
Statistical Language Models Based on Neural
Networks

Tomáš Mikolov

Speech@FIT, Brno University of Technology, Czech Republic

Google, Mountain View, 2nd April 2012

1 / 59

Overview

Motivation
Neural Network Based Language Models
Training Algorithm

Recurrent Neural Network
Classes
Maximum Entropy Language Model

Empirical Results:
Penn Treebank Corpus
Wall Street Journal Speech Recognition
NIST RT04 Broadcast News Speech Recognition

Generating Text with RNNs
Additional Experiments
Conclusion: Finally Beyond N-grams?

2 / 59

Motivation

Statistical language models assign probabilities to word
sequences
For a good model of language, meaningful sentences
should be more likely than the ambiguous ones

Language modeling is an artificial intelligence problem

3 / 59

Motivation - Turing Test

The famous Turing test can be in principle seen as a
language modeling problem
Given the history of conversation, a good language model
should assign high probability to correct responses

Example:
P (Monday|What day of week is today?) =?
P (red|What is the color of roses?) =?
or more as a language modeling problem:
P (red|The color of roses is) =?

4 / 59

Motivation - N-grams

How to obtain the ”good language model”?

Simple solution - N-grams: P (w|h) = C(h,w)
C(h)

We count how many times the word w appeared in the
context h, and normalize by all observations of h

5 / 59

Motivation - Limitations of N-grams

Many histories h are similar, but n-grams assume exact
match of h
Practically, n-grams have problems with representing
patterns over more than a few words
With increasing order of the n-gram model, the number of
possible parameters increases exponentially

There will be never enough of the training data to estimate
parameters of high-order N-gram models

6 / 59

Neural Network Based Language Models

The sparse history h is projected into some continuous
low-dimensional space, where similar histories get
clustered

Thanks to parameter sharing among similar histories, the
model is more robust: less parameters have to be
estimated from the training data

7 / 59

Model Description - Feedforward NNLM

Figure: Feedforward neural network based LM used by Y. Bengio and
H. Schwenk

8 / 59

Model description - recurrent NNLM

U V

y(t)

s(t-1)

s(t)

w(t)

W

Input layer w and output layer y have the same dimensionality as the
vocabulary (10K - 200K)
Hidden layer s is orders of magnitude smaller (50 - 1000 neurons)
U is the matrix of weights between input and hidden layer, V is the
matrix of weights between hidden and output layer
Without the recurrent weights W, this model would be a bigram neural
network language model

9 / 59

Model Description - Recurrent NNLM

The output values from neurons in the hidden and output layers
are computed as follows:

s(t) = f (Uw(t) +Ws(t−1)) (1)

y(t) = g (Vs(t)) , (2)

where f(z) and g(z) are sigmoid and softmax activation
functions (the softmax function in the output layer is used to
ensure that the outputs form a valid probability distribution, i.e.
all outputs are greater than 0 and their sum is 1):

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k e

zk
(3)

10 / 59

Training of RNNLM

The training is performed using Stochastic Gradient
Descent (SGD)
We go through all the training data iteratively, and update
the weight matrices U, V and W online (after processing
every word)
Training is performed in several epochs (usually 5-10)

11 / 59

Training of RNNLM

Gradient of the error vector in the output layer eo(t) is
computed using a cross entropy criterion:

eo(t) = d(t)− y(t) (4)

where d(t) is a target vector that represents the word w(t+ 1)
(encoded as 1-of-V vector).

12 / 59

Training of RNNLM

Weights V between the hidden layer s(t) and the output layer
y(t) are updated as

V(t+1) = V(t) + s(t)eo(t)
Tα, (5)

where α is the learning rate.

