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1 Introduction

This technical report is created as a complement to the paper [1]. The reader can find here all the
derivations of the update formulas shown in the mentioned paper.

For the sake of completeness, we re-introduce in section 2 all the variables used in the technical
report. Still, for a proper description and definition of all these variables, we refer the reader to
the original paper.

2 Definition of variables

Let X = {x1,Xa, ..., X7} be the sequence of observed x-vectors and Z = {z1, 22, ..., 27} the corre-
sponding sequence of discrete latent variables defining the hard alignment of x-vectors to HMM
states. In our notation, z; = s indicates that the speaker (HMM state) s is responsible for generat-
ing observation x;. Let Y = {y1,y2,...,ys} be the set of all the speaker-specific latent variables.

The x-vectors that are used as input for the diarization algorithm are obtained as
X = (X -m)E (1)

where E is the transformation matrix which transforms the x-vectors into the desired space. This
matrix can be obtained by solving the standard generalized eigen-value problem

>E=3,E® (2)

where E is the matrix of eigen-vectors and ® is the diagonal matrix of eigen-values, which is also
the between-speaker covariance matrix in the transformed space.

The speaker-specific means are:
p(ms) :N(ms§0ﬂq))' (3)

For convenience we re-parametrize the speaker mean as
m; = Vysq, (4)

where diagonal matrix V = &2 and ys is a standard normal distributed random variable

p(ys) = N(ys;0,1). ()
The speaker-specific distribution of x-vectors is
p(xt‘YS) :N(Xt;vyml)a (6)

where I is identity matrix.

From the HMM model, state-specific distributions:

p(xt|ze = s) = p(xe]s) = p(xe]ys) (7)



Transition probabilities:
p(ze = s|z—1 = ') = p(s]s’) (8)
p(s]s) = (1 = Pioop)ms + 6(s = 8") Proop 9)
3 Inference

The joint probability distribution of all the random variables is:
p(X,Z,Y) = p(X|Z,Y)p(Z)p(Y) (10)

= Hp (x¢|2t) Hp (2t 2e—1) Hp (¥s),

We will consider the following factorization for the approximate variational posteriors of the hidden
variables (mean field approximation):

9(Z,Y) = q(Z)q(Y). (11)
The evidence lower bound objective (ELBO) is defined as
pX,Y,Z)

Y.,Z)) =EF In|—=%— . 12
I (12)

Using the factorization (11), the ELBO can be split into three terms

p(Y) p(Z)
Y,Z)=F Inp(X|Y,Z E 1 E In —== 1

£GY.2) = By Inp(XIY. 2]+ By [0 20 4 By w22 (13)

We modify the ELBO by scaling the first two terms by constant factors F4 and Fp.

£(4(Y,2)) = FaByy 2y Inp(X[Y, Z)] + Fi Eyey) [ln fq”m T Eyz) [In Zgi] Lo

3.1 Useful quantities
The speaker-specific log likelihoods are:

1np(xt|ys) = lnN(XﬁVYSvI)

1 1
=In (271_)% — i(Xt - Vys)2

D 1 1
== In27 — ixtxtT +yfvTx, —itr vyl viv (15)

P
P
G(x:) !

1
=G(x) +yi P — 5tr (vsys @)

3.2 Updating ¢(Y)

To obtain ¢(Y) we maximize the modified ELBO w.r.t. ¢(Y) (given fixed ¢(Z)). To do so, we
construct the corresponding Lagrangian and set its functional derivative w.r.t. ¢(Y) equal to zero:

o .
dq(Y) (g(Y,Z)) +X (/q (Y)dY — 1)} =0 o
oL (¢(Y.Z)) |

9q(Y) FA=0

Substituting eq. 14 gives us:

aL (q(Y,2)) 9 p(Y)
R =gy (P XY, 2)] + Fn By [ 255 )

=FaEyz) Inp(X|Y,Z)]+ FpInp(Y) — Fp (Inqg(Y) + 1)

(17)



Substituting in 16 and solving for ¢(Y) we obtain:

F
Ing(Y) = F—AEq(Z) [Inp(X|Y, Z)] + Inp(Y) + const. (18)
B
We derive:

Fa
Inq(Y) :F—Eq(z) Inp(X|Y,Z)] + Inp(Y) + const. (19)

B

Fa
Inq(Y) :F—BEq(Z) zt: zszlnp(xt\zt =s)| + zs:lnp(ys)—i—const. (20)
Ela + b] =FE[a] + E[b], therefore (21)

F
Ing(Y) = F—qu(z) Zlnp(xt\zt =s)| + Zlnp(ys)Jrconst. (22)
s t s

where we can see that we obtain the induced factorization

ng(Y) =) Ing(ys), (23)

We can then derive the update formula for each speaker model as follows:

F
Ing(ys) :iEq(Z) +Inp(ys)+const.

Ip

Zlnp(xt|zt =)
t

F
:}«TA Z Yes Inp(x¢|s) + Inp(ys) + const.
B

F 1 1 (24)
A
~F 2%5 |:yZpt - 5tr (ysyfé)} — inTyS + const.
Fu T 1 Fu T
:FTB Et:%spt ] Vs — itr ( Ty Et:'yts D +1|ysys | + const.,
The completion of squares (see A.1.4 in [2]) gives us:
(ys) =N (ys\as,Ls_l) (25)
which are Gaussians with the mean vector and precision matrix
Fa_ 4 Fa
Rt e L=t (20 | -

3.3 Updating ¢(Z)

To maximize the modified ELBO w.r.t. ¢(Z) (given fixed ¢(Y)), we solve an equation similar
to (16), where symbols Y and Z are exchanged.

