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1 Introduction
This technical report is created as a complement to the paper [1]. The reader can find here all the
derivations of the update formulas shown in the mentioned paper.

For the sake of completeness, we re-introduce in section 2 all the variables used in the technical
report. Still, for a proper description and definition of all these variables, we refer the reader to
the original paper.

2 Definition of variables
Let X = {x1,x2, ...,xT } be the sequence of observed x-vectors and Z = {z1, z2, ..., zT } the corre-
sponding sequence of discrete latent variables defining the hard alignment of x-vectors to HMM
states. In our notation, zt = s indicates that the speaker (HMM state) s is responsible for generat-
ing observation xt. Let Y = {y1,y2, ...,yS} be the set of all the speaker-specific latent variables.

The x-vectors that are used as input for the diarization algorithm are obtained as

X = (X̂−m)E (1)

where E is the transformation matrix which transforms the x-vectors into the desired space. This
matrix can be obtained by solving the standard generalized eigen-value problem

ΣbE = ΣwEΦ (2)

where E is the matrix of eigen-vectors and Φ is the diagonal matrix of eigen-values, which is also
the between-speaker covariance matrix in the transformed space.

The speaker-specific means are:
p(ms) = N (ms; 0,Φ). (3)

For convenience we re-parametrize the speaker mean as

ms = Vys, (4)

where diagonal matrix V = Φ
1
2 and ys is a standard normal distributed random variable

p(ys) = N (ys; 0, I). (5)

The speaker-specific distribution of x-vectors is

p(xt|ys) = N (xt; Vys, I), (6)

where I is identity matrix.

From the HMM model, state-specific distributions:

p(xt|zt = s) = p(xt|s) = p(xt|ys) (7)
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Transition probabilities:
p(zt = s|zt−1 = s′) = p(s|s′) (8)

p(s|s′) = (1− Ploop)πs + δ(s = s′)Ploop (9)

3 Inference
The joint probability distribution of all the random variables is:

p(X,Z,Y) = p(X|Z,Y)p(Z)p(Y) (10)

=
∏
t

p (xt|zt)
∏
t

p (zt|zt−1)
∏
s

p (ys) ,

We will consider the following factorization for the approximate variational posteriors of the hidden
variables (mean field approximation):

q(Z,Y) = q(Z)q(Y). (11)

The evidence lower bound objective (ELBO) is defined as

L (q(Y,Z)) =Eq(Y,Z)

{
ln

(
p(X,Y,Z)

q(Y,Z)

)}
. (12)

Using the factorization (11), the ELBO can be split into three terms

L (q(Y,Z)) = Eq(Y,Z) [ln p(X|Y,Z)] + Eq(Y)

[
ln
p(Y)

q(Y)

]
+ Eq(Z)

[
ln
p(Z)

q(Z)

]
, (13)

We modify the ELBO by scaling the first two terms by constant factors FA and FB .

L̂ (q(Y,Z)) = FAEq(Y,Z) [ln p(X|Y,Z)] + FBEq(Y)

[
ln
p(Y)

q(Y)

]
+ Eq(Z)

[
ln
p(Z)

q(Z)

]
, (14)

3.1 Useful quantities
The speaker-specific log likelihoods are:

ln p(xt|ys) = lnN (xt; Vys, I)

= ln
1

(2π)
D
2

− 1

2
(xt −Vys)

2

=−D
2

ln 2π − 1

2
xtx

T
t︸ ︷︷ ︸

G(xt)

+yT
s VTxt︸ ︷︷ ︸

ρt

−1

2
tr

ysy
T
s VTV︸ ︷︷ ︸

Φ


=G(xt) + yT

s ρt −
1

2
tr
(
ysy

T
s Φ
)

(15)

3.2 Updating q(Y)

To obtain q(Y) we maximize the modified ELBO w.r.t. q(Y) (given fixed q(Z)). To do so, we
construct the corresponding Lagrangian and set its functional derivative w.r.t. q(Y) equal to zero:

∂

∂q(Y)

[
L̂ (q (Y,Z)) +λ

(∫
q (Y) dY − 1

)]
= 0

∂L̂ (q(Y,Z))

∂q(Y)
+ λ = 0

(16)

Substituting eq. 14 gives us:

∂L̂ (q(Y,Z))

∂q(Y)
=

∂

∂q(Y)

(
FAEq(Y),q(Z) [ln p(X|Y,Z)] + FBEq(Y)

[
ln
p(Y)

q(Y)

])
=FAEq(Z) [ln p(X|Y,Z)] + FB ln p(Y)− FB (ln q(Y) + 1)

(17)

2



Substituting in 16 and solving for q(Y) we obtain:

ln q(Y) =
FA

FB
Eq(Z) [ln p(X|Y,Z)] + ln p(Y) + const. (18)