13 / 59

Training of RNNLM

Next, gradients of errors are propagated from the output layer
to the hidden layer

eh(t) = dh
(
eo(t)

TV, t
)
, (6)

where the error vector is obtained using function dh() that is
applied element-wise

dhj(x, t) = xsj(t)(1− sj(t)). (7)

14 / 59

Training of RNNLM

Weights U between the input layer w(t) and the hidden layer
s(t) are then updated as

U(t+1) = U(t) +w(t)eh(t)
Tα. (8)

Note that only one neuron is active at a given time in the input
vector w(t). As can be seen from the equation 8, the weight
change for neurons with zero activation is none, thus the
computation can be speeded up by updating weights that
correspond just to the active input neuron.

15 / 59

Training of RNNLM - Backpropagation Through Time

The recurrent weights W are updated by unfolding them in
time and training the network as a deep feedforward neural
network.
The process of propagating errors back through the
recurrent weights is called Backpropagation Through Time
(BPTT).

16 / 59

Training of RNNLM - Backpropagation Through Time

U

s(t-3)

w(t-2)

W

U

U

y(t)

s(t-1)

s(t)

w(t)

s(t-2)

w(t-1)

W

W

V

Figure: Recurrent neural network unfolded as a deep feedforward
network, here for 3 time steps back in time.

17 / 59

Training of RNNLM - Backpropagation Through Time

Error propagation is done recursively as follows (note that the
algorithm requires the states of the hidden layer from the
previous time steps to be stored):

eh(t−τ−1) = dh
(
eh(t−τ)TW, t−τ−1

)
. (9)

The unfolding can be applied for as many time steps as many
training examples were already seen, however the error
gradients quickly vanish as they get backpropagated in time (in
rare cases the errors can explode), so several steps of
unfolding are sufficient (this is sometimes referred to as
truncated BPTT).

18 / 59

Training of RNNLM - Backpropagation Through Time

The recurrent weights W are updated as

W(t+1) = W(t) +

T∑
z=0

s(t−z−1)eh(t−z)Tα. (10)

Note that the matrix W is changed in one update at once, and
not during backpropagation of errors.

It is more computationally efficient to unfold the network after
processing several training examples, so that the training
complexity does not increase linearly with the number of time
steps T for which the network is unfolded in time.

19 / 59

Training of RNNLM - Backpropagation Through Time

U

W

U

U

V

V

V

w(t-2)

y(t-1)

y(t-2)

y(t-3)

s(t-3)

y(t)

s(t)

w(t)

V

W

W
w(t-1)

s(t-1)

s(t-2)

Figure: Example of batch mode training. Red arrows indicate how the
gradients are propagated through the unfolded recurrent neural network.

20 / 59

Extensions: Classes

Computing full probability distribution over all V words can
be very complex, as V can easily be more than 100K.
We can instead do:

Assign all words from V to a single class
Compute probability distribution over all classes
Compute probability distribution over words that belong to
the specific class

Assignment of words to classes can be trivial: we can use
frequency binning.

21 / 59

Extensions: Classes

U

y(t)

s(t-1)

s(t)

w(t)

W X

c(t)

V

Figure: Factorization of the output layer, c(t) is the class layer.

22 / 59

Extensions: Classes

By using simple classes, we can achieve speedups on
large data sets more than 100 times.
We lose a bit of accuracy of the model (usually 5-10% in
perplexity).

23 / 59

Joint Training With Maximum Entropy Model

With increasing amount of the training data, we need to
increase size of the hidden layer to obtain good
performance (will be shown later).
By joint training of RNNLM with a maximum entropy model,
we can afford to have much smaller hidden layers.
The ME model can be seen as a direct weight matrix
between the input and the output layers (for the bigram
case).

The jointly trained RNN and ME models is further denoted
as the RNNME architecture.

