iteration through the auxiliary
buffer. The implementation

d
(1)
n = d

(0)
n + αa

(0)
n ,

a
(1)
n−1 = a

(0)
n−1 + βd

(1)
n−1 + γd

(1)
n ,

d
(2)
n = d

(1)
n + δa

(1)
n−1

(5.20)

causes latency of 3 lifting steps plus subsequent scaling. Using the matrix notation, the
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a d a d a d

a d a d a d

da

a d

(a) First implementation.

a d a d a d

a d a d a da d

da

(b) Second implementation.

a d a d a d

a d a d a da d

da

(c) Third implementation.

Figure 5.4: Three different implementations of D4 transform. The cores are highlighted.
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core can be described as

y = C x = S2
δ Tβ,γ S

1
α x, (5.21)

where the individual T, S operators implement the equations (5.20).

5.4 Parallel Cores

This section considers conditions under which the cores can run simultaneously. The
methods presented here were used earlier in several papers, e.g. [60]. Their work was
further examined and improved in [IX, X]. The possibility to run the cores in parallel is
discussed mainly as a basis for the next chapter.

Single-loop cores presented in this chapter require the auxiliary buffer [VIII] to pass
the intermediate results into subsequent iteration. Such a strategy is however not suitable
for all platforms, especially for the massively-parallel architectures. Considering such
platforms, it would be preferable to run all the cores in parallel. Indeed, such approaches
were already presented in the literature, e.g. [60]. However, they were not referred to as
the "cores" so far. These will be referred to as parallel cores in this section.

The single-loop cores can be notionally modified to exchange the intermediate results
directly without the auxiliary buffers. In parallel environment, it causes the need of
synchronization points. These points are denoted as the memory barriers. Particular
example of such a barrier is shown in Figure 5.5. In the referenced figure, the dashed
horizontal line indicates the point where the processing units have to be synchronized.
The initial values can be loaded without the synchronization. However, the intermediate
results after the first lifting steps can be loaded no sooner than after the synchronization

a d a d a dda

a d a d a da d

Figure 5.5: Parallel implementation of CDF 5/3 transform. The core is highlighted. The
dashed horizontal line identifies the memory barrier. This line intersects the d coefficients
(blank bullets), which are, therefore, subject of the synchronization.
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point. Note that it is acceptable to pass the intermediate results in either direction – to
the left and to the right.

In conclusion, this chapter presented a new formulation of the lifting scheme. This
new formulation has the ability to retain certain intermediate results through the intro-
duced auxiliary buffers. This was not possible in the original scheme. As a consequence
of the presented formalism, the computation can be modified in such a way to meet dif-
ferent requirements on various platforms. The next chapter extends the formalism into
multiple dimensions.



Chapter 6

Multi-Dimensional Cores

The presented core approach can be naturally extended to multiple dimensions. The key
ideas of this section were presented in [VI, VIII, II]. This chapter is particularly focused
on two-dimensional cores. However, the same principles also apply to more dimensions.
Several benefits of the implementation arise by extending the core into two dimensions.
Thanks to the linear nature of DWT, the horizontal and vertical steps can be interleaved
or even merged. Merging of the final coefficient scaling is a useful involvement of this
property.

The extension into two dimensions follows. To simplify the relations, the inequality
(0, 0) ≤ (mj , nj) < (Mj , Nj) holds for all 0 ≤ j ≤ J . The 2-D transform decomposes the
input raster (

a0m0,n0

)
(6.1)

of size M0 ×N0 pixels into J > 0 scales giving rise to the temporary subbands(
ajmj ,nj

)
, (6.2)

the resulting wavelet subbands(
hjmj ,nj

)
,
(
vjmj ,nj

)
,
(
djmj ,nj

)
, (6.3)

at scales 0 < j < J , and the residual signal(
aJmJ ,nJ

)
(6.4)

at the topmost scale J . Such a decomposition is performed using the 2 × 2 core with
lag F samples in both directions. This idea was also proposed in [VIII]. For each scale
0 ≤ j < J , the core requires an access to two auxiliary buffers(

MBj
mj

)
0≤mj<Mj

,
(
NBj

nj

)
0≤nj<Nj

. (6.5)

53
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These buffers hold intermediate results of the underlying lifting scheme. The size of the
buffers can be expressed as M × κ (horizontal buffer) and N × κ coefficients (vertical
buffer), where κ is the number of values that have to be passed between adjacent 1-D
cores. Taken together, the 2× 2 core needs to access 2×κ values in the horizontal buffer
and 2× κ values in the vertical buffer.

Similarly to in the 1-D case, the 2-D core consumes a 2 × 2 fragment of the input
signal and immediately produces a four-tuple of coefficients (a, h, v, d). The produced
coefficients have a delay of F samples in the vertical as well as the horizontal direction
with respect to the input coordinate system. To simplify relations, two functions will be
introduced once again

Θ(m,n) = (m+ F, n+ F ), and Ω(m,n) = (⌈m/2⌉, ⌈n/2⌉). (6.6)

The function Θ(m,n) maps core output coordinates onto core input coordinates with a
lag F . The function Ω(m,n) maps the coordinates at the scale j onto coordinates at the
scale j+1. It should be noted that Ω(m,n) can be defined in many ways. However, this
particular example fits into the JPEG 2000 coordinate system. The 2×2 core transforms
the fragment Ijm,n of the input signal onto the fragment Oj

m,n of the output signal

Ijm,n =
(

ajΘ(m,n) ajΘ(m+1,n) ajΘ(m,n+1) ajΘ(m+1,n+1)

)T
, (6.7)

Oj
m,n =

(
aj+1
Ω(m,n) hj+1

Ω(m+1,n) vj+1
Ω(m,n+1) dj+1

Ω(m+1,n+1)

)T
, (6.8)

while updating the two auxiliary buffers. Finally, operations performed inside the core
can be described using a matrix C as a relationship

y = C x (6.9)

from the input vector

x = Ijm,n ∥ MBj
m ∥ MBj

m+1 ∥
NBj

n ∥ NBj
n+1 (6.10)

onto the output vector

y = Oj
m,n ∥ MBj

m ∥ MBj
m+1 ∥

NBj
n ∥ NBj

n+1, (6.11)

where ∥ denotes the concatenation operator. One needs to recall that the choice of the
C matrix and the consequent arrangement and the size κ of elements in the buffers is
the subject of this thesis.

Considering the SIMD extensions, the two-dimensional core can nicely exploit ca-
pabilities of modern GPPs. Moreover, as the 2-D data occupy one order of magnitude
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more memory compared to the 1-D signals, the processing can be divided across mul-
tiple independent processing units. Combined with the single-loop approach [13], the
cache hierarchy can also be properly utilized. The influence of all these possibilities was
investigated in [VIII].

So far, the main ability of the 2-D extension remains undisclosed. The single loop over
the data does not have a strictly fixed order. On the contrary, many scan orders are now
possible. Some of them are depicted in Figure 6.1. It should be noted that the original
single-loop approach from [40] does not have this ability. The above-described degree
of freedom allows us to adapt the processing to specific needs of the application. For
instance, it turned out that the 2-D core approach can be adapted to JPEG 2000 coding
units (so-called codeblocks) in [II]. When associated with the capabilities explained in
the previous paragraph, these codeblocks can be generated in parallel. This experiment
is further evaluated below.

(a) horizontal (b) horiz. strips (c) horiz. blocks

(d) vertical (e) vert. strips (f) vert. blocks

Figure 6.1: Some of the processing orders enabled by the core approach.
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6.1 2-D Core Reorganization

For purposes of illustration, the following text is focused on two-dimensional CDF 5/3
transform. The notation used for the description of 2-D diagrams is explained in Fig-
ure 6.2.

Considering the baseline separable extension into two dimensions resulting into a 2×2

core, the matrix C in the relationship y = Cx can be factored into

y = NSβ
NTα

MSβ
MTα x, (6.12)

where theM superscripts refer to the horizontal direction, whereasN refers to the vertical
one. Taken together, MTα performs two horizontal predicts, MSβ two horizontal updates,
etc. The order of these steps (or stages) is not only strictly fixed but also completely
unconstrained. The implementation has the latency of four lifting steps, plus scaling.
The scheme is graphically illustrated in Figure 6.3. In total, 16 non-trivial operations
(four in each stage) are needed to calculate this core (the scaling is omitted).

(a) 2-D view

m

n

(b) 3-D view

Figure 6.2: Two views of 2-D data-flow diagrams. The same diagram in (a) top view and
(b) in 3-D space. The dotted arrows are not possible to display in the top view.

1 2 3 4
a dh v

Figure 6.3: The separable implementation of CDF 5/3 core with 4 stages. The output is
highlighted in dark, the input in bright. The arrows correspond to the multiply operations
which are accumulated into the bullets.
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1 2 3
a dh v

Figure 6.4: The non-separable 3-stage implementation of CDF 5/3 core. The input (in
bright) and the output (in dark) of the core are highlighted.

In [16], the authors derived a non-separable 2-D lifting scheme for CDF 5/3 DWT.
One can easily identify a suitable core in their construction. The same core can be
obtained by proper reorganization of operations inside the separable 2 × 2 core. The
result is shown in Figure 6.4. Thanks to the parallel processing of v and h samples, this
implementation has a total latency of 3 steps.

The more detailed description of this non-separable core follows. As initial step, a 2×2

fragment of the input signal is notionally split into the input quadruple (a, v, h, d)
(0)
m,n.

Then, the prediction of the detailed coefficient is performed. This is followed by parallel
prediction of the horizontal and vertical coefficients. In third step, the approximation
coefficient is updated. Finally, the four coefficients corresponding to four subbands can
be scaled. Ten coefficients need to be forwarded through the auxiliary buffers. However,
it is not necessary to construct such a huge buffer. Instead, the buffers from a separable
implementation can be used complemented by small 2 × 2 buffer for the exchange of
intermediate results in 2-D. Therefore, practical implementations with a horizontal image
scanning order would require two rows of coefficients to be buffered. The core has the
lag F of one sample in each direction.

Using the matrix notation, the core is described as

y = Aβ Tα,β Dα x, (6.13)

where Dα operator computes the d coefficient, Tα,β computes h and v, and Aβ finally
computes a coefficient. It is easy to identify buffers forming borders between the conse-
quent cores. Excluding diagonals, the matrices Aβ, Tα,β, Dα have a total of 24 non-zero
entries implying 24 non-trivial MAC operations.

Using the core approach presented in this thesis, it is possible to go further. For now,
ignore the separable core comprising the reorganized cores from the previous chapter. The
total number of arithmetic operations in the non-separable scheme [16] can be reduced.
The key idea here is not to calculate the wavelet coefficients all at once. Instead, the
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calculation of these coefficients is subdivided into separate parts. The sum of these parts
gives us the desired result.

This approach will be now explained in detail. The starting point of the solution
is the non-separable lifting scheme of CDF 5/3 transform as described in [16]. The
operations inside the core were further appropriately reorganized. After some rewriting
of expressions, the following scheme has appeared. First, the scheme requires only 8

coefficients to be passed between core iterations. This means that this new scheme has
the same memory demands as in the original separable case. Second, the number of the
non-trivial arithmetic operations was reduced from 24 to 22 compared to the original
non-separable scheme. The trick is that the h, v and a coefficients are not calculated at
once. Instead, these are calculated separately, split in two parts each.

For better understanding, the new scheme is graphically illustrated in Figure 6.5. The
(v

(0)
m,n, a

(0)
m,n, v

(1)
m,n) → (v

(0)
m−1,m, a

(0)
m−1,n, v

(1)
m−1,n) coefficients have to be passed through the

buffer horizontally. Additional (h(0)m,n, a
(0)
m,n, h

(1)
m,n) → (h

(0)
m,n−1, a

(0)
m,n−1, h

(1)
m,n−1) coefficients

have to be passed vertically. Lastly, (a
(0)
m,n, a

(1)
m,n) → (a

(0)
m−1,n−1, a

(1)
m−1,n−1) coefficients

have to be passed in diagonal direction. This gives 8 coefficients per core iteration in
total. It should be emphasized that this newly formed scheme cannot be derived using
instruments in [16]. This is caused by the fact that the authors of [16] do not specify
a sequence of the operations. For comparison, shapes of the individual lifting steps are
shown in Figure 6.7. Using the matrix notation, the proposed transform core can be
described as

y = Aβ Tα,β Dα x, (6.14)

where

x =
[
am−1,n−1 am,n−1 am−1,n am,n hm,n−1 hm,n vm−1,n vm,n dm,n

]T
y =

[
am−1,n−1 am,n−1 am−1,n am,n hm,n−1 hm,n vm−1,n vm,n dm,n

]T (6.15)

1 2 3
a dh v

Figure 6.5: Proposed non-separable lifting core of CDF 5/3 with three stages. The input
coefficients of active core are in bright box. The output ones are in dark one.
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and

Dα =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

α2 α2 α2 α2 α α α α 1



, (6.16)

Tα,β =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 β

0 0 α α 0 1 0 0 β

0 0 0 0 0 0 1 0 β

0 α 0 α 0 0 0 1 β

0 0 0 0 0 0 0 0 1



, (6.17)

Aβ =



1 0 0 0 β 0 β 0 −β2

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 β 0 β −β2

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (6.18)
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The implementation is always a trade-off between latency and the number of opera-
tions. In next example, another non-separable implementation with latency of 2 steps is
shown. This implementation has the same buffer requirements. The achieved number of
operations is 22. In matrix notation, the transform can be written as the product

y = Aβ Dα x, (6.19)

where x,y are defined as shown above. On the contrary, the Aβ, Dα are defined below.