We derive:

ln q(Y) =
FA

FB
Eq(Z) [ln p(X|Y,Z)] + ln p(Y) + const. (19)

ln q(Y) =
FA

FB
Eq(Z)

[∑
t

∑
s

ln p(xt|zt = s)

]
+
∑
s

ln p(ys)+const. (20)

E[a+ b] =E[a] + E[b], therefore (21)

ln q(Y) =
∑
s

FA

FB
Eq(Z)

[∑
t

ln p(xt|zt = s)

]
+
∑
s

ln p(ys)+const. (22)

where we can see that we obtain the induced factorization

ln q(Y) =
∑
s

ln q(ys), (23)

We can then derive the update formula for each speaker model as follows:

ln q(ys) =
FA

FB
Eq(Z)

[∑
t

ln p(xt|zt = s)

]
+ ln p(ys)+const.

=
FA

FB

∑
t

γts ln p(xt|s) + ln p(ys) + const.

=
FA

FB

∑
t

γts

[
yT
s ρt −

1

2
tr
(
ysy

T
s Φ
)]
− 1

2
yT
s ys + const.

=
FA

FB

[∑
t

γtsρ
T
t

]
ys −

1

2
tr

([
FA

FB

(∑
t

γts

)
Φ + I

]
ysy

T
s

)
+ const.,

(24)

The completion of squares (see A.1.4 in [2]) gives us:

q∗(ys) = N
(
ys|αs,L

−1
s

)
(25)

which are Gaussians with the mean vector and precision matrix

αs =
FA

FB
L−1s

∑
t

γtsρt Ls = I +
FA

FB

(∑
t

γts

)
Φ. (26)

3.3 Updating q(Z)

To maximize the modified ELBO w.r.t. q(Z) (given fixed q(Y)), we solve an equation similar
to (16), where symbols Y and Z are exchanged.

∂

∂q(Z)

[
L̂ (q (Y,Z)) +λ

(∫
q (Z) dZ− 1

)]
= 0

∂L̂ (q(Y,Z))

∂q(Z)
+ λ = 0

(27)

This time, solving for q(Z) leads to

∂L̂ (q(Y,Z))

∂q(Z)
=

∂

∂q(Z)

(
FAEq(Y),q(Z) [ln p(X|Y,Z)] + Eq(Z)

[
ln
p(Z)

q(Z)

])
= FAEq(Y) [ln p(X|Y,Z)] + ln p(Z)− (ln q(Z) + 1)

(28)
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ln q(Z) = FAEq(Y) [ln p(X|Y,Z)] + ln p(Z) + const.

= FAEq(Y)

[∑
t

ln p(xt|zt)

]
+ ln p(Z) + const.

=
∑
t

ln p(xt|zt) + ln p(Z) + const.,

(29)

where p(xt|zt = s) is defined (using (15) and (25)) as:

Eq(Y) [FA ln p(xt|s)] = Eq(ys) [FA ln p(xt|s)]

= FA

[
αT

s ρt−
1

2
tr
(
Φ
[
L−1s +αsα

T
s

])
+G(xt)

]
= ln p(xt|s)

(30)

3.4 The lower bound
Let us repeat here the expression for the ELBO eq. 14:

L̂ (q(X,Y)) = FAEq(Y,Z) [ln p(X|Y,Z)] + FBEq(Y)

[
ln
p(Y)

q(Y)

]
+ Eq(Z)

[
ln
p(Z)

q(Z)

]
,

The first term of the modified ELBO (14) can be evaluated (using (30)) as

FAEq(Y,Z) [ln p(X|Y,Z)] =

=FAEq(Y,Z)

[∑
t

ln p(xt|zt = s)

]

=FAEq(Y)

[∑
t

∑
s

γts

(
G(xt) + yT

s ρt −
1

2
tr
(
ysy

T
s Φ
))]

=FA

[∑
t

∑
s

γts

(
G(xt) + Eq(Y)

[
yT
s

]
ρt −

1

2
tr
(
Eq(Y)

[
ysy

T
s

]
Φ
))]

=
∑
t

∑
s

γts ln p(xt|s)

(31)

Using the factorization (22), the second term of the ELBO (14) (excluding the scalar FB) can be
evaluated as follows. First, the expectation of p(Y)

Eq(Y) [ln p(Y)] =
∑
s

{
−1

2
ln(2π) + Eq(Y)

[
−1

2
yT
s ys

]}
=
∑
s

{
−1

2
ln(2π)− 1

2
tr
(
L−1s + αsα

T
s

)} (32)
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And the expectation of the log of the approximate posterior q(Y) is:

Eq(Y) [− ln q(Y)] =
∑
s

Eq(Y)