24 / 59

Hash Based Maximum Entropy Model

Assume a vocabulary V with three words, V=(ONE, TWO,
THREE); maximum entropy model with unigram features:

ONE
TWO
THREE

1
a

a

a

1

3

2

P(w(t)|*)

Maximum entropy model with bigram features B:

ONE
TWO
THREE

ONE
TWO
THREE

w(t-1) P(w(t)|w(t-1))

B

25 / 59

Hash Based Maximum Entropy Model

Maximum entropy model with trigram features C:

ONE
TWO
THREE

ONE, ONE
ONE, TWO
ONE, THREE
TWO, ONE
TWO, TWO
TWO, THREE
THREE, ONE
THREE, TWO
THREE, THREE

C

w(t-2), w(t-1)

P(w(t)|w(t-2), w(t-1))

26 / 59

Hash Based Maximum Entropy Model

A maximum entropy model with full n-gram features has
V n parameters.
To reduce memory complexity, we can map the n− 1
dimensional histories to a single dimensional array using a
hash function.
The frequent features will dominate the values in the hash
array.
With small hash, the model will behave as pruned n-gram
model.

Such model can be easily trained by SGD, thus we can
train it as a part of the neural net LM.

27 / 59

Empirical Results

Penn Treebank
Comparison of advanced language modeling techniques
Combination

Wall Street Journal
JHU setup
Kaldi setup

NIST RT04 Broadcast News speech recognition
Additional experiments: machine translation, text
compression

28 / 59

Penn Treebank

We have used the Penn Treebank Corpus, with the same
vocabulary and data division as other researchers:

Sections 0-20: training data, 930K tokens
Sections 21-22: validation data, 74K tokens
Sections 23-24: test data, 82K tokens
Vocabulary size: 10K

29 / 59

Penn Treebank - Comparison

Model Perplexity Entropy reduction
over baseline

individual +KN5 +KN5+cache KN5 KN5+cache
3-gram, Good-Turing smoothing (GT3) 165.2 - - - -
5-gram, Good-Turing smoothing (GT5) 162.3 - - - -
3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -
5-gram, Kneser-Ney smoothing (KN5) 141.2 - - - -
5-gram, Kneser-Ney smoothing + cache 125.7 - - - -
PAQ8o10t 131.1 - - - -
Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 114.4 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM 140.2 116.7 106.6 3.8% 3.4%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Dynamically evaluated RNNLM 123.2 102.7 98.0 6.4% 5.1%
Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0%
Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9%

30 / 59

Penn Treebank - Comparison

Model Perplexity Entropy reduction
over baseline

individual +KN5 +KN5+cache KN5 KN5+cache
3-gram, Good-Turing smoothing (GT3) 165.2 - - - -
5-gram, Good-Turing smoothing (GT5) 162.3 - - - -
3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -
5-gram, Kneser-Ney smoothing (KN5) 141.2 - - - -
5-gram, Kneser-Ney smoothing + cache 125.7 - - - -
PAQ8o10t 131.1 - - - -
Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 114.4 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM 140.2 116.7 106.6 3.8% 3.4%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Dynamically evaluated RNNLM 123.2 102.7 98.0 6.4% 5.1%
Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0%
Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9%

31 / 59

Penn Treebank - Comparison

Model Perplexity Entropy reduction
over baseline

individual +KN5 +KN5+cache KN5 KN5+cache
3-gram, Good-Turing smoothing (GT3) 165.2 - - - -
5-gram, Good-Turing smoothing (GT5) 162.3 - - - -
3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -
5-gram, Kneser-Ney smoothing (KN5) 141.2 - - - -
5-gram, Kneser-Ney smoothing + cache 125.7 - - - -
PAQ8o10t 131.1 - - - -
Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 114.4 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM 140.2 116.7 106.6 3.8% 3.4%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Dynamically evaluated RNNLM 123.2 102.7 98.0 6.4% 5.1%
Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0%
Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9%

32 / 59

Penn Treebank - Comparison

Model Perplexity Entropy reduction
over baseline

individual +KN5 +KN5+cache KN5 KN5+cache
3-gram, Good-Turing smoothing (GT3) 165.2 - - - -
5-gram, Good-Turing smoothing (GT5) 162.3 - - - -
3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -
5-gram, Kneser-Ney smoothing (KN5) 141.2 - - - -
5-gram, Kneser-Ney smoothing + cache 125.7 - - - -
PAQ8o10t 131.1 - - - -
Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 114.4 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM 140.2 116.7 106.6 3.8% 3.4%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Dynamically evaluated RNNLM 123.2 102.7 98.0 6.4% 5.1%
Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0%
Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9%