Dα =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 α α 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 α 0 α 0 0 0 1 0

α2 α2 α2 α2 α α α α 1



(6.20)

Aβ =



1 0 0 0 β 0 β 0 β2

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 β 0 β β2

0 0 0 0 1 0 0 0 β

0 0 0 0 0 1 0 0 β

0 0 0 0 0 0 1 0 β

0 0 0 0 0 0 0 1 β

0 0 0 0 0 0 0 0 1



(6.21)

The steps are graphically illustrated in Figure 6.6.
Table 6.1 provides a summarized comparison of the discussed 2-D single-loop cores.

The most complicated calculation from all the steps is indicated in the last column. This
number is given in the format of the non-trivial operations plus the trivial operations.
As before, the scalings were omitted. When the stages of the core are pipelined (run in
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1 2
a dh v

Figure 6.6: Proposed non-separable lifting core of CDF 5/3 with two stages. The input
coefficients of the active core are in the bright box. The output ones are in the dark one.
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Figure 6.7: Shapes of the individual lifting steps of the newly proposed CDF 5/3 scheme
with three steps.
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d v
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d v

h a

d v
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d v

h a

d v

h a

d v

h a

Figure 6.8: Shapes of the individual lifting steps of newly proposed CDF 5/3 scheme
with two steps.

core latency buffer operations max. operands in step

separable 4 8 16 2 + 1

non-separable [16] 3 10 24 8 + 1

non-separable new 3 8 22 8 + 1

non-separable new 2 8 22 8 + 1

Table 6.1: Comparison of the 2-D single-loop cores. The operands are given in format
non-trivial plus trivial. The scaling is omitted.
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parallel), the clock latency of the core is directly subordinated by the maximum number
of operands. The table further indicates the number of stages (steps), the number of
coefficients accessed in the auxiliary buffers, and the total number of non-trivial opera-
tions.

6.2 Parallel 2-D Cores

So far, only the single-loop two-dimensional cores were discussed. Considering the parallel
environment, the cores can be modified in order to run in parallel. In such a case, the cores
have to exchange the intermediate results directly, without buffers. This modification
introduces the need for synchronization using the memory barrier. Usually, these barriers
form the major bottleneck of the overall computation. Taken together, it is desirable to
minimize the number of memory barriers (along with another resources). The cores
discussed in this section were proposed in [X]. This section is still focused on the CDF
5/3 transform. The generalization is straightforward.

Iwahashi et al. [14, 15, 16] recently presented the non-separable lifting scheme em-
ploying genuine spatial filtering steps Ha,H

∗
a, and HaH

∗
a. For details, see Section 2.3. In

this scheme, it is no longer possible to distinguish the vertical and horizontal filtering.
The transform can be described as linear transformations of the vectors

x =
[

a h v d ]T ,

y =
[

a h v d ]T .
(6.22)

These transformations can formally be compressed into the matrix Cα,β in

y = Cα,β x = Aβ Tα,β Dα x, (6.23)

where

Cα,β =


1 Hβ H

∗
β −HβH

∗
β

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

Hα 1 0 H
∗
β

H∗
α 0 1 Hβ

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

HαH
∗
α H∗

α Hα 1

 . (6.24)

The scheme is graphically illustrated in Figure 6.9b (referred to as Iwahashi2007 ). Simi-
larly in the original scheme, a memory barrier must be inserted between each of the two
steps. As a result, the scheme consists of 24 non-trivial arithmetic operations in three
lifting steps separated by two explicit memory barriers. The most complex operation
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is calculated over 9 operands which leads to a performance issue. This is caused by
the number of operands being proportional to the data path with the maximum delay.
For the sake of comparison, the baseline separable scheme is illustrated in Figure 6.9a
(referred to as Sweldens1995 ). Note that the scheme for CDF 9/7 comprises two such
connected transforms.

Motivated by the work of Iwahashi et al. [16], the elementary lifting filters were
reorganized in order to obtain a highly parallelizable scheme. The main purpose of
this modification is to minimize the number of memory barriers that slow down the
calculation. As a result, several non-separable two-dimensional FIR filters arise.

1 2 3 4
(a) Sweldens1995 [6]

1 2 3
(b) Iwahashi2007 [14]

1 2
(c) proposed

a dh v

Figure 6.9: 2-D data-flow graphs of the parallel cores. The order of the lifting steps is
determined by the bottom numbers. The vertical lines indicate the necessary memory
barriers.
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The formed scheme is composed of three elementary filters F,G,H given by
Fa

Ga

Ha

 =


Fa(zm, zn)

Ga(zm, zn)

Ha(zm, zn)

 =


c 0 0

0 c 0

0 0 c




1

zn

1 + zm

 , (6.25)

where c denotes a filter parameter.
The filters above are assembled into more complex operations. The scheme consists

of two parts between which a memory barrier is placed. The first half of the scheme uses
the following filters. Similarly, the second half uses these filters in the reverse orientation.



Fa

Ga

Ha

H∗
a

GaHa


=



c

c zn

c (1 + zm)

c (1 + zn)

c2 (zn + zmzn)


(6.26)



Fa

Ga

Ha

H
∗
a

GaHa


=



c

c z−1
n

c (1 + z−1
m )

c (1 + z−1
n )

c2 (z−1
n + z−1

m z−1
n )


(6.27)

Finally, the new scheme is composed of four operators referred to as S1 to S4. Between
the second S2 and third S3 operator, the memory barrier must be inserted in order to
properly exchange intermediate results. Thus, S1 and S2 form the first lifting step and
S3 and S4 form the second one. Note that it is also possible to rewrite the scheme using
six operators instead of four. It would be also possible to rewrite the scheme with just
two operands, however, it is not possible to capture a retention of intermediate results
in such a case. Additionally, the scheme requires the induction of two auxiliary variables
(the intermediate results) per each quadruple of coefficients a, h, v, and d. These auxiliary
variables are denoted as h(1), v(1). Their initial as well as final values are not important.
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split

H GH

G

H

F

H∗

H

F

GH

H

G

H
∗

a a

h

v

d

+

+ + +

+

+

+ + + +

+

d′

v′

Figure 6.10: Block diagram of the parallel non-separable latency-2 core. The individual
operators S are separated by the vertical lines. The memory barrier is placed in between
S2 and S3 (the middle line).

The scheme

y = S4
β S

3
β S

2
α S

1
α x (6.28)

describes the relation between input x and output y vectors. It should be noted that
in practical realizations, each single computing unit (e.g. thread) can be responsible of
such a vector. The vectors are given by the following equations.

x =
[

a h v d h(1) v(1)
]T

y =
[

a h v d h(1) v(1)
]T (6.29)

Regarding this notation, the individual steps are defined as follows. For a better
understanding, the hypothetical signal-processing block diagram of this scheme is shown
in Figure 6.10. In addition, the operations are graphically illustrated in Figure 6.9c
(referred to as proposed). Note that operators S1 and S2 are represented by the first
lifting step and operators S2 and S3 by the second one.
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S1
α =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

Hα 1 0 0 0 0

0 0 0 0 0 1


(6.30)

S2
α =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

GαHα Gα Hα 1 Fα 0

0 0 0 0 1 0

H∗
α 0 1 0 0 0


(6.31)

S3
β =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 Hβ 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(6.32)

S4
β =



1 0 Fβ GβHβ Hβ Gβ

0 0 0 H
∗
β 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(6.33)

Compared with [16], the total number of arithmetic operations has been reduced from
24 to 20 for the CDF 5/3 wavelet. The calculation of the CDF 9/7 transform consists
of two such connected transforms (the first with α, β, the second with γ, δ) and between
them another barrier is placed. In total, such a calculation contains three explicit memory
barriers.
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scheme steps operations max. operands memory cells

Sweldens1995 [6] 4 16 3 4

Iwahashi2007 [14] 3 24 9 4

proposed 2 20 9 6

Table 6.2: Parameters of the 2-D parallel cores for CDF 5/3 wavelet. The columns
describe: number of lifting steps, number of arithmetic operations, maximum number of
operands per the lifting step result (the complexity of steps), number of memory cells
per coefficient quadruple (inclusive).

A quantitative comparison for the CDF 5/3 wavelet of all the cores discussed is
provided in Table 6.2. For the CDF 9/7 wavelet, the number of lifting steps and thus the
number of operations must be doubled. In general, the cores can be used for any lifting
factorization with two-tap filters.

The original Sweldens1995 scheme provides the best choice in terms of arithmetic
operands as well as their complexity. However, it requires three explicit synchronization
points (memory barriers) for the CDF 5/3 wavelet. This can be an issue for parallel
processing. The recently proposed Iwahashi2007 scheme uses the highest number of
operations of all schemes. On the other hand, it requires only two synchronizations
for the CDF 5/3 wavelet and does not need any additional memory. In numbers, this
scheme reduces the number of lifting steps to 75%. Finally, the proposed scheme provides
a trade-off in the number of operations. Moreover, for the CDF 5/3 wavelet, only one
barrier is needed for its realization. In comparison to the original scheme, this scheme
reduces the number of lifting steps to only 50 %. In memory limited environments, the
1.5× higher memory consumption can be seen as a restriction.

6.3 Extension to Multiple Dimensions

Similarly to the previous 2-D extension, the 23 cores transforming the 3-D data in the
single loop were proposed in [VII]. Access to three 2-D auxiliary buffers is required during
the computation. As in the previous cases, the implementation can further be extended
to allow SIMD-optimizations.

In the most generic variant, each 2-D auxiliary buffer has the same size as the corre-
sponding volume side. The depth of each auxiliary buffer is κ coefficients. See Figure 6.11.
This memory consumption can be reduced using an appropriate processing order. When



CHAPTER 6. MULTI-DIMENSIONAL CORES 68

x

y

z

buffer x

buffer y

buffer z

Figure 6.11: Complete processing by the 3-D single-loop core. The auxiliary buffer for
each dimension is shown on the sides. The x, y, z notation is used instead of m,n.

using the horizontal (raster scan) order, it is not necessary to allocate the full side size
buffers. It is sufficient to allocate only the following sizes. Allocate one full side size
buffer for the first dimension. Allocate one edge size buffer for the second dimension.
Finally, allocate one point size buffer for the third dimension. For instance, considering
the 23 core, it is sufficient to allocate buffers of total size κ (NM + 2N + 4) elements,
where N,M are sizes of the volume in first two dimensions.

Considering the separable implementation, the core consists of three blocks perform-
ing calculations corresponding to the three dimensions. Each block updates the necessary
intermediate results in the corresponding auxiliary buffer. This is followed by scaling of
the output coefficients.

The similar extension to an arbitrary number of dimensions can be constructed. In
the general case, the core has a size of 2Π samples, where Π is the number of dimensions.
Such a core needs to access into Π buffers. Each of them is indexed by Π−1 coordinates.
Following the previous discussion, it is not necessary to allocate the complete (Π − 1)-
dimensional buffers. Instead, only a small fraction of them is actually needed. This
fraction is proportional to a single (Π− 1)-dimensional hypercube.

Formally, for each scale 0 ≤ j < J , the 2Π core requires an access to Π auxiliary
buffers (

πBj
πλj

)
(6.34)

for 0 ≤ π < Π and 0 ≤ πλj <
πΛj , where πΛj is the size of the data in π-direction at the

scale j. For simplicity, the following description is limited on a particular scale j and the
scripts j are thus dropped. Moreover, let λ to be the vector of coordinates (πλ)0≤π<Π, Iλ
to be the vector of 2Π input coefficients, Oλ to be the vector of 2Π output coefficients,
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and Bλ to be the vector (πBπl)0≤π<Π,πλ≤πl<πλ+2 of corresponding buffer fragments. Then
the core is described as the mapping

y = C x (6.35)

from the input vector

x = Iλ ∥Bλ (6.36)

onto the output vector

y = Oλ ∥Bλ. (6.37)

Again, the choice of matrix C and the arrangement of the buffers is not fixed and can
be subject to optimization with respect to some criterion.



Chapter 7

Evaluation

This chapter provides deep performance evaluation of the presented core approach. At
the beginning, a variety of experiments with the core approach on GPPs is presented.
This also includes JPEG 2000 encoding process. Subsequently, the chapter focuses on
other platforms. Namely, the decomposition on FPGA and GPU is evaluated. At the
end, several experiments investigating the lifting scheme vectorizations are presented.