9 I.
8q(z)[z:(q(y,z)) A (/q(Z)dZ—l)] ~0 -
0L (a(Y.2Z))  , _
94(Z) +A=0
This time, solving for ¢(Z) leads to
0L (¢(Y.Z)) _ 0 p(2)
9q(Z) " 0q(Z) (FAEZI(Y)«I(Z) np(X|Y,Z)] + Eyz) [ln q(Z)}) (28)

= FaE vy [Inp(X|Y,Z)] +1Inp(Z) — (Ing(Z) + 1)



Ing(Z) = FaE,v) Inp(X|Y,Z)] +1Inp(Z) + const.

Zlnp(xt|zt)

= Z Inp(x¢|2¢) + Inp(Z) 4 const.,
¢

= FaE, v +1Inp(Z) + const.

(29)

where p(x¢|z: = s) is defined (using (15) and (25)) as:
Eqeyy [Falnp(xi[s)] = Eq(y.) [Falnp(xi[s)]
=F4 [asTpt—;tr (® [L;'+a,al]) —i—G(xt)} (30)
= Inp(x¢|s)

3.4 The lower bound
Let us repeat here the expression for the ELBO eq. 14:

L(q(X,Y)) = FaEyy.z) Inp(X|Y,Z)] + FpEyx) [m Zg;] + Eqz) [m Zg” ’

The first term of the modified ELBO (14) can be evaluated (using (30)) as

FaEyy,z) [Inp(X|Y,Z)] =

=FaEyv,z) lz In p(x¢|z: = s)]

t
1

53w (G0 457 jir (vvT®)

t s

1

DD s (G(Xt) + By [v8] 2o = 5 (Bywy [y ‘I>)>

t

= Z Z Vs INP(x4|5)

=FaEqv)

(31)
—Fy

Using the factorization (22), the second term of the ELBO (14) (excluding the scalar F) can be
evaluated as follows. First, the expectation of p(Y)

Euory (V)] =3 { =3 2m) + By |-597. |
S (32)
— 2; {—; In(27) — %tr (L' + asaf)}



And the expectation of the log of the approximate posterior ¢(Y) is:

Eyv) [~ Ing(Y ZE‘I(Y) [ (In(27)+In |Ly [+ (ys—as) Lo (ys — as))]

1 1 _ 1
_ZE (Y) 5 27T) §IH|L51|+§(YS—OIS)TLS(YS _as)
Cs

= {CS + %Eqm [tr (La(yoy? — 20,y7 + )] }

(33)
using the expression from [2] 6.2.2, for the expectation E[y,y!|:
1
:Z{C’s+2tr s [Lo' + asal] - LasasT)}
1
=> {CS + tr(I)}
- 2
_Z{; —ln\L 1+R}
Therefore
p(Y
FuEyn |10 233] = ~Fo 3 Drcslaty. oty
S (34)

= g % (R+ In \Ls_l\—tr(Ls_l)—azas) ,

Finally, the third term in (14) is the negative KL divergence

E { Z] Z 1n +ZT:ZS:XS:§ p(njm) (35)
a(Z) 7 Tis o —~ tmn 1 q(zz=n|zt_1=m)’

m=1n

where the approximate marginal probability of transitioning from state m to state n at time ¢

A(t — 1, m)p(x¢|n)p(n|m)B(t,n)
p(X)

where A(t — 1,m), B(t,n) and p(X) can be estimated using the forward-backward algorithm (see
equations (19)-(22) in the original paper [1]), P(x¢|n) can be estimated using (30), p(n|m) is the
transition probability as defined in (9) and the approximate posterior of transitioning to state n
at time ¢ given previous state m

Etmn = q(zi—1 =M,z =n) = (36)

q(zt=n|zt_1=m) = % (37)

It can also be seen that the separate expectations can be defined as:

q(Z) lnq Z Vis In Vis + Z Z Z gtmn thgtn (38)

t=2 m=1n=1

s S , T
Eqyz) [Inp(Z Z ys Inms + Z Z (Z §tmn> In p(n|m) (39)
s=1 m=1n=1 ‘=2
The complete ELBO is therefore evaluated as:
=Inp(X +Z (R+In Lt — tr(L;!) — aley) (40)



3.5 Updating 7,
We will obtain the updates for 74 from the ELBO eq. 14:

L(q(X,Y)) = FaEyvy z) (Inp(X|Y,Z)] + FgEyv,) {ln Zg;] + Eq(z) {ln Z)E;H v

where only the term Ejz) [Inp(Z)] depends on 7.

Given the constrain ij:l we construct the Lagrange multiplier and take the derivative with
respect to m:

e[ w2 (371 =
[zzz(z)| Yoo
S

%k-FZ(Z&mk) -Ploop =0
., Z<Z e ““"”)B“”f))“pzkf;zs“ ST
r= Tty (= Fom) S S At — L) BB

m:1t2 T
m—m+< Pl"O”’“ZZA Bxi|k) Bt k)

22

which is a fixed point iteration, and would, in theory, require iterative updates to obtain the
optimal value of 7, which is not done in practice
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