33 / 59

Penn Treebank - Combination

Model Weight PPL
3-gram with Good-Turing smoothing (GT3) 0 165.2
5-gram with Kneser-Ney smoothing (KN5) 0 141.2
5-gram with Kneser-Ney smoothing + cache 0.0792 125.7
Maximum entropy model 0 142.1
Random clusterings LM 0 170.1
Random forest LM 0.1057 131.9
Structured LM 0.0196 146.1
Within and across sentence boundary LM 0.0838 116.6
Log-bilinear LM 0 144.5
Feedforward NNLM 0 140.2
Syntactical NNLM 0.0828 131.3
Combination of static RNNLMs 0.3231 102.1
Combination of adaptive RNNLMs 0.3058 101.0
ALL 1 83.5

34 / 59

Combination of Techniques (Joshua Goodman, 2001)

Figure from ”A bit of progress in language modeling, extended
version” (Goodman, 2001)

35 / 59

Empirical Evaluation - JHU WSJ Setup Description

Setup from Johns Hopkins University (results are
comparable to other techniques)
Wall Street Journal: read speech, very clean (easy task for
language modeling experiments)
Simple decoder (not state of the art)
36M training tokens, 200K vocabulary
WER results obtained by 100-best list rescoring

36 / 59

Improvements with Increasing Amount of Data

10
5

10
6

10
7

10
8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

Training tokens

E
nt

ro
py

 p
er

 w
or

d
on

 th
e

W
S

J
te

st
 d

at
a

KN5
KN5+RNN

The improvement obtained from a single RNN model over the best
backoff model increases with more data!
However, it is also needed to increase size of the hidden layer with
more training data.

37 / 59

Improvements with Increasing Amount of Data

words PPL WER Improvement[%]
KN5 +RNN KN5 +RNN Entropy WER

223K 415 333 - - 3.7 -
675K 390 298 15.6 13.9 4.5 10.9
2233K 331 251 14.9 12.9 4.8 13.4
6.4M 283 200 13.6 11.7 6.1 14.0
36M 212 133 12.2 10.2 8.7 16.4

38 / 59

Comparison of Techniques - WSJ, JHU Setup

Model Dev WER[%] Eval WER[%]
Baseline - KN5 12.2 17.2
Discriminative LM 11.5 16.9
Joint structured LM - 16.7
Static RNN 10.3 14.5
Static RNN + KN 10.2 14.5
Adapted RNN 9.7 14.2
Adapted RNN + KN 9.7 14.2
3 combined RNN LMs 9.5 13.9

39 / 59

Empirical evaluation - Kaldi WSJ setup description

The same test sets as JHU setup, but lattices obtained
with Kaldi speech recognition toolkit
N-best lists were produced by Stefan Kombrink last
summer, currently the best Kaldi baseline is much better
37M training tokens, 20K vocabulary
WER results obtained by 1000-best list rescoring
results obtained with RNNME models, with up to 4-gram
features and size of hash 2G parameters

Better repeatability of experiments than with the JHU setup

40 / 59

Empirical evaluation - Kaldi WSJ setup

Model Perplexity WER [%]
heldout Eval 92 Eval 92 Eval 93

GT2 167 209 14.6 19.7
GT3 105 147 13.0 17.6
KN5 87 131 12.5 16.6
KN5 (no count cutoffs) 80 122 12.0 16.6
RNNME-0 90 129 12.4 17.3
RNNME-10 81 116 11.9 16.3
RNNME-80 70 100 10.4 14.9
RNNME-160 65 95 10.2 14.5
RNNME-320 62 93 9.8 14.2
RNNME-480 59 90 10.2 13.7
RNNME-640 59 89 9.6 14.4
combination of RNNME models - - 9.24 13.23
+ unsupervised adaptation - - 9.15 13.11

Results improve with larger hidden layer.