7.1 Image Processing

First, the SIMD-vectorization and parallelization of the 2-D transform is examined. The
content of this section was presented in [VI, VIII].

Let us get back to competing solutions. A useful pipelined implementation of the
vertical vectorization of 1-D wavelet lifting was described in [13]. This vectorization
can be naively used for 2-D transform by both vertical and horizontal filtering. It is
called a naive approach from now on. In [13], R. Kutil considered two nested loops (an
outer vertical and an inner horizontal loop) as a single loop over all pixels of the image.
He called it the single-loop approach (meant 2-D single-loop). Specifically, he merged
two vertically vectorized loops into the single one. Both of the described approaches (the
naive and the single-loop one) require complicated treatment of image border areas using
several different combinations of prolog and epilog phases. It makes their implementation
very tedious. In all cases, no SIMD extensions were used. Both of these discussed
approaches were implemented in order to compare them to the core approach. In order
to avoid doubts about possible caching issues in the naive implementation, it should be
noted that these are avoided using the prime stride between consequent rows of image.

To solve the complicated border treatment problem described above (see Figure 3.4),
I decided to remove the difficult parts of the border area processing code. Instead, I

70
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Intel Core2 Quad Q9000 and AMD Opteron 2380

Intel AMD

algorithm time speedup time speedup

naive 21.9 1.0 47.1 1.0

single-loop 8.4 2.6 15.3 3.1

core 8.5 2.6 8.4 5.6

Intel Core2 Duo E7600 and AMD Athlon 64 X2 4000+

Intel AMD

algorithm time speedup time speedup

naive 19.4 1.0 154.0 1.0

single-loop 6.2 3.1 20.4 7.5

core 6.3 3.1 12.4 12.4

Table 7.1: Performance evaluation of 1-D and 2-D pipelined approaches. The vertical
vectorization was used. No SIMD vectorization was used yet. The time is given in
nanoseconds per one pixel. The speedups are given against the naive vertical algorithm.

have involved the 2 × 2 core of 2-D lifting, which produces a quadruple of coefficients
(a, h, v, and d). This approach is thus referred to as the single-loop core approach. This
simplification allows the programmer to write a much simpler code. Another consequence
is that the code has a reduced footprint in first level instruction cache [23] possibly
allowing faster execution.

Moreover, all of the above approaches (naive, single-loop, single-loop core) are com-
pared in Table 7.1. The naive algorithm is used as a reference one. All the measurements
was performed on 58-megapixel image. For now, I postpone drawing conclusions further
in this chapter. Instead, the influence of CPU caches on a 2-D transform using the core
approach is examined.

Some version of the CPU cache is present in all modern platforms. However, all the
experiments presented in this thesis are closely focused on the x86 architecture. In the
cache hierarchy, the individual coefficients of the transform are stored inside larger and
integral blocks (called cachelines). A hardware prefetcher attempts to speculatively load
these blocks in advance, before they are actually required. Due to the limited size of the
cache, the least recently used blocks are evicted (discarded or stored into the memory).
Moreover, due to a limited cache associativity, it is also impossible to hold in the cache
the blocks corresponding to arbitrary memory location at the same time.
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Even though every 4-tuple of pixels is visited only once, certain caching issues can
be expected due to the mutual shift of read and write positions of the cores. This
mutual shift of positions guarantees that the resulting coefficients are placed into the
same (m,n)-coordinates as the corresponding input pixels. However, this is not the only
possible memory layout. The read and write positions of the cores can point to the same
or, on the contrary, to completely different memory locations. For the reason described
above, several processing orders have been evaluated in order to find the most friendly
one with respect to CPU caches. In all the cases studied below, the adjacent pixels
(coefficients) in image rows were stored without gaps. Note that the coefficients are
represented as 32-bit floating-point numbers.

Two different fundamental processing orders are possible – the horizontal order (also
known as a raster order) and the vertical order. Considering the limited sizes and pos-
sibly limited set associativities of CPU caches, the processing can be performed on the
appropriate strips or blocks. This results in six combinations in total. Note that other
(more complicated) processing orders also exist. The strip processing order (referred
to as strip-mining or aggregation) was used earlier, e.g., in [30], [34], or [29]. All the
evaluated processing orders are depicted in Figure 6.1.

A subset of the results of this experiment is shown in Figure 7.1. On the Intel as
well as AMD platforms employed, all the horizontal orders perform in most cases almost
equally well. On the other hand, all the vertical orders are clearly slower. This is
the expected behavior since the hardware prefetcher can prefetch the coefficients only
to an extent of one 4KiB page. Note that these results are not generic and they are
dependent on the CPU cache parameters. The measurements performed suggest that the
horizontal order should be the best choice for platforms with unknown cache parameters.
A summarization of the measurement for 58-megapixel images is shown in Table 7.2.
Note also that the implementations used are slightly different from those used in the
subsequent sections.

So far, only the baseline 2× 2 vertically vectorized core was examined. The following
text describes how several vertical as well as diagonal 2 × 2 cores are fused together in
order to better exploit SIMD instructions. Quite a similar fusion was developed by R.
Kutil in [13] employing his version of the vertical core. He used a different memory layout
and especially a different variant of the single-loop approach (buffering up to 16 whole
rows). A more detailed description of the individual cores follows. The best performing
vectorized cores are shown in Figure 7.2. Moreover, the complete image processing using
the 4× 4 vertical core is illustrated in Figure 7.3.
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Figure 7.1: Evaluation of processing orders. The 2 × 2 vertically vectorized core was
used. Time in nanoseconds per pixel.
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4× 4

4

(a) vertical

6× 2

12

(b) diagonal

Figure 7.2: Best performing vectorized cores. The image is processed in blocks of the
indicated size. For each block, the auxiliary buffers are updated during the computation,
as indicated by arrows.

Figure 7.3: Complete image processing using the 4 × 4 core. The auxiliary buffers are
shown on the left and top image edges. The light gray cores have to be evaluated before
evaluating the dark gray one.
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Intel Core2 Quad

order time

full horizontal 8.3

horiz. strips 27 9.2

horiz. blocks 27 8.4

full vertical 16.2

vert. strips 27 11.5

vert. blocks 27 12.0

AMD Opteron

order time

full horizontal 8.9

horiz. strips 27 10.2

horiz. blocks 27 9.3

full vertical 32.6

vert. strips 27 14.2

vert. blocks 27 14.5

Table 7.2: Cache influence when using different 2-D processing orders. The vertical 22

core was used. The time is given in nanoseconds.

2× 2 vertical core This core is not actually SIMD-vectorized. Two adjacent vertical
and two subsequent adjacent horizontal iterations of the 1-D vertical vectorization were
combined into one compact 2-D core. Additionally, a simple optimization was performed.
The coefficient scaling from the first vertical iterations bubbled through the subsequent
horizontal iterations and was merged with their scalings. The result of a core optimized
in this way is exactly the same as the result of a non-optimized version employing two
independent scalings. Although no SIMD instructions are used in the core, some speedup
can be expected thanks to the single-loop nature as well as the hardware prefetching into
CPU caches. The core formed requires one four-tuple of intermediate results per one
pair of coefficients in one direction. The total number of intermediate results is 2 × 4

horizontally and 2× 4 vertically.

4 × 4 vertical core This core consists of two parts. In the first part, two adjacent
vertical core iterations are performed on four independent subsequent rows. This can
be called 2 × 4 vertical core iterations. The 4 × 4 matrix of intermediate results is now
transposed.1 In the second part, two adjacent core iterations are performed on four
subsequent columns. Finally, the matrix of coefficients is scaled at once, as explained
in the previous core description. Note that the result need not be transposed again. A
similar 4× 4 core was also used in [13], where the packed words are accessed directly in
the main memory. In his work, he have to read two 4× 4 blocks at once and store them
separately. Figure 7.4 explains how the vectorization of the 4×4 vertical core is actually
implemented. The SSE registers are outlined by a dotted line. For simplicity, the buffers
are omitted.

1using _MM_TRANSPOSE4_PS macro
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transpose
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store

z

2× 4

*
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Figure 7.4: Implementation of the 4 × 4 vertical core. In 2 × 4 blocks, all operations
of the vertical vectorization are performed over SSE vector registers instead of ordinary
scalar ones.

8× 2 and 2× 8 vertical cores The cores are composed of two 8× 1 SIMD-vectorized
horizontal filterings followed by two 2 × 4 adjacent vertical core iterations. In the case
of the 8× 1 horizontal filtering, two (even and odd coefficients) whole packed words are
now transformed using SIMD instructions. This actually evaluates four subsequent pairs
of lifting coefficients at once. This 8 × 1 core was also used in [13], working directly
over the memory. The 2× 4 vertical core iterations were explained in the 4× 4 vertical
core description. These are applied on even and odd coefficients from 8 × 1 filterings
separately. No transposition is performed in this case.

2×2 diagonal core This core merges two horizontal and two vertical SIMD-vectorized
1-D diagonal cores. Thus, all operations of this core are pure SIMD instructions (with
the exception of loads and stores of the coefficients). The optimization of joint scaling
operations as mentioned in the description of the 2 × 2 vertical core is also used here.
This newly formed core requires three four-tuples of intermediate results per one pair of
coefficients in one direction. The total number of intermediate results is, therefore, 2×12

horizontally plus 2× 12 vertically.
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Intel Core2 Quad

core time speedup

vertical 2× 2 8.3 2.6

vertical 4× 4 4.4 5.0

vertical 8× 2 4.7 4.7

vertical 2× 8 4.5 4.9

diagonal 2× 2 7.2 3.0

diagonal 6× 2 6.6 3.3

diagonal 2× 6 6.6 3.3

AMD Opteron

core time speedup

vertical 2× 2 8.8 5.4

vertical 4× 4 4.6 10.2

vertical 8× 2 5.1 9.2

vertical 2× 8 5.1 9.2

diagonal 2× 2 8.9 5.3

diagonal 6× 2 6.7 7.0

diagonal 2× 6 6.4 7.4

Table 7.3: Comparison of SIMD vectorizations of the 2-D cores. The time is given in
nanoseconds per one pixel. All the measurements were performed on a 58 megapixel
image.

6×2 and 2×6 diagonal cores A series of three consecutive 2×2 diagonal cores can be
combined together. At the end of each vertical core iteration, three appropriate auxiliary
buffers are exchanged. After three such iterations, the meanings of these buffers are again
returned to the original states. Therefore, it is possible to omit this buffer exchange at
all if the following diagonal cores are appropriately modified. Note that the three buffers
represent the left, center and right input coefficients of the elementary lifting operations.

The performance of the above described cores was evaluated. In all cases, a raster
scan pattern was used. The results are summarized in Figure 7.5 as well as in Table 7.3.
Clearly, the 42 vertically vectorized core outperform all others.

So far, only the regular image are was discussed. The following text illustrates how
the core approach can be employed with the widely used symmetric border extension.

The symmetric border extension method assumes that the input image can be recov-
ered outside its original area by symmetric replication of boundary values. Still, special
prolog or epilog parts are not needed.

The best performing 4 × 4 core using the vertical vectorization was chosen for this
purpose. Initially, this core was split into three consecutive parts. The first part loads
data from the memory and places them into auxiliary variables.2 The subsequent second
part performs the actual calculation. Finally, the last part stores the results back in the
memory. The programmer should be able to fully reuse the already written code. No

2the __m128 data type
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Figure 7.5: Performance comparison of SIMD-vectorized cores.
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special prolog or epilog parts are required here. The only change here is a simple memory
addressing treatment in the first and the last parts. In the first one, the coefficient
addresses pointing outside of an image region are mirrored back inside it. In a similar
way, the memory accesses outside of the image in the last part are completely discarded.

Until now, the cores exploited the advantages of the cache and SIMD extensions.
The following discussion shows the effect of coarse-grained parallelization of the above
discussed approaches. With the optimizations proposed above, the performance scale
almost linearly with the number of threads.

The naive approach that uses the horizontal and vertical 1-D transform was par-
allelized using multiple threads. The same was done with vectorized core single-loop
approaches (4 × 4 vertical and 6 × 2 diagonal, both with merged scaling). In the latter
case, the image was split into several rectangular regions assigned to different threads. In
the first case, this was done twice – for the horizontal and for the vertical filtering. Both
multi-threaded implementation were written using the diagonal as well as the vertical
vectorizations, resulting in four implementations in total. The performance compari-
son is shown in Figure 7.6. Both axes are shown in logarithmic scale. It can be seen
that the naive approach, even when parallelized, is always slower comparing to just the
single-threaded core approach utilizing the vertical vectorization.

In this case, the parallelization of the single-loop core approach is not as straightfor-
ward as the parallelization of the naive approach. In order to produce correct results,
each thread must process a segment (several rows) of an input image before its assigned
area. In this segment, no coefficients are written to the output. Therefore, this phase
can be seen as a prolog. Without the prolog, the threads would produce independent
transforms, each with zero border extension.