[
1

2

(
ln(2π)+ ln |L−1

s |+(ys−αs)TLs(ys −αs)
)]

=
∑
s

Eq(Y)

1

2
ln(2π) +

1

2
ln |L−1

s |︸ ︷︷ ︸
Cs

+
1

2
(ys−αs)TLs(ys −αs)


=
∑
s

{
Cs +

1

2
Eq(Y)

[
tr
(
Ls(ysy

T
s − 2αsy

T
s + αsαs

T
)]}

using the expression from [2] 6.2.2, for the expectation E[ysy
T
s ]:

=
∑
s

{
Cs +

1

2
tr(Ls

[
L−1s + αsα

T
s

]
− Lsαsαs

T )

}
=
∑
s

{
Cs +

1

2
tr(I)

}
=
∑
s

{
1

2
ln(2π) +

1

2
ln |L−1

s |+
R

2

}

(33)

Therefore

FBEq(Y)

[
ln
p(Y)

q(Y)

]
= −FB

∑
s

DKL(q(ys)‖p(ys))

=
∑
s

FB

2

(
R+ ln |L−1

s |−tr(L−1s )−αT
s αs

)
,

(34)

Finally, the third term in (14) is the negative KL divergence

Eq(Z)

[
ln
p(Z)

q(Z)

]
=

S∑
s=1

γ1s ln
πs
γ1s

+

T∑
t=2

S∑
m=1

S∑
n=1

ξtmn ln
p(n|m)

q(zt=n|zt−1=m)
, (35)

where the approximate marginal probability of transitioning from state m to state n at time t

ξtmn = q(zt−1 = m, zt = n) =
A(t− 1,m)p̄(xt|n)p(n|m)B(t, n)

p(X)
(36)

where A(t− 1,m), B(t, n) and p(X) can be estimated using the forward-backward algorithm (see
equations (19)-(22) in the original paper [1]), p(xt|n) can be estimated using (30), p(n|m) is the
transition probability as defined in (9) and the approximate posterior of transitioning to state n
at time t given previous state m

q(zt=n|zt−1=m) =
ξtmn∑
s ξtms

. (37)

It can also be seen that the separate expectations can be defined as:

Eq(Z) [ln q(Z)] =

S∑
s=1

γ1s ln γ1s +

T∑
t=2

S∑
m=1

S∑
n=1

ξtmn ln
ξtmn∑
o ξtmo

(38)

Eq(Z) [ln p(Z)] =

S∑
s=1

γ1s lnπs +

S∑
m=1

S∑
n=1

( T∑
t=2

ξtmn

)
ln p(n|m) (39)

The complete ELBO is therefore evaluated as:

L̂ = ln p(X) +
∑
s

FB

2

(
R+ ln |L−1

s | − tr(L−1s )−αT
s αs

)
(40)
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3.5 Updating πs

We will obtain the updates for πs from the ELBO eq. 14:

L̂ (q(X,Y)) = FAEq(Y,Z) [ln p(X|Y,Z)] + FBEq(Y)

[
ln
p(Y)

q(Y)

]
+ Eq(Z)

[
ln
p(Z)

q(Z)

]
,

where only the term Eq(Z) [ln p(Z)] depends on πs.
Given the constrain

∑S
s=1 we construct the Lagrange multiplier and take the derivative with

respect to π:

∂

∂πk

[
Eq(Z) [ln p(Z)]− λ

( S∑
s=1

πs − 1

)]
= 0

∂

∂πk

[ S∑
s=1

γ1s lnπs +

S∑
m=1

S∑
n=1

( T∑
t=2

ξtmn

)
ln p(n|m)− λ

( S∑
s=1

πs − 1

)]
= 0

γ1k
πk

+

S∑
m=1

( T∑
t=2

ξtmk

)
(1− Ploop)

p(k|m)
− λ = 0

γ1k
πk

+

S∑
m=1

( T∑
t=2

A(t− 1,m)p̄(xt|k)p(k|m)B(t, k)

p(X)

)
(1− Ploop)

p(k|m)
− λ = 0

λ =
γ1k
πk

+
(1− Ploop)

p(X)

S∑
m=1

T∑
t=2

A(t− 1,m)p̄(xt|k)B(t, k)

λπk = γ1k +
(1− Ploop)πk

p(X)

S∑
m=1

T∑
t=2

A(t− 1,m)p̄(xt|k)B(t, k)

πk ∝ γ1k +
(1− Ploop)πk

p(X)

S∑
m=1

T∑
t=2

A(t− 1,m)p̄(xt|k)B(t, k)

(41)

which is a fixed point iteration, and would, in theory, require iterative updates to obtain the
optimal value of πk, which is not done in practice
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