41 / 59

Empirical evaluation - Kaldi WSJ setup

Model Perplexity WER [%]
heldout Eval 92 Eval 92 Eval 93

GT2 167 209 14.6 19.7
GT3 105 147 13.0 17.6
KN5 87 131 12.5 16.6
KN5 (no count cutoffs) 80 122 12.0 16.6
RNNME-0 90 129 12.4 17.3
RNNME-10 81 116 11.9 16.3
RNNME-80 70 100 10.4 14.9
RNNME-160 65 95 10.2 14.5
RNNME-320 62 93 9.8 14.2
RNNME-480 59 90 10.2 13.7
RNNME-640 59 89 9.6 14.4
combination of RNNME models - - 9.24 13.23
+ unsupervised adaptation - - 9.15 13.11

Results improve with larger hidden layer.

42 / 59

Evaluation - Broadcast News Speech Recognition

NIST RT04 Broadcast News speech recognition task
The baseline system is state-of-the-art setup from IBM
based on Attila decoder: very well tuned, hard task
87K vocabulary size, 400M training tokens (10x more than
WSJ setups)
It has been reported by IBM that state of the art LM on this
setup is a regularized class-based maxent model (called
”model M”)
NNLMs have been reported to perform about the same as
model M (about 0.6% absoulte WER reduction), but are
computationally complex

We tried class based RNN and RNNME models...

43 / 59

Evaluation - Broadcast News Speech Recognition

Model WER[%]
Single Interpolated

KN4 (baseline) 13.11 13.11
model M 13.1 12.49
RNN-40 13.36 12.90
RNN-80 12.98 12.70
RNN-160 12.69 12.58
RNN-320 12.38 12.31
RNN-480 12.21 12.04
RNN-640 12.05 12.00
RNNME-0 13.21 12.99
RNNME-40 12.42 12.37
RNNME-80 12.35 12.22
RNNME-160 12.17 12.16
RNNME-320 11.91 11.90
3xRNN - 11.70

Word error rate on the NIST RT04 evaluation set
Still plenty of space for improvements! Adaptation, bigger models,
combination of RNN and RNNME, ...
Another myth broken: maxent model (aka ”model M”) is not more
powerful than NNLMs!

44 / 59

Empirical Evaluation - Broadcast News Speech
Recognition

10
1

10
2

10
3

11.5

12

12.5

13

13.5

14

14.5

Hidden layer size

W
E

R
 o

n
ev

al
 [%

]

RNN
RNN+KN4
KN4
RNNME
RNNME+KN4

The improvements increase with more neurons in the hidden layer

45 / 59

Empirical Evaluation - Broadcast News Speech
Recognition

10
1

10
2

10
3

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Hidden layer size

E
nt

ro
py

 r
ed

uc
tio

n
pe

r
w

or
d

ov
er

 K
N

4
[b

its
]

RNN + KN4
RNNME+KN4

Comparison of entropy improvements obtained from RNN and RNNME
models over KN4 model

46 / 59

Empirical Evaluation - Entropy

Additional experiments to compare RNN and RNNME:
Randomized order of sentences in the training data (to
prevent adaptation)
Comparison of entropy reductions over KN 5-gram model
with no count cutoffs and no pruning

47 / 59

Empirical Evaluation - Entropy

10
5

10
6

10
7

10
8

10
9

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Training tokens

E
nt

ro
py

 r
ed

uc
tio

n
ov

er
 K

N
5

RNN-20
RNNME-20

If hidden layer size is kept constant in the RNN model, the
improvements seem to vanish with more data
RNNME seems to be useful at large data sets

48 / 59

Empirical Evaluation - Entropy

10
5

10
6

10
7

10
8

10
9

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Training tokens

E
nt

ro
py

 r
ed

uc
tio

n
ov

er
 K

N
5

RNN-20
RNNME-20
RNN-80
RNNME-80

49 / 59

Additional Experiments: Machine Translation

Machine translation: very similar task as speech
recognition (from the language modeling point of view)
I performed the following experiments when visiting JHU at
2010
Basic RNN models were used (no classes, no BPTT, no
ME)
Baseline systems were trained by Zhifei Li and Ziyuan
Wang

50 / 59

Additional Experiments: Machine Translation

Table: BLEU on IWSLT 2005 Machine Translation task, Chinese to
English.