Finally, a summarized comparison of parallelizations is shown in Table 7.4. The
measurements were performed on a 58-megapixel image. The single-threaded algorithm
is used as a reference one. Using the core approach, both the vectorizations scale almost
linearly with the number of threads.

In summary, the core approach is very suitable for parallelization and vectorization.
In contrast to [13], the size of auxiliary memory buffers does not grow with increasing
core size (for vertical vectorization, 4 rows for 2 × 2 as well as 4 × 4 core). Further, as
opposed to [13], the presented method can handle arbitrary memory layouts and process
the data in-place as well as out-of-place; also, in case of the symmetric extension, the
cores have radically simplified the border treatment and the overhead is now completely
hidden in memory latencies. Finally, the core approach can be easily vectorized as well
as parallelized as opposed to [13], where parallelization using threads is not considered
at all.
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Figure 7.6: Comparison of the parallelized approaches. The naive and the core ap-
proaches are compared.
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Intel Core2 Quad

threads 1 2 4

algorithm time speedup time speedup time speedup

naive vertical 21.5 1.0 15.8 1.4 9.8 2.2

naive diagonal 19.7 1.1 14.4 1.5 8.9 2.5

core vertical 4.3 5.1 2.3 9.5 1.5 14.6

core diagonal 5.9 3.7 3.1 7.1 2.0 11.0

AMD Opteron

threads 1 2 4

algorithm time speedup time speedup time speedup

naive vertical 46.9 1.0 24.0 2.0 12.1 3.9

naive diagonal 46.6 1.0 23.6 2.0 11.8 4.0

core vertical 4.3 11.0 2.3 20.5 1.2 39.3

core diagonal 7.1 6.6 3.7 12.7 1.9 24.8

Table 7.4: Performance evaluation using threads. The time is given in nanoseconds per
pixel. The speedups are shown compared to the non-parallelized naive vertical algorithm.

The experiments above still discuss only the single transform scale. In order to also
confirm the performance in a multi-scale scenario, the presented single-loop cores have
been incorporated into the JPEG 2000 encoding chain.

7.2 JPEG 2000

JPEG 2000 is an image coding system based on a wavelet compression technique. See
the excellent book from D. Taubman in [70] or the brief summary in [71]. The format
has wide application, especially with the professional use cases. For example, Digital
Cinema Initiatives established uniform specifications for digital cinemas in which JPEG
2000 is the only accepted compression format. Unfortunately, there several major issues
exist with the effective implementation of the JPEG 2000 codec. This is especially true
for images with high resolution (4K, 8K, aerial imagery) decomposed into a number
of scales (e.g. 8 scales). For high resolution data decomposed into several scales by
a typical separable transform, immensely many CPU cache misses occur. These cache
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misses significantly slows the overall calculation. Furthermore, by following the typical
data processing, the fundamental coding units of the JPEG 2000 format (referred to as
the codeblocks) are generated in the order that corresponds to scales. Consequently, it is
not possible to produce a bitstream fragment which corresponds to a spatial image region
earlier than the complete DWT decomposition is finished. Following the decomposition
procedure as defined in the standard, the coefficients of a single resolution appears all at
once. As a consequence, the entropy coder [72] (EBCOT) needs to once again return to
the data already touched. Finally, current implementations are built over 1-D transform
which is unable to fully exploit a potential of modern CPUs (SIMD instruction set, a
limited set-associativity cache).

Efficient realization of the JPEG 2000 transform was outlined by D. Taubman in
[73]. However, the author did not provide much implementation details and he did not
consider any friendliness to the CPU cache nor the SIMD set. Nevertheless, he expressed
the memory requirements for multi-scale DWT as (4 + I)M samples. As the transform
coefficients have to be arranged into codeblocks, the total memory requirements for the
JPEG 2000 codec are (4 + I + 3 × 2cn)M samples, where 2cn is the codeblock height.
The initial 4 term corresponds to 2 lines per one decomposition scale. This imposes that
his implementation generates all codeblocks at the same time, not one after another.
Here I would like to make a short comment. According to the description in [73], their
implementation does not process the data in a single loop. However, I assumed at the time
that their implementation would do so. This strategy is still fundamentally different from
the architecture described in this section which generates individual blocks sequentially
while all the time reusing the same memory area for output coefficients. Regarding the
input processing, the results of comparison these two strategies (line-based and block-
based) in the previous section (the scan orders) are interesting. Both were almost equally
fast. However, the line-based processing does not fit the JPEG 2000 codeblocks, does
not allow for the parallel codeblock processing or for the reuse of the memory for h, v,
and d subbands. The motivation behind my work is to overcome these issues.

The cores in the previous section consume a fragment of the input signal and im-
mediately produces a four-tuple of coefficients. The produced coefficients have a lag of
F = 4 samples in the vertical as well as the horizontal direction with respect to the input
coordinate system. In the JPEG 2000 coordinate system, such a core consumes the frag-
ment of the input starting on odd (m,n) coordinates. Unfortunately, the original core
does not fit the system of codeblocks in JPEG 2000. For explanation, every codeblock
starts on even (m,n) coordinates (which corresponds to the a coefficient). On the other
hand, the core with the lag of F = 4 samples produces a fragment of coefficients starting
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Figure 7.7: Codeblock scan order. Already processed area in gray. Active core is high-
lighted.

on odd (m,n) coordinates (which corresponds to the d coefficient). In order to solve this
incompatibility, the original core has been modified in a way that the output coefficients
are produced with a lag of F = 3 samples. Note that any shorter lag is not possible due
to the nature of CDF 9/7 lifting scheme.

Consider the 4×4 and 2×2 vertically vectorized cores as in the previous section. As a
next step, the processing of the codeblocks was encapsulated into monolithic units. These
units are evaluated in horizontal "strips" due to the assumed line-oriented processing
order. Inside the codeblock unit, the 2× 2 core can be used. See Figure 7.7. Moreover,
the unit requires access to two auxiliary buffers (one for each direction). The size of the
buffer can be expressed as 2cm ×κ (for the horizontal buffer) and 2cn ×κ (for the vertical
buffer), where κ = 4. As the strip-based processing with a granularity of the codeblock
size is used, the vertical buffer is passed straight to the subsequent codeblock processing
unit. The horizontal buffer will be used by a strip of codeblocks lying below. At the
beginning of the strip, the vertical buffer contains arbitrary values. The first codeblock
unit initializes this buffer and passes it to the subsequent unit in horizontal direction.
The transform of this subsequent unit is not started earlier than the EBCOT [72] on
the current unit has been finished. This allows for reusing the memory for h, v, and d

subbands as outlined in Figure 7.8.
The above-described procedure is in effect friendly to the cache hierarchy. As shown,

the processing engine uses several memory regions for a different purpose. (1) The
resulting codeblock subbands occupy several KiB of memory likely settled in the top-level
cache. (2) The vertical buffer occupies several hundreds of bytes. (3) The fragments of
horizontal buffers occupy the same size as the total size of the vertical buffer. However,
they are used only for a short time and then can be evicted from all levels of the cache
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Figure 7.8: Consecutive subbands in virtual memory. Strips are separated with dotted
lines. The light gray region indicates the strips right now settled in the physical memory.
The dark gray region may already be unmapped, Conversely, the white region memory
does not have to be populated yet. The memory for h, v, and d subbands are reused by
consecutive codeblocks

hierarchy. (4) The input strip can be simply streamed into the same memory region
which may be in part mirrored in the cache (say, 2MiB for 4K resolution, 26 codeblocks
and 32-bit samples). (5) The temporary a subbands can be partially mirrored as well.
For a smaller resolution, there is a good chance that the entire working set can fit into
the cache hierarchy.

The entire process described above can be efficiently parallelized. I have in mind the
coarse-grained parallelism using the threads. The key idea is to split the strip processing
into several independent regions. Thus, a single thread is responsible for several adjacent
codeblocks. Each thread holds its private copy of the vertical buffer and the memory
region for the resulting subbands (h, v, d). Therefore, several EBCOT coders can work
in parallel. Moreover, the threads are completely synchronization-free (they do not need
to exchange any data). At the beginning of the strip processing, each thread initializes
its the vertical buffer using a short prolog phase. There is only simplified core (without
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the vertical pass and the output phase) run in this phase. Thanks to the omission of
the vertical pass, the horizontal buffer is not touched here and no interaction between
threads is required. After the prolog, the processing continues in the usual way. The
disjoint fragments of the horizontal buffer are accessed by all the threads. In the test
implementation, the wavelet decomposition as well as Tier-1 encoding was parallelized.
On parallel architectures, it is also possible to encode every single codeblock of the
strip in parallel. However, the parallelization of the implementation is constrained by
the number of computing units. Note that more sophisticated implementations could
parallelize almost entire compression chain.

In the following text, the performance of the test implementation and compare it
to the competitive solutions was evaluated. Physical memory demands are discussed
first. The input image is consumed gradually using strips with a height of 2 × 2cm

lines. No more input data are required to be placed in the physical memory at the
same time. For the output subbands, memory for only 4×2cm+cn coefficients is allocated
(considering all four subbands). This memory is reused by all codeblocks in the transform
(or a processing thread). Additionally, two auxiliary buffers of size Mj × κ and Nj × κ

coefficients have to be allocated for each decomposition level j. It should be noted that
Mj+1 = ⌈Mj/2⌉cm and Nj+1 = ⌈Nj/2⌉cn , where ⌈.⌉c denotes ceiling to the next multiple
of 2c; initially M0 = M and N0 = N . For each auxiliary a band (excluding the input
and the final one), the window of physical memory can be maintained and progressively
mapped onto the right place in the virtual memory. The size of such a window is roughly
3 × 2cn ×Mj+1. It must be noted that 3 instead of 2 codeblock strips are needed due
to the periodic symmetric extension on the image borders; additionally, a lag of F = 3

lines from the input to the output of the core. Roughly speaking, the codeblocks of the
subsequent scales do not exactly fit each other. Taken together, the presented solution
requires

(I + 3× 2cn)M (7.1)

samples populated into the physical memory. Please note that these memory require-
ments are the same as outlined in [70].

The presented solution was compared to C/C++ libraries listed on the official JPEG
committee web pages – OpenJPEG, Kakadu, FFmpeg, and JasPer. The OpenJPEG,
FFmpeg, and JasPer libraries are distributed under the terms of open-source licences.
Thus, these could be analysed through their source code in detail. It should be noted
that OpenJPEG and JasPer are approved as reference JPEG 2000 implementations. The
Kakadu implementation is a heavily optimized closed-source library. The implementation
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library algorithm

core approach strip-based, scales interleaved

OpenJPEG naive

JasPer naive

FFmpeg naive

Kakadu line-based, scales interleaved

Table 7.5: Software overview in terms of the transform algorithm.

presented in this thesis is based on 32-bit floating-point format.
The overview of the above described libraries is shown in Table 7.5. The naive ap-

proach (see Algorithm 1) refers to processing the entire image at once while keeping the
horizontal and vertical passes as well as the transform levels (scales) separated. Further-
more, inside the horizontal and vertical passes, the lifting steps are processed sequentially
(the horizontal vectorization). As a consequence, samples of the tile are visited many
times while being over and over again evicted from the cache. Unlike the naive ap-
proach, the other two approaches (the line-based in Algorithm 2 and the strip-based in
Algorithm 3) use sophisticated technique where the processing of consecutive scales is
interleaved. Moreover, in case of the presented strip-based processing, the horizontal
and vertical passes were fused into the single loop. Regarding the strip-based processing,
the input is consumed using strips, one by one. The subsequent scales are recursively
processed as soon as enough data is available. For the line-based processing, no details
were provided [73] about the processing of the horizontal and vertical lifting steps.

foreach scale do
foreach dimension do /* M, N axis */

foreach lifting do
foreach sample do

process 1-D step;
end

end

end

end

Algorithm 1: The naive approach pseudocode.
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foreach two available lines do
process 1-D vertical lifting steps;
process 1-D horizontal lifting steps;

end
go to next scale;

Algorithm 2: Line-based processing.

foreach available strip do
foreach codeblock do

foreach core do
process 2-D core;

end

end

end
go to next scale;

Algorithm 3: Strip-based processing.

Again, the measurements presented in this section were obtained on Intel Core2 Quad
Q9000 running at 2.0 GHz. All the algorithms below were implemented in the C language,
several of them using the SIMD compiler intrinsics. The average time required to produce
a single transform coefficient was measured for various range of image resolutions.

Considering the test implementation, the processing engine was vectorized using
widely used SIMD extensions. Since the implementation is built over the 32-bit float-
ing point numbers, primarily the SSE (Streaming SIMD Extensions) instruction set is
used. The processing inside the 2× 2 core is separable into series of 1-D filtering steps.
The first idea was to extend the core to fit the 4-way 128-bit SSE registers. This way,
the 4 × 4 core was obtained. Inside this core, all of the filtering steps are performed
using 4-way parallelism through the 128-bit SSE register. This case was also studied the
previous section. Unfortunately, an issue appears when storing the resulting coefficients
into separated memory areas. In detail, the 4× 4 core produces four 2× 2 fragments of
the output subbands. Such a operation does not fit the SSE instruction set and conse-
quently degrades the performance. For this reason, an attempt was made to construct
8× 8 "supercore" consisting of four adjacent 4× 4 cores. This supercore does not suffer
from the above-described issue and provides a slightly better performance. The 8 × 8

core naturally fits into 8-way 256-bit AVX registers. In this case, the storage of the
resulting coefficients is performed in fragments of 4 × 4 coefficients which again do not
fit the AVX registers. This second issue is not possible to solve because 4 × 4 is the
smallest possible codeblock size required by the standard. In other words, a theoretical
16×16 core would produce the 8×8 fragments of subbands which might not fit the 4×4

codeblocks. The OpenMP interface was exploited to parallelize the code; however, any
other implementation is possible.
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Figure 7.9: Performance comparison of JPEG 2000 libraries. Time per pixel for the
transform stage only. DCI 4K and 8K UHD resolutions indicated by the vertical lines.

The transform stage was extracted from the libraries described above in order to get
accurate results. This stage was then subjected to measurement. The results are shown
in Figure 7.9. As observed also in [13], the single-loop processing has stable performance
regardless of the input resolution. The proposed implementation was measured using four
threads and SSE extensions. However, the SSE or AVX extensions boost the performance
by at most 5 %.

The ability of parallel processing has been evaluated. The original single-loop ap-
proach from the previous section scaled almost linearly with the number of threads. The
JPEG 2000 processing has coarser granularity (codeblocks instead of cores) and it is
performed in multiple scales. Higher scales of the decomposition have, unfortunately,
significantly lower resolutions in comparison to the input tile. For this reason, the par-
allelization is not as efficient as in case of the original approach. The results of the
measurement are shown in Table 7.6. It can be seen that the single-scale decomposition
scales slightly less than linearly with the number of threads. As it might be expected,
the multi-scale decomposition is not so close to the linear relationship.

Since only DWT stage of the JPEG 2000 codec was done, the code was implanted
into OpenJPEG library replacing the original implementation. Note that no part of
OpenJPEG is optimized for the performance. Because the implementation is built using
the floating-point format and OpenJPEG uses the fixed-point format, the samples have
to be converted one by one before and after the transform. The quantization and Tier-1
stage are performed using the original OpenJPEG’s code. However, these parts of the
compression chain now run in parallel as these are linked to the transform of codeblocks.
The rest of the code remains unmodified and runs in sequence. The performance mea-



CHAPTER 7. EVALUATION 89

single scale multiple scales

threads time [ns/pel] speedup time [ns/pel] speedup

1 3.08 1.00 5.60 1.00

2 1.59 1.94 3.44 1.62

3 1.22 2.53 2.68 2.09

4 0.97 3.16 2.56 2.19

Table 7.6: Parallel JPEG 2000 processing, streaming input. 4096× 2160 input, 64× 64

codeblocks. The tile was decomposed into a single (J = 1) and multiple (J = 8) scales.

implementation time [ns/pel] original speedup proposed speedup

original 528.73 1.00 —

proposed 1 398.36 1.33 1.00

proposed 2 210.77 2.51 1.89

proposed 3 175.27 3.02 2.27

proposed 4 142.09 3.72 2.80

Table 7.7: Integration of the core approach into OpenJPEG library. 4K resolution shown.
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Figure 7.10: Evaluation in OpenJPEG chain. Time/pel for the complete compression
chain. The numbers in the legend refers to the number of threads. 4K resolution indi-
cated.
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surements for this case are plotted in Figure 7.10. Eight decomposition levels, up to
four threads, and SSE extensions were used. As expected, the single-loop processing has
stable performance regardless of the input resolution. The measurement is summarized
in Table 7.7. It can be seen that the complete compression chain scales better than the
standalone transform stage. As in the case of the previous section, the conclusions from
this experiment are postponed to be presented together at the end of this chapter.

7.3 3-D Decomposition

In this section, the performance of the multi-dimensional, particularly 3-D, transform
core was evaluated. Based on the cores in Section 7.1, two baseline implementations
transforming the entire volume in the single loop were created. These implementations
employ 23 cores – first built over the vertical and the second over the diagonal vectoriza-
tion. Both of them process the data out of a place. The implementation with the diagonal
core is inherently accelerated by SIMD instructions. The vertical implementation does
not allow SIMD-optimizations at this stage.

In more detail, both 23 cores are composed from three parts. The first part loads
the input data from a source memory area. The inner part performs a fragment of
the transform computation. Finally, the last part stores the resulting coefficients into
a destination area. The first and last parts treat data borders using the symmetric
extensions.

Access to three auxiliary buffers is required during the inner part of the computation.
This most important part consists of three blocks performing calculations corresponding
to the three dimensions. Each block updates the necessary intermediate results in the
corresponding auxiliary buffer. This is followed by scaling of the output coefficients. In
the most generic variant, each 2-D auxiliary buffer has the same size like the correspond-
ing volume side. The depth of each auxiliary buffer is κ = 4 coefficients for the vertical
vectorization or κ = 12 coefficients for the diagonal one. This memory consumption was
reduced using a appropriate (raster scan) processing order as discussed earlier.

The performance of the two 3-D core approaches has been compared to the methods
discussed in Chapter Computation Schedules and Section Image Processing of this chap-
ter. Namely, the 2-D 4×4 SIMD-vectorized core (42 slices) and the naive methods (series
of single-loop 1-D transforms). The result can be seen in Figure 7.11. Apparently, all
of the 3-D approaches (even unvectorized) approximately above 1 megavoxel outperform
all the previous methods.
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Figure 7.11: Summarizing performance comparison of all 3-D approaches.

Within the context of the vertical vectorization, utilization of SIMD instruction set is
straightforward. In the first two dimensions, 2×2 small 23 cores are merged together in a
manner similar to the one used in Section 7.1. In the third dimension, there is no reason
to increase the size of the core as SIMD can be used directly. In all three dimensions, the
basic building block of the transform is 2 × 4 core. In this 2 × 4 core, four steps of the
vertical vectorization are computed in parallel using SIMD instructions. The scaling of
coefficients is performed together as the last step of the calculation. As a result, 4×4×2

SIMD-vectorized core was formed.
Although there is no reasonable justification, it can be tempting to build a compact 43

core as an analogy to the well-performing 42 counterpart. The core is internally composed
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Intel Core2 AMD Opteron

method time speedup time speedup

naive horiz. 159.8 1.0 105.7 1.0

naive vert. 100.1 1.6 73.5 1.4

vert. slice 42 53.8 2.9 41.0 2.5

vertical 23 23.3 6.8 21.7 4.7

diagonal 23 22.8 6.9 21.1 4.9

vertical 43 13.5 11.7 12.9 8.0

Table 7.8: Performance evaluation for large data in 3-D. Best results are in bold.

of two dependent 4 × 4 × 2 sub-cores. However, such a connection may be slightly
advantageous due to prefetching of intermediate results. Moreover, the implementation
is very regular.

The SIMD-optimized 3-D cores exhibit the best results. The 43 core slightly outper-
forms the baseline 4× 4× 2 one. Above initial transients, all the single-loop approaches
confirm the linear asymptotic complexity of the discrete wavelet transform. Table 7.8
summarizes the performances and speedups for a volume of 238 megavoxels. The testing
platforms are the same as in the previous sections. The speedups are given comparing
to the separable method using the horizontal vectorization and the prime stride. The
achieved processing time of 13 nanoseconds per sample is roughly equivalent to process
37 frames per second with Full HD resolution (1920 × 1080 per frame). For 4 × 4 × 2

core and any infinite video sequence, only two frames (the currently coded and the im-
mediately preceding) have to be held in memory. The summarizing comparison of all of
the significant approaches is shown in Figure 7.11.

7.4 Parallel Processing on GPU

As described in Section Parallel 2-D Cores, two parallel lifting scheme schedules for
GPGPUs were designed and implemented. These schedules are, in fact, based on the
separable and non-separable parallel cores presented in the previous chapter. The imple-
mentation is based on the OpenCL framework. All of the algorithms are evaluated on
CDF 9/7 transform using the most recent GPUs of two biggest vendors, namely, AMD
R9 290X and NVIDIA TitanX graphics cards. This experiment was also presented in [X].
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The 4-stage separable approach is discussed first. Except the sliding window, the
separable block-based approach uses the same scheme like Laan’s [60] method. The
threads in each work-group are responsible for processing of 2× 2 input coefficients. At
the beginning of the computation, the thread (that is in valid image range in the vertical
axis) loads their coefficients from the global memory and stores them into separate shared
memory locations. The threads on image borders have to correct their pointers to input
coefficients. Consequently, the input coefficients on the borders of image are always valid.
After loading of the image block, the computation of the wavelet transform using the
shared memory can start. In the first step of the horizontal pass, each of the threads
computes the v coefficient using two a coefficients of the thread itself and the thread on
the right. Additionally, the d coefficient is computed using h coefficients of the current
thread and the thread on the right. In the second step, the computation of a and h

coefficients is performed in the same way as the computation of the v and d coefficients.
After that, these two steps are repeated with a substitution of α and β with γ and δ

coefficients. The vertical steps are performed in the same way as the horizontal steps
except for a rotation of the scheme by 90 degrees. Unlike the horizontal pass, in the
vertical pass a synchronization of threads using a memory barrier is required between
each of the steps. Horizontal steps are synchronization-free thanks to the atomicity of
hardware block instructions.

The 2-stage non-separable approach was described in the previous chapter. As com-
pared with [16], the total number of arithmetic operations has been reduced form 24 to
20 in relation to CDF 5/3 wavelet. The calculation of CDF 9/7 transform comprises two
connected cores (the first with α, β, the second with γ, δ) between them another barrier
is placed. In total, the calculation contains 3 memory barriers.

The achieved memory throughput performance is shown in Figure 7.12. As it can be
seen, both of the core methods overcome the reference state-of-the-art method. Moreover,
the proposed non-separable core performs slightly better compared to the separable one.
As it can be expected, this behavior corresponds to the reduced number of the memory
barriers.
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Figure 7.12: Throughput performance of parallel methods. Kucis2014 denotes the ref-
erence method presented in [IX].
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7.5 FPGA Devices

In the last substantial experiment, the hardware implementation is evaluated. The imple-
mentation is focused on JPEG 2000 system. Particularly, the lossless CDF 5/3 transform
was implemented in FPGA.

The transform defined in JPEG 2000 maps the input pairs (d(0)m , a
(0)
m ) onto the output

ones (a
(1)
m−1, d

(1)
m ) as

d
(1)
m = d

(0)
m −

a(0)m−1 + a
(0)
m

2

 , (7.2)

a
(1)
m−1 = a

(0)
m−1 +

d(1)m−1 + d
(1)
m + 2

4

 . (7.3)

Note, please, the rounding term +2 in (7.3). These cores proposed in [III] and presented
in this section can be used as standalone computing units or incorporated into the existing
block-based or line-based architectures. The general description of the cores is provided
in Chapter Lifting Core. Namely, the 2-stage core (baseline) and the 1-stage (reduced
latency) core both with F = 1 were used as a basis.

As in [8], CDF 5/3 lifting scheme is defined using constants α = −1/2 and β = 1/4.
The resulting core has 4 independent stages suitable for hardware pipelining. These
stages are shown in more detail in Figure 7.13. The first two of them correspond to the
horizontal filtering and do not need to access the coefficients in the auxiliary buffer. The
latter two correspond to the vertical filtering and need to exchange the data through
the on-chip auxiliary buffer. The core consists of 16 operations in total. The length of
the longest data path in both stages is 2 operations. The individual stages correspond
to predict TM

α , TN
α and update SM

β , SN
β steps in the horizontal and vertical direction,

respectively. The core can be then described in matrix notation as

y = SN
β TN

α SM
β TM

α x. (7.4)

As a second step, I have tried to reduce the depth of the calculation per the output
quadruple using the reduced latency 1-D core (see Section 5.1). Inside the core, the newly
obtained factors are powers of two as they are composed of the original factors. Finally,
the core with two stages reveals – one stage for horizontal and one for vertical filtering.
The stages are shown in Figure 7.14. New intermediate results were also introduced.
These new results replaced part of the original results in the auxiliary buffer. Therefore,
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Figure 7.13: The four-stage separable core with 16 additions. The arrows pointing to the
right are linked to the arrows coming in from the left.
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Figure 7.14: The two-stage separable core with 28 additions.
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the memory consumption of this buffer remains unchanged. The newly formed core
requires 28 MACs per output quadruple. The length of the critical path in each stage is
2 operations. Thus, the total depth of the entire calculation is smaller (as the number
of subsequent stages was halved) than in the original case. In the matrix notation, the
discussed core can be described by

y = CN
α,β C

M
α,β x. (7.5)

Here, the implementation is described in full detail including correct JPEG 2000
rounding. The simplest four-stage separable core implements the equations (7.2) and
(7.3). These equations can be rewritten in order to utilize the input carry bit of the
adders.

d
(1)
m = d

(0)
m −

a(0)m−1 + a
(0)
m

2

 (7.6)

a
(1)
m−1 =

4a
(0)
m−1 + d

(1)
m−1 + d

(1)
m + 1 + 1

4

 (7.7)

The transform was implemented using 16-bit signed integers. Such a width is sufficient
for few levels of DWT as required by JPEG 2000 standard. The stages reflects the
horizontal and vertical predicts and updates, which implies 4 stages. The auxiliary
coefficient between the horizontal stages are passed in registers. On the contrary, the
vertical intermediate results are exchanged through the Block RAM (BRAM). As all the
factors in CDF 5/3 are powers of two, the complete transform consists of 16 additions
per output quadruple only.