Model BLEU
baseline (n-gram) 48.7
300-best rescoring with RNNs 51.2

About 400K training tokens, small task

51 / 59

Additional Experiments: Machine Translation

Table: BLEU and NIST score on NIST MT 05 Machine Translation
task, Chinese to English.

Model BLEU NIST
baseline (n-gram) 33.0 9.03
1000-best rescoring with RNNs 34.7 9.19

RNNs were trained on subset of the training data (about 17.5M training
tokens), with limited vocabulary

52 / 59

Additional Experiments: Text Compression

Compressor Size [MB] Bits per character
original text file 1696.7 8.0
gzip -9 576.2 2.72
RNNME-0 273.0 1.29
PAQ8o10t -8 272.1 1.28
RNNME-40 263.5 1.24
RNNME-80 258.7 1.22
RNNME-200 256.5 1.21

PAQ8o10t is state of the art compression program
Data compressor = Predictor + Arithmetic coding

Task: compression of normalized text data that were used in the NIST
RT04 experiments
Achieved entropy of English text 1.21 bpc is already lower than the
upper bound 1.3 bpc estimated by Shannon
Several tricks were used to obtain the results: multiple models with
different learning rate, skip-gram features

53 / 59

Conclusion: Finally Beyond N-grams?

Extensive experiments confirm that n-grams can be
significantly beaten at many interesting tasks:

Penn Treebank: perplexity reduced from 141 to 79
WSJ: 21% - 23% relative reduction of WER
Broadcast News Speech Recognition: 11% relative
reduction of WER
MT: 1.7 - 2.5 BLEU points
Text compression

Experiments can be easily repeated using freely available
RNNLM tool!
But are we any closer to ”intelligent language models”?

54 / 59

Data sampled from 4-gram backoff model

OR STUDENT’S IS FROM TEETH PROSECUTORS DO FILLED WITH
HER SOME BACKGROUND ON WHAT WAS GOING ON HERE
ALUMINUM CANS OF PEACE
PIPER SWEAT COLONEL SAYING HAVE ALREADY MADE LAW THAT
WOULD PREVENT THE BACTERIA
DOWN FOR THE MOST OF IT IN NINETEEN SEVENTY EIGHT WHICH
WAS ONE OF A NUMBER OF ISSUES INCLUDING CIVIL SUIT BY
THIS TIME NEXT YEAR
CRYSTAL
FIRMLY AS A HERO OF MINE A PREVIEW THAT
THOMAS SEVENTY BODIES AND ASKING QUESTIONS MAYBE
ATTORNEY’S OFFICE THEATERS CUT ACROSS THE ELEVENTH AND
SUPPORT THEM WITH ELLEN WISEST PULLING DATA GATHERING IN
RESPONSE TO AN UNMITIGATED DISPOSITION CONTRACTORS AND
AND I’M VERY SORRY FOR THE DEATH OF HER SPOKESWOMAN
ONIONS THE FRESH CORN THANKSGIVING CONTROL WHEN I TALKED
TO SAID THAT AND THEY THINK WHAT AT LEAST UNTIL AFTER
I’M UPSET SO WE INCORPORATED WITH DROPPING EXTRAORDINARY
PHONED