The implementation of the two-stage core is more sophisticated. At the beginning,
1-D transform is discussed. Considering the core approach, the biggest problem with the
lossless DWT as required by JPEG 2000 is the correct rounding of the am−1 coefficient.
Now, the am−1 coefficient is computed in two stages. Consequently, a rounding flag (or a
rounding bit) has to be distributed from the first stage of the core to the second one. As
the am−1 is computed in two stages, the newly formed auxiliary a(1)m−1 coefficient have to
be passed between the two stages. The final coefficients are then denoted (a

(2)
m−1, d

(1)
m ).

To explain the two-stage rounding, the following identity have to be established first.
Let Z denote the set of integers, 2Z+1 denote the set of odd integers, and p, q ∈ Z. One
can perform the following expansion⌊

p+ q

2

⌋
= ⌊p/2⌋+ ⌊q/2⌋+ C2(p, q), (7.8)
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where C2 is a correction term is defined as

C2(p, q) =

1 : p ∈ 2Z+ 1 ∧ q ∈ 2Z+ 1

0
. (7.9)

Using this identify, one can rewrite the original 1-D transform as follows.

d
(1)
m = d

(0)
m −

a(0)m−1 + a
(0)
m

2

 (7.10)

a
(1)
m = 4a

(0)
m − 2⌊a(0)m /2⌋+ d

(0)
m − ⌊a(0)m−1/2⌋ (7.11)

bm = 1− C2(a(0)m−1, a
(0)
m ) (7.12)

a
(2)
m−1 =

a(1)m−1 + d
(0)
m − ⌊a(0)m /2⌋+ bm−1 + bm

4

 (7.13)

As in the previous case, the horizontal intermediate values are passed in registers and
the vertical ones in BRAM. The core requires 28 additions per output quadruple. Note
that the calculation of bm is implemented in a single NAND gate.

The wavelet engine was experimentally synthesized in a Xilinx Zynq XC7Z045 FPGA
and evaluated on the Xilinx ZC706 board (with DDR3 at 1066 MHz). The engine was
synthesized for several image resolutions (as seen in Table 7.9) that merely differ in the
BRAM size, only to allow comparison with other papers, and also to show that the core is
able to process Full HD video (1080p, 60 Hz) faster than in real-time. As it could be seen,
the core is ready to process image resolution of up to 4K UHD with the outlook to even
higher resolutions without need of any fundamental changes. The computational engine
has standardized AXI-Stream interfaces. The input expects streamed video frames in the
predefined resolution, the output stream is generating interlaced coefficients of wavelet
transform that can be easily split into four separate data streams for further multi-scale

small tile Full HD 4K UHD

resolution 512× 512 1920× 1080 3840× 2160

theoretical framerate 3698 477 120

framerate with DRAM 2670 338 84

Table 7.9: The framerates achieved in FPGA implementation. Given for various image
resolutions.
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decomposition. I would especially like to highlight the ability to process the video stream
without the need of using external memory for intermediate results. The design includes
mirroring on the image edges which is not performed by the wavelet core itself, but by
the engine, which encapsulates the core. The engine itself then represents an independent
block, which can be used in a more complex system or which can be easily duplicated
and chained to perform more levels of wavelet transform of one image.

Both of the implemented cores are fully pipelined. First of the cores has latency of
2 clock cycles and it represents the four-stages separable wavelet transform from Fig-
ure 7.13. The second core has latency of 4 clock cycles and it represents the two-stages
separable wavelet transform from Figure 7.14. The wavelet core itself requires just a
very small fraction of ZC706 resources, as shown in Table 7.10 and in Table 7.11. As it
could be predicted, first solution with 2-stage pipeline leads in higher LUT requirements
and less demand for Flip-Flops. At the opposite the 4-stage pipeline consumes more
Flip-Flops and smaller amount of LUTs. The requirements for whole wavelet engine are
summarized in Table 7.12; besides the core itself, it shows resource demands for engine

small tile Full HD 4K UHD

FF 328 332 338

LUT 239 247 257

BRAM 1 2 4

Table 7.10: The resources consumed by the 4 clock latency core.

small tile Full HD 4K UHD

FF 280 282 284

LUT 418 440 426

BRAM 1 2 4

Table 7.11: The resources consumed by the 2 clock latency core.

core FF LUT BRAM

latency 4 441 (0.1%) 399 (0.18 %) 6 (1.1%)

latency 2 391 (< 0.1%) 592 (0.27%) 6 (1.1%)

Table 7.12: Resources consumed for Full HD resolution on ZC706 board.
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performing row and column edge mirroring. According to JPEG 2000 standard, the four
image lines and columns have to be mirrored, this consumes the extra four BRAMs in
case of Full HD resolution.

The overall performance of wavelet engine is summarized by Table 7.9. It incorporates
the theoretical and real performance of the engine with relation to image resolution.
Both of the wavelet cores have the same throughput – they differ just in output latency.
The core is able to process 4 input samples in one clock cycle, producing 4 output
samples and the important fact also is that each of the samples needs to be fetched
from an external memory and stored into the external memory just once as the design
is single pass streaming 2-D DWT unit. The computation has to also be performed on
the mirrored image edges that are enlarged by 4 pixels in each direction. The theoretical
performance was calculated for maximum speed 250MHz with respect to edge mirroring,
assuming ideal situation that input data are always available. The practical performance
was measured on hardware Xilinx ZC706. There it could be observed that the RAM
throughput is essential for the overall performance.

The overall comparison with the selected architectures is shown in Table 7.13. The
time column is dependent on a clock. Whereas the BRAM and clocks/pel columns are
platform-independent. In other words, when the engine is synthesized for some older
hardware, the resource consumption and clocks/pel will be the same.

architecture device BRAM [bits] clocks/pel time [ms]

Dillen [53] VirtexE1000-8 50K 0.50 1.20

Descampe [52] Virtex-II XC2V6000 N/A 0.60 1.75

Seo [51] Altera Stratix 128K 2.64 6.02

Zhang [50] Virtex-II Pro XC2VP30 6× 18K 0.50 0.97

the cores Zynq XC7Z045 1× 36K 0.26 0.27

Table 7.13: Comparison of various FPGA implementations. Tiles of size 512× 512. The
processing time and clocks per pixel were projected to the uniform image size. The best
results are in bold.
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7.6 Vectorization

Finally, it might be interesting to see that the pipelined computation is not always
advantageous. For this experiment, the vector processor synthesized in FPGA has been
chosen. Meanwhile, the core build above the vertical vectorization was implemented on
MicroBlaze CPU. Above that, naive implementation that basically corresponds to the
horizontal vectorization was implemented on the CPU as well as the vector processing
unit. The platform details are explained below.

As stated in Chapter 4, the vectorizations evaluated on this FPGA-based vector pro-
cessor was presented in [V]. The heterogeneous multi-core platform referred to as ASVP
was presented in [66], [67], [68], and [69]. This platform employs up to several units called
Basic Computing Element (BCE) which can accelerate floating-point vector operations.
For organization of the platform see Figure 7.15. These elements use a combination of
a simple PicoBlaze CPU (sCPU in Figure 7.15) with a configurable pipelined datapath.
The computation performed by BCE can be changed through replacing the PicoBlaze
firmware. Moreover, the platform contains host CPU (MicroBlaze in this case) that is
executing the main program. Thus, the computation is distributed between host CPU
and one or more BCE units. This change of the BCE firmware can be made from Mi-
croBlaze CPU in runtime. The BCE contains four memory banks each of 1024 words
long (one word denotes 32-bit single-precision floating-point format). Before BCE can

bus

CPU

BCE

DMA

banks

SDRAM

sCPU VPU

memory

Figure 7.15: Organization of the vector-processor platform. Solid lines indicates data
paths. The BCE consists of memory banks and Vector Processing Unit (VPU) and
accesses RAM through DMA engine. Its function is controlled by host CPU.
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Figure 7.16: Comparison of the vectorizations on the vector processor. The horizontal
vectorizations were implemented on the CPU as well as on the vector unit.

start its program, the input data must be transferred from main DDR memory into
BCE’s memory banks. Similarly, the output data should be transferred back when BCE
computation is done. These data are transferred by DMA controller. The operations
performed by BCE are element-wise move, addition, multiplication, etc. The results of
the evaluation are presented in comparison to the vertical vectorization below in the text.

The comparison was performed on 1-D forward DWT using CDF 9/7 wavelet. All
the implementations work over a sequence of single-precision floating point numbers.
Evaluation on is summarized in Figure 7.16. The horizontal axis of this graph indicates
the sequence length. The vertical axis specifies computation time per one signal sample.
Both vectorizations as implemented on MicroBlaze CPU are plotted in this graph. Fur-
thermore, another implementation of the horizontal vectorization accelerated using BCE
unit is plotted here. Clearly, the horizontal vectorization is the fastest method when
long SIMD operations on BCE can be used. Without appropriate vector operations, the
fastest approach is the vertical vectorization. In this particular example, the speedup of
the horizontal vectorization with SIMD operations over baseline horizontal approach on
CPU is up to 2.6×.

Therefore, another situation occurs, if there is only GPP available. The implemen-
tations of all of those vectorizations described in the Chapter 4 were evaluated on x86
platform. As in previous experiment, this comparison was performed on 1-D forward
DWT using CDF 9/7 wavelet. All the implementations work over a sequence of single-
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Figure 7.17: Comparison of the vectorizations on the x86 platform. The vertical line
represents the size of the last-level CPU cache.

precision floating point numbers. The evaluation on x86-64 (AMD Athlon 64 X2 4000+)
is shown in Figure 7.17. The horizontal vectorization fails with samples exceeding the
CPU cache size due to extensive cache misses. In contrast, the vertical and diagonal
vectorization show stability with increasing input length. As can be observed from these
two experiments, the core approach seems to be an appropriate tool considering GPPs.

7.7 Discussion

Several experiments evaluating the performance of different methods were conducted on
general-purpose processors. The 1-D transform is considered first. Several findings are
evident from these experiments. The most important effect occurs as soon as the working
set exceed the cache size. The discussed effect causes the single-loop methods to be faster
compared with the naive horizontal vectorization. This is documented in Figure 7.17 in
the previous section.

Considering the 2-D transform, the single-loop methods are faster as compared with
the naive separable methods. This case is summarized in Table 7.4. The single-loop
method can be built above the vertical or diagonal vectorization, or above their variants.

Furthermore, considering the 2-D transform, the core implementation of the single-
loop approach was discussed in detail. Its performance is similar the the "hardwired"
single-loop code as summarized in Table 7.1. However, the cores disclose several degrees
of freedom. This advantage is especially useful when considering the multi-dimensional
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transform. Namely, a variety of processing orders can be employed during the transform.
This is true even in connection with the multi-scale decomposition as shown when inte-
grating into the JPEG 2000 encoder. Moreover, many possible uses of SIMD extension
became available in the case of multi-dimensional core. Particularly, 4× 4 vertically vec-
torized core is the best performing one on the Intel x86 platform with SSE extensions.
Table 7.3 summarizes the performance of various cores of this platform. Moreover, the
transform employing the cores allow for easy coarse-grained parallelization. The results
can be seen in Table 7.4 and Table 7.6. As demonstrated in the JPEG 2000 encoding
chain, no synchronizations are even required in between threads considering the horizon-
tal adjacency of parallel blocks. The cores incorporated into the JPEG 2000 compression
chain have proven to be fundamentally faster than the widely used implementations.

Moreover, the performance of the cores during the 3-D transform has been evaluated.
Approximately above 1 megavoxel, all of the 3-D cores (even unvectorized) outperform
all the previous 3-D processing methods. The SIMD-optimized 3-D cores exhibit the best
results as shown in Table 7.8.

The cores can also be internally reorganized in order to minimize some of the re-
sources. This property was demonstrated on the FPGA where the minimization of the
core latency has a direct impact on the utilization of flip-flop circuits and look-up tables
(LUT). Specifically, the reduced latency core consumes more LUTs and uses a smaller
amount of flip-flops. The overall summary of this experiment for Full HD resolution is
shown in Table 7.12.

The cores may also be advantageously used on massively-parallel architectures. This
option was demonstrated using the OpenCL framework and the most recent GPUs of
two biggest vendors. Specifically, the transform employing the parallel non-separable
core reducing the number of memory barriers which was proven to be the fastest way to
transform the 2-D data. This behavior is documented in Figure 7.12.

Finally, several general experiments with 1-D lifting scheme was conducted. As can
be seen from Figure 7.16, the horizontal vectorization shall be the preferred schedule
when long vector operations are available. The situation is opposite at general-purpose
processors. As mentioned above, the vertical or diagonal vectorization is faster than the
horizontal one as soon as the working set exceed the cache size.

The implementations of the cores discussed in this chapter can be found through the
following link: http://www.fit.vutbr.cz/~ibarina/prods.php.

As several of the research activities presented in this thesis were performed as a
collective work, this paragraph aims to conclude the research achievements of myself. I
have designed and formulated the cores of the lifting scheme presented in Chapter 5. This

http://www.fit.vutbr.cz/~ibarina/prods.php
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include the single-loop cores as well as the parallel ones. Moreover, this statement also
comprises the mutable cores. I have also extended this principle into more dimensions.
Based on the formulation of the core, I have proposed several variants of the cores as
presented in Section 5.1 and Section 6.1. The 2-stage parallel core disclosed in Section 6.2
was originally the idea of my colleague Michal Kula. All this work was carried out under
the guidance of my supervisor Pavel Zemcik.



Chapter 8

Conclusions

The thesis focuses on efficient methods for computing the discrete wavelet transform. The
state-of-the-art methods suffer from several ailments. For example, the parallelization,
exploitation of SIMD extensions and the cache hierarchy are not handled well. The
treatment of signal boundaries is done in a complicated and inflexible way. Additionally,
these methods do not address the problem of scheme reorganization in order to minimize
some of the resources. The aim of the thesis has been to overcome these issues. This
was accomplished with the formation of a compact streaming core which performs the
transform in a single loop, possibly in a multi-scale fashion. Using this core, transform
fragments can be computed according to application requirements.

New features of the approach presented are indicated by numbers. The presented
core can (1) efficiently exploit the capabilities of modern CPUs, especially the cache
hierarchy, SIMD extensions, and parallel computing. Operations inside the core can be
(2) reorganized in order to minimize some of the platform resources (e.g. the number
of memory barriers, the number of steps). Since the core itself (3) treats the signal
boundaries, no special prolog or epilog phases are needed. Moreover, the cores can be
adapted to (4) massively-parallel environments.

The core can be described as a direct mapping from the input coefficients on the
output ones while retaining and exploiting some auxiliary intermediate results. This
mapping can be seen as a standalone streaming unit, implemented either in software
or hardware. Using the core, the transform fragments can be computed with several
(5) new degrees of freedom (the processing order, the interleaving of the multi-scale
decomposition). For example, a particular transform block at a particular scale can be
obtained with minimal or no unnecessary calculations.

When searching for the best core, I have found that the core can optimize only one
criterion at the expense of others. For instance, minimizing the number of arithmetic
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operations goes against the number of synchronization points (the memory barriers) and
the number of scheme steps (the latency). Moreover, a universal core suitable for all
cases and environments probably does not exist.

The future work I would like to do comprises the concatenation of the analysis and
synthesis cores coupled with some useful algorithm. This can be done on a multi-scale
basis. The algorithms can perform, for example, tone-mapping, denoising, compression,
etc. Another area of activities can be the generalization to non-linear transforms.



Published Papers

[I] Barina, D.; Klima, O.; Zemcik, P.: Single-Loop Architecture for JPEG 2000. In
International Conference on Image and Signal Processing (ICISP), Lecture Notes
in Computer Science (LNCS), vol. 9680, Springer, 2016, ISBN 978-3-319-33618-3,
pp. 346–355, doi:10.1007/978-3-319-33618-3_35.

[II] Barina, D.; Klima, O.; Zemcik, P.: Single-Loop Software Architecture for JPEG
2000. In Data Compression Conference (DCC), 2016, pp. 582–582, doi:10.1109/
DCC.2016.19.

[III] Barina, D.; Musil, M.; Musil, P.; et al.: Single-Loop Approach to 2-D Wavelet
Lifting with JPEG 2000 Compatibility. In Workshop on Applications for Multi-
Core Architectures (WAMCA), IEEE, 2015, ISBN 978-1-4673-8621-0, pp. 31–36,
doi:10.1109/SBAC-PADW.2015.10.

[IV] Barina, D.; Zemcik, P.: Minimum Memory Vectorisation of Wavelet Lifting. In
Advanced Concepts for Intelligent Vision Systems (ACIVS), Lecture Notes in Com-
puter Science (LNCS), vol. 8192, Springer, 2013, ISBN 978-3-319-02894-1, pp. 91–
101, doi:10.1007/978-3-319-02895-8_9.

[V] Barina, D.; Zemcik, P.: Wavelet Lifting on Application Specific Vector Processor.
In GraphiCon, GraphiCon Scientific Society, 2013, ISBN 978-5-8044-1402-4, pp.
83–86.

[VI] Barina, D.; Zemcik, P.: Diagonal Vectorisation of 2-D Wavelet Lifting. In Interna-
tional Conference on Image Processing (ICIP), Paris, France: IEEE, 2014, ISBN
978-1-4799-5751-4, pp. 2978–2982, doi:10.1109/ICIP.2014.7025602.

[VII] Barina, D.; Zemcik, P.: Real-Time 3-D Wavelet Lifting. In International Confer-
ence in Central Europe on Computer Graphics, Visualization and Computer Vision
(WSCG), 2015, ISBN 978-80-86943-65-7, pp. 15–23.

108



PUBLISHED PAPERS 109

[VIII] Barina, D.; Zemcik, P.: Vectorization and parallelization of 2-D wavelet lifting.
Journal of Real-Time Image Processing (JRTIP), in press, ISSN 1861-8200, doi:
10.1007/s11554-015-0486-6.

[IX] Kucis, M.; Barina, D.; Kula, M.; et al.: 2-D Discrete Wavelet Transform Using
GPU. In Workshop on Application for Multi-Core Architectures (WAMCA), IEEE,
2014, ISBN 978-1-4799-7014-8, pp. 1–6, doi:10.1109/SBAC-PADW.2014.13.

[X] Kula, M.; Barina, D.; Zemcik, P.: Block-based Approach to 2-D Wavelet Trans-
form on GPUs. In Information Technology: New Generations (ITNG), Advances
in Intelligent Systems and Computing, vol. 448, Springer, 2016, ISBN 978-3-319-
32467-8, pp. 643–653, doi:10.1007/978-3-319-32467-8_56.



References

[1] I. Daubechies, Ten Lectures on Wavelets, ser. CBMS-NSF regional conference series
in applied mathematics. Philadelphia, Pennsylvania: Society for Industrial and
Applied Mathematics, 1992, vol. 61.

[2] ——, “Orthonormal bases of compactly supported wavelets,” Communications on
Pure and Applied Mathematics, vol. 41, no. 7, pp. 909–996, 1988. doi:10.1002/cpa.
3160410705

[3] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly
supported wavelets,” Communications on Pure and Applied Mathematics, vol. 45,
no. 5, pp. 485–560, 1992. doi:10.1002/cpa.3160450502

[4] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet
representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 7, pp. 674–693, 1989. doi:10.1109/34.192463

[5] ——, “Multifrequency channel decompositions of images and wavelet models,”
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 12,
pp. 2091–2110, Dec. 1989. doi:10.1109/29.45554

[6] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet con-
structions,” in Wavelet Applications in Signal and Image Processing III, ser. SPIE,
A. F. Laine and M. A. Unser, Eds., vol. 2569. SPIE, 1995, pp. 68–79.

[7] ——, “The lifting scheme: A custom-design construction of biorthogonal wavelets,”
Applied and Computational Harmonic Analysis, vol. 3, no. 2, pp. 186–200, 1996.

[8] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,”
Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 247–269, 1998.
doi:10.1007/BF02476026

110



REFERENCES 111

[9] S. G. Mallat, “Multiresolution approximations and wavelet orthonormal bases of
L2(R),” Transactions of the American Mathematical Society, vol. 315, no. 1, pp.
69–87, 1989.

[10] ——, A Wavelet Tour of Signal Processing: The Sparse Way. With contributions
from Gabriel Peyre., 3rd ed. Academic Press, 2009.

[11] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge, 1996.

[12] R. E. Blahut, Fast Algorithms for Signal Processing. Cambridge University Press,
2010.

[13] R. Kutil, “A single-loop approach to SIMD parallelization of 2-D wavelet lifting,”
in Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), 2006, pp. 413–420. doi:10.1109/PDP.2006.14

[14] M. Iwahashi, “Four-band decomposition module with minimum rounding opera-
tions,” Electronics Letters, vol. 43, no. 6, pp. 27–28, 2007. doi:10.1049/el:20073479

[15] M. Iwahashi and H. Kiya, “A new lifting structure of non separable 2D DWT with
compatibility to JPEG 2000,” in Acoustics Speech and Signal Processing (ICASSP),
2010, pp. 1306–1309. doi:10.1109/ICASSP.2010.5495427

[16] ——, “Non separable two dimensional discrete wavelet transform for image signals,”
in Discrete Wavelet Transforms – A Compendium of New Approaches and Recent
Applications. InTech, 2013. doi:10.5772/51199

[17] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet trans-
forms that map integers to integers,” Applied and Computational Harmonic Analy-
sis, vol. 5, no. 3, pp. 332–369, 1998. doi:10.1006/acha.1997.0238

[18] M. D. Adams and F. Kossentni, “Reversible integer-to-integer wavelet transforms for
image compression: performance evaluation and analysis,” IEEE Transactions on
Image Processing, vol. 9, no. 6, pp. 1010–1024, Jun. 2000. doi:10.1109/83.846244

[19] M. D. Adams, “Reversible integer-to-integer wavelet transforms for image coding,”
Ph.D. dissertation, Department of Electrical and Computer Engineering, University
of British Columbia, Vancouver, BC, Canada, Sep. 2002.

[20] R. Fattal, “Edge-avoiding wavelets and their applications,” ACM Transactions on
Graphics, vol. 28, no. 3, pp. 1–10, 2009. doi:10.1145/1531326.1531328



REFERENCES 112

[21] G. Uytterhoeven and A. Bultheel, “The red-black wavelet transform,” in Benelux
Signal Processing Symposium. IEEE, 1998, pp. 191–194.

[22] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
Biometrika, vol. 81, pp. 425–455, 1994.

[23] U. Drepper, “What every programmer should know about memory,” Red Hat, Inc.,
Tech. Rep., Nov. 2007.

[24] C. Chrysafis and A. Ortega, “Minimum memory implementations of the lifting
scheme,” in Wavelet Applications in Signal and Image Processing VIII, ser. SPIE,
A. Aldroubi, A. F. Laine, and M. A. Unser, Eds., vol. 4119. SPIE, 2000, pp.
313–324. doi:10.1117/12.408615

[25] P. Meerwald, R. Norcen, and A. Uhl, “Cache issues with JPEG2000 wavelet lifting,”
in Visual Communications and Image Processing (VCIP), ser. SPIE, vol. 4671, 2002,
pp. 626–634.