55 / 59

Data sampled from RNN model

THANKS FOR COMING IN NEXT IN A COUPLE OF MINUTES
WHEN WE TAKE A LOOK AT OUR ACCOMPANYING STORY IMAGE
GUIDE WHY ARE ANY OF THOSE DETAILS BEING HEARD IN LONDON
BUT DEFENSE ATTORNEYS SAY THEY THOUGHT THE CONTACT WAS
NOT AIMED DAMAGING AT ANY SUSPECTS
THE UNITED NATIONS SECURITY COUNCIL IS NAMED TO WITHIN
TWO MOST OF IRAQI ELECTION OFFICIALS
IT IS THE MINIMUM TIME A TOTAL OF ONE DETERMINED TO
APPLY LIMITS TO THE FOREIGN MINISTERS WHO HAD MORE POWER
AND NOW THAN ANY MAN WOULD NAME A CABINET ORAL
FIND OUT HOW IMPORTANT HIS DIFFERENT RECOMMENDATION IS
TO MAKE WHAT THIS WHITE HOUSE WILL WILL TO BE ADDRESSED
ELAINE MATHEWS IS A POLITICAL CORRESPONDENT FOR THE
PRESIDENT’S FAMILY WHO FILED A SIMILAR NATIONWIDE
OPERATION THAT CAME IN A DEAL
THE WEIGHT OF THE CLINTON CERTAINLY OUTRAGED ALL
PALESTINIANS IN THE COUNTRY IS DESIGNED TO REVIVE THE
ISRAELI TALKS

56 / 59

WSJ-Kaldi rescoring

5-gram: IN TOKYO FOREIGN EXCHANGE TRADING YESTERDAY THE UNIT INCREASED AGAINST THE
DOLLAR
RNNLM: IN TOKYO FOREIGN EXCHANGE TRADING YESTERDAY THE YEN INCREASED AGAINST THE
DOLLAR

5-gram: SOME CURRENCY TRADERS SAID THE UPWARD REVALUATION OF THE GERMAN MARK
WASN’T BIG ENOUGH AND THAT THE MARKET MAY CONTINUE TO RISE
RNNLM: SOME CURRENCY TRADERS SAID THE UPWARD REVALUATION OF THE GERMAN MARKET
WASN’T BIG ENOUGH AND THAT THE MARKET MAY CONTINUE TO RISE

5-gram: MEANWHILE QUESTIONS REMAIN WITHIN THE E. M. S. WEATHERED YESTERDAY’S
REALIGNMENT WAS ONLY A TEMPORARY SOLUTION
RNNLM: MEANWHILE QUESTIONS REMAIN WITHIN THE E. M. S. WHETHER YESTERDAY’S REALIGNMENT
WAS ONLY A TEMPORARY SOLUTION

5-gram: MR. PARNES FOLEY ALSO FOR THE FIRST TIME THE WIND WITH SUEZ’S PLANS FOR
GENERALE DE BELGIQUE’S WAR
RNNLM: MR. PARNES SO LATE ALSO FOR THE FIRST TIME ALIGNED WITH SUEZ’S PLANS FOR
GENERALE DE BELGIQUE’S WAR

5-gram: HE SAID THE GROUP WAS MARKET IN ITS STRUCTURE AND NO ONE HAD LEADERSHIP
RNNLM: HE SAID THE GROUP WAS ARCANE IN ITS STRUCTURE AND NO ONE HAD LEADERSHIP

57 / 59

Conclusion: Finally Beyond N-grams?

RNN LMs can generate much more meaningful text than
n-gram models trained on the same data
Many novel but meaningful sequences of words were
generated

RNN LMs are clearly better at modeling the language than
n-grams
However, many simple patterns in the language cannot be
efficiently described even by RNNs...

58 / 59

Conclusion: Finally Beyond N-grams?

Thanks to Yoshua Bengio, Lukas Burget, Sanjeev
Khudanpur and Daniel Povey for help with the theory
Thanks to Anoop Deoras, Stefan Kombrink, Hai Son Le
and Ilya Sutskever for collaboration with the experiments

Thanks for attention!

59 / 59