[26] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Improving the memory behavior
of vertical filtering in the discrete wavelet transform,” in Computing frontiers (CF).
ACM, 2006, pp. 253–260. doi:10.1145/1128022.1128056

[27] ——, “Implementing the 2-D wavelet transform on SIMD-enhanced general-purpose
processors,” Transactions on Multimedia, vol. 10, no. 1, pp. 43–51, Jan. 2008. doi:10.
1109/TMM.2007.911195

[28] J. Tao and A. Shahbahrami, “Data locality optimization based on comprehensive
knowledge of the cache miss reason: A case study with DWT,” in High Performance
Computing and Communications (HPCC). IEEE, Sep. 2008, pp. 304–311. doi:10.
1109/HPCC.2008.7

[29] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado, “Vectorization of the
2D wavelet lifting transform using SIMD extensions,” in Parallel and Distributed
Processing Symposium (IPDPS), Apr. 2003. doi:10.1109/IPDPS.2003.1213416

[30] S. Chatterjee and C. D. Brooks, “Cache-efficient wavelet lifting in JPEG 2000,” in
International Conference on Multimedia and Expo (ICME), vol. 1. IEEE, 2002, pp.
797–800. doi:10.1109/ICME.2002.1035902

[31] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi, “Non-
linear array layouts for hierarchical memory systems,” in International Confer-



REFERENCES 113

ence on Supercomputing (ICS). New York, NY, USA: ACM, 1999, pp. 444–453.
doi:10.1145/305138.305231

[32] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado, “Wavelet transform
for large scale image processing on modern microprocessors,” in High Performance
Computing for Computational Science (VECPAR), ser. Lecture Notes in Computer
Science (LNCS), J. M. L. M. Palma, A. A. Sousa, J. Dongarra, and V. Hernandez,
Eds. Springer, 2003, vol. 2565, pp. 549–562. doi:10.1007/3-540-36569-9_37

[33] D. Chaver, M. Prieto, L. Pinuel, and F. Tirado, “Parallel wavelet transform for large
scale image processing,” in Parallel and Distributed Processing Symposium (IPDPS),
Apr. 2002. doi:10.1109/IPDPS.2002.1015472

[34] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado, “2-D wavelet transform
enhancement on general-purpose microprocessors: Memory hierarchy and SIMD par-
allelism exploitation,” in High Performance Computing (HiPC), ser. Lecture Notes
in Computer Science, S. Sahni, V. K. Prasanna, and U. Shukla, Eds. Springer,
2002, vol. 2552, pp. 9–21. doi:10.1007/3-540-36265-7_2

[35] A. Shahbahrami and B. Juurlink, “A comparison of two SIMD implementations of
the 2D discrete wavelet transform,” in Annual Workshop on Circuits, Systems and
Signal Processing, Veldhoven, The Netherlands, Nov. 2007, pp. 169–177.

[36] A. Shahbahrami, “Improving the performance of 2D discrete wavelet transform using
data-level parallelism,” in High Performance Computing and Simulation (HPCS),
Jul. 2011, pp. 362–368. doi:10.1109/HPCSim.2011.5999847

[37] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet image com-
pression,” Transactions on Image Processing, vol. 9, no. 3, pp. 378–389, 2000.
doi:10.1109/83.826776

[38] J. Oliver, E. Oliver, and M. P. Malumbres, “On the efficient memory usage in the
lifting scheme for the two-dimensional wavelet transform computation,” in Inter-
national Conference on Image Processing (ICIP), vol. 1. IEEE, Sep. 2005, pp.
I–485–8. doi:10.1109/ICIP.2005.1529793

[39] A. Shahbahrami and B. Juurlink, “SIMD architectural enhancements to improve
the performance of the 2D discrete wavelet transform,” in Digital System Design,
Architectures, Methods and Tools (DSD), Aug. 2009, pp. 497–504. doi:10.1109/DSD.
2009.189



REFERENCES 114

[40] R. Kutil, P. Eder, and M. Watzl, “SIMD parallelization of common wavelet filters,”
in Parallel Numerics, 2005, pp. 141–149.

[41] R. Kutil and P. Eder, “Parallelization of wavelet filters using SIMD extensions,”
Parallel Processing Letters, vol. 16, no. 3, pp. 335–349, 2006. doi:10.1142/
S012962640600268X

[42] J. Maly and P. Rajmic, “Lifting-based wavelet transform for images on modern
CPU architectures,” in International Conference on Signals and Electronic Systems
(ICSES), Sep. 2008, pp. 177–180. doi:10.1109/ICSES.2008.4673386

[43] A. Shahbahrami, “Algorithms and architectures for 2D discrete wavelet transform,”
The Journal of Supercomputing, vol. 62, no. 2, pp. 1045–1064, 2012. doi:10.1007/
s11227-012-0790-x

[44] G. Bernabe, J. M. Garcia, and J. Gonzalez, “Reducing 3D fast wavelet transform
execution time using blocking and the streaming SIMD extensions,” Journal of VLSI
signal processing systems for signal, image and video technology, vol. 41, no. 2, pp.
209–223, 2005. doi:10.1007/s11265-005-6651-6

[45] G. Bernabe, R. Fernandez, J. M. Garcia, M. E. Acacio, and J. Gonzalez, “An effi-
cient implementation of a 3D wavelet transform based encoder on hyper-threading
technology,” Parallel Computing, vol. 33, no. 1, pp. 54–72, 2007. doi:10.1016/j.
parco.2006.11.011

[46] O. M. Lopez-Granado, M. O. Martinez-Rach, P. Pinol, M. P. Malumbres, and
J. Oliver, “A fast 3D-DWT video encoder with reduced memory usage suitable for
IPTV,” in International Conference on Multimedia and Expo (ICME). IEEE, Jul.
2010, pp. 1337–1341. doi:10.1109/ICME.2010.5583570

[47] V. Galiano, O. Lopez-Granado, M. P. Malumbres, and H. Migallon, “Multicore-based
3D-DWT video encoder,” EURASIP Journal on Advances in Signal Processing, vol.
2013, no. 1, 2013. doi:10.1186/1687-6180-2013-84

[48] E. Belyaev, K. Egiazarian, and M. Gabbouj, “Low complexity bit-plane entropy
coding for 3-D DWT-based video compression,” in SPIE, vol. 8304, 2012. doi:10.
1117/12.912017

[49] M. E. Angelopoulou, K. Masselos, P. Y. K. Cheung, and Y. Andreopoulos, “Imple-
mentation and comparison of the 5/3 lifting 2D discrete wavelet transform compu-



REFERENCES 115

tation schedules on FPGAs,” Journal of Signal Processing Systems, vol. 51, no. 1,
pp. 3–21, 2008. doi:10.1007/s11265-007-0139-5

[50] C. Zhang, C. Wang, and M. O. Ahmad, “A pipeline VLSI architecture for fast compu-
tation of the 2-D discrete wavelet transform,” Transactions on Circuits and Systems
I, vol. 59, no. 8, pp. 1775–1785, Aug. 2012. doi:10.1109/TCSI.2011.2180432

[51] Y.-H. Seo and D.-W. Kim, “VLSI architecture of line-based lifting wavelet transform
for motion JPEG2000,” Journal of Solid-State Circuits, vol. 42, no. 2, pp. 431–440,
Feb. 2007. doi:10.1109/JSSC.2006.889368

[52] A. Descampe, F. Devaux, G. Rouvroy, B. Macq, and J.-D. Legat, “An efficient FPGA
implementation of a flexible JPEG2000 decoder for digital cinema,” in European
Signal Processing Conference (EUSIPCO), Sep. 2004, pp. 2019–2022.

[53] G. Dillen, B. Georis, J.-D. Legat, and O. Cantineau, “Combined line-based archi-
tecture for the 5-3 and 9-7 wavelet transform of JPEG2000,” Transactions on Cir-
cuits and Systems for Video Technology, vol. 13, no. 9, pp. 944–950, Sep. 2003.
doi:10.1109/TCSVT.2003.816518

[54] C. Tenllado, R. Lario, M. Prieto, and F. Tirado, “The 2D discrete wavelet trans-
form on programmable graphics hardware,” in Visualization, Imaging, and Image
Processing, 9 2004, pp. 808–813.

[55] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, “Parallel implementa-
tion of the 2D discrete wavelet transform on graphics processing units: Filter bank
versus lifting,” IEEE Transactions on Parallel and Distributed Systems, vol. 19,
no. 3, pp. 299–310, 2008. doi:10.1109/TPDS.2007.70716

[56] J. Franco, G. Bernabe, J. Fernandez, and M. E. Acacio, “A parallel implementation
of the 2D wavelet transform using CUDA,” in Parallel, Distributed and Network-
based Processing (PDP), 2 2009, pp. 111–118. doi:10.1109/PDP.2009.40

[57] M. Blazewicz, M. Ciznicki, P. Kopta, K. Kurowski, and P. Lichocki, “Two-
dimensional discrete wavelet transform on large images for hybrid computing ar-
chitectures: GPU and CELL,” in Euro-Par 2011: Parallel Processing Workshops,
ser. Lecture Notes in Computer Science (LNCS). Springer, 2012, vol. 7155, pp.
481–490. doi:10.1007/978-3-642-29737-3_53



REFERENCES 116

[58] V. Galiano, O. Lopez, M. Malumbres, and H. Migallon, “Improving the discrete
wavelet transform computation from multicore to GPU-based algorithms,” in Inter-
national Conference on Computational and Mathematical Methods in Science and
Engineering (CMMSE), 2011, pp. 544–555.

[59] ——, “Parallel strategies for 2D discrete wavelet transform in shared memory sys-
tems and GPUs,” The Journal of Supercomputing, vol. 64, no. 1, pp. 4–16, 2013.
doi:10.1007/s11227-012-0750-5

[60] W. J. van der Laan, J. B. T. M. Roerdink, and A. C. Jalba, “Accelerating wavelet-
based video coding on graphics hardware using CUDA,” in International Symposium
on Image and Signal Processing and Analysis (ISPA), Sep. 2009, pp. 608–613.

[61] W. J. van der Laan, A. C. Jalba, and J. B. T. M. Roerdink, “Accelerating wavelet
lifting on graphics hardware using CUDA,” Transactions on Parallel and Distributed
Systems, vol. 22, no. 1, pp. 132–146, 2011. doi:10.1109/TPDS.2010.143

[62] J. Franco, G. Bernabe, J. Fernandez, and M. Ujaldon, “Parallel 3D fast wavelet
transform on manycore GPUs and multicore CPUs,” Procedia Computer Science,
vol. 1, no. 1, pp. 1101–1110, 2010, ICCS 2010. doi:10.1016/j.procs.2010.04.122

[63] G. Bernabe, G. D. Guerrero, and J. Fernandez, “CUDA and OpenCL implementa-
tions of 3D fast wavelet transform,” in Latin American Symposium on Circuits and
Systems (LASCAS). IEEE, Feb. 2012, pp. 1–4. doi:10.1109/LASCAS.2012.6180318

[64] J. Matela, “GPU-based DWT acceleration for JPEG2000,” in Annual Doctoral Work-
shop on Mathematical and Engineering Methods in Computer Science (MEMICS),
2009, pp. 136–143.

[65] R. Kutil, “Short-vector SIMD parallelization in signal processing,” in Parallel Com-
puting, R. Trobec, M. Vajtersic, and P. Zinterhof, Eds. Springer, 2009, pp. 397–433.
doi:10.1007/978-1-84882-409-6_13

[66] J. Sykora, L. Kohout, R. Bartosinski, L. Kafka, M. Danek, and P. Honzik, “The
architecture and the technology characterization of an FPGA-based customizable
Application-Specific Vector Processor,” in Design and Diagnostics of Electronic Cir-
cuits Systems (DDECS). IEEE, 2012, pp. 62–67. doi:10.1109/DDECS.2012.6219026

[67] J. Sykora, R. Bartosinski, L. Kohout, M. Danek, and P. Honzik, “Reducing in-
struction issue overheads in Application-Specific Vector Processors,” in Euromicro
Conference on Digital System Design (DSD), 2012, pp. 600–607.



REFERENCES 117

[68] R. Bartosinski, M. Danek, J. Sykora, L. Kohout, and P. Honzik, “Foreground detec-
tion and image segmentation in a flexible ASVP platform for FPGAs,” in Design
and Architectures for Signal and Image Processing (DASIP), 2012, pp. 1–2.

[69] ——, “Video surveillance application based on application specific vector processors,”
in Design and Architectures for Signal and Image Processing (DASIP), 2012, pp. 1–8.

[70] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression Fundamentals,
Standards and Practice, ser. The Springer International Series in Engineering and
Computer Science. Springer, 2002.

[71] ——, “JPEG2000: standard for interactive imaging,” Proceedings of the IEEE,
vol. 90, no. 8, pp. 1336–1357, Aug. 2002. doi:10.1109/JPROC.2002.800725

[72] D. S. Taubman, E. Ordentlich, M. Weinberger, and G. Seroussi, “Embedded block
coding in JPEG 2000,” Signal Processing: Image Communication, vol. 17, no. 1, pp.
49–72, 2002. doi:10.1016/S0923-5965(01)00028-5

[73] D. S. Taubman, “Software architectures for JPEG2000,” in International Conference
for Digital Signal Processing (DSP). IEEE, 2002, pp. 197–200.


	Introduction
	Discrete Wavelet Transform
	Lifting Scheme
	2-D Decomposition
	Non-Separable Lifting Scheme
	Capabilities of Lifting Scheme

	Computation Schedules
	Processors
	Field-Programmable Gate Arrays
	Graphics Processing Units

	Lifting Vectorization
	Horizontal Vectorization
	Vertical Vectorization
	Diagonal Vectorization

	Lifting Core
	Core Reorganization
	Treatment of Signal Boundaries
	Lifting Scheme Choice
	Parallel Cores

	Multi-Dimensional Cores
	2-D Core Reorganization
	Parallel 2-D Cores
	Extension to Multiple Dimensions

	Evaluation
	Image Processing
	JPEG 2000
	3-D Decomposition
	Parallel Processing on GPU
	FPGA Devices
	Vectorization
	Discussion

	Conclusions

