1/29 © Alexander Meduna & Roman Lukas

Lexical Analysis:

Models
Sections 2.1

2 /29 © Alexander Meduna & Roman Lukas

Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that
denote concatenation, union, and

iteration, respectively.

Definition: Let 2 be an alphabet. The regular
expressions over 2. and the languages they denote
are defined as follows:
» J 1s a RE denoting the empty set
e ¢ 1s a RE denoting {&}
* a, where a € 2, 1s a RE denoting {a}
 Let 7 and s be regular expressions denoting the
languages L, and L, respectively; then

e (r.s)isaRE denoting L =L L,

e (r+s)isaREdenoting L=L, U L_

« (r")isaRE denoting L =L~

3 /29 © Alexander Meduna & Roman Lukas

Regular Expressions: Example

Question: Is (¢ + (a.(b7))) the regular expression
over X ={a, b} ?

v ¥ v l Is a RE over 2. ‘
€ a b
(a.(b)) Answer:
! 7 (& + (a.(bY))) is

the RE over 2.

(et (a.(b)))

4 /29 © Alexander Meduna & Roman Lukas

Simplification

1) Reduction of the number of parentheses by

Precedences: = > . > +

2) Expression 7.s 1s simplified to rs
3) Expression r7* or ' is simplified to r*

Example:
((a.(a’)) + ((b").b)) can be written asa .a” + b".b,,

—

—

and a.a + b".b can be written as a™ + b*

5/29 © Alexander Meduna & Roman Lukas

Regular Language (RL)

Gist: Every RE de

notes a regular language

Definition: Let L be a language. L 1s a regular
language (RL) 1f there exists a regular expression

Denotation: L(r) means the language denoted by r.

r that denotes L.
Examples:
ry=ab + ba C
ry=a'b" d
r,=ab(a + b)” 4

enotes L, = {ab, ba}

lenotes L, = {a"b"™: n2>1, m = 0}

enotes L, = {x: ab 1s prefix of x}

r,=(a+b)ab(a+b)’c

enotes L, = {x: ab 1s substring of x}

|L,, Ly, Ly, L, are

regular languages over X ‘

6 /29 © Alexander Meduna & Roman Lukas

Finite Automata (FA)

Gist: The simplest model of computation
based on a finite set of states and
computational rules.

‘ Final states |~'\‘ ’ICurrent state

‘ Start state H/F'lnlte State Control
|

y Read head

Input tape: | a, | a, ai‘ .. |a,

—-
move of head

7/29 © Alexander Meduna & Roman Lukas

Finite Automata: Definition

Definition: A4 finite automaton (FA) 1s a S-tuple:
M= (0, X2, R, s, F), where
* () 1s a finite set of states
* X 1s an input alphabet
* R 1s a finite set of rules of the form: pa — ¢,
where p, g € O, a € 2 U {¢}
e s € Q1s the start state

 FF'c Q1s aset of final states

Mathematical note on rules:
» Strictly mathematically, R 1s a relation from QO x (X2 U {&}) to O

* Instead of (p«, q), however, we write the rule as po — ¢
e pa — g means that with «, M can move from p to ¢
* if © = ¢, no symbol 1s read

&/29 © Alexander Meduna & Roman Lukas

Graphical Representation

@ denotes a state g € QO
—>® denotes the start state s € Q

denotes a final state f € F

@ d »@ denotes pa —> g € R

9/ 29 © Alexander Meduna & Roman Lukas

Graphical Representation: Example

M=(0,%, R, s, F),

where:

* 0=1{s,p,4q f};

*X={a,b, c};

* R= {sa — s,
s =D,
pb — p,
pb — 1,
s —4q,
gc — q,
qc — f,
Ja—f};

*F=1{f}

10/29 © Alexander Meduna & Roman Luk4s

Tabular Representation

* Columns: Member of X U {&}
* Rows: States of 0
* First row: The start state

e Underscored: Final states

a [XX] 8

4 ‘t(p,a)=«l{q:pa—>qeR}‘

© Alexander Meduna & Roman Lukas

11/29

Tabular Representation: Example

M=(0,Z,R,s,F),
where:
‘Q—{S,p,q,f}\ ¢ b ¢ &
X ={a,b, c}; s sy | 9 [9 |ina
*R= {sa — s, pl|l @ | O %)
S 2D 9| @ | @ |la.f}| @
pb — p,
g |lduilelo]e
s —q,
qc — ¢,
qc — f,
fa—>f};
*F=1{f}

12/29

© Alexander Meduna & Roman Lukas

Configuration

Gist: Instance description of FA

Definition: Let M = (0, 2, R, s, F) be a FA.
A configuration of M is a string y € QX"

'I Current state ‘

Finite State Control
|

Input tape:

a,

a,

Configuratio

a, | .
Y
nV

13/29 © Alexander Meduna & Roman Luk4s

Move
Gist: Computational step of FA
Definition: Let p x and ¢gx be two configurations
of M, wherep,qg € O, e€XuU {e},andx € X"
Let =p — g € Rbearule. Then M makes a
move from p x to gx according to , written as
P x|—gx|[Jor, simply, p x |- gx
Note: if 7 = g, no inwmbol 1s read

Configuration: | X, |

Rule: po —> g J/ //

New configuration: @‘ X

14 /29 © Alexander Meduna & Roman Lukas

Sequence of Moves 1/2
Gist: Several consecutive computational steps
Definition: Let ¥ be a configuration. M makes
zero moves from y to y; in symbols,

X, |- ° % [] or, simply, x |-°
Definition: Let y,, %, ..., X, b€ a sequence of
configurations, n = 1, and x, , |-, [7;],7; € R,
foralli=1, ..., n; that 1s,

Xo =% [l =22 o - 1= 17
Then M makes n moves from %, to .
Xo |=" % 7y 7] or, simply, %, |=" ¥,

15/29 © Alexander Meduna & Roman Luk4s

Sequence of Moves 2/2

It x, "%, [p] for some n > 1, then

It x, " %, [p] for some n > 0, then

Xo = % [P].

Yo = % [Pl

Example: Consider

pabc |- qbc [1: pa — q], and gbc |- rc [2: gb — r].

Then,

pabe |2 re [12],
pabe |=* re [12],
pabe |=* re[12

16/29 © Alexander Meduna & Roman Luka$

Accepted Language
Gist: M accepts w if it can completely read
w by a sequence of moves from s to a
final state
Definition: Let M = (0, 2, R, s, F) be a FA.
The language accepted by M, L(M), 1s defined
as:

LIM)={w:weX swl-f, feF}
M: (Q9 Za Ra S’K lfqn = Fthen = L(M)’

/ otherwise, ¢ L(M)
\

Sfllaz...anl |_ qlaz...an |_ eooe |_ qn-lan |_ qn

17/29 © Alexander Meduna & Roman Luk4s

FA: Example 1/3

M=(0, 2, R, s, F), where:
O=1s,495,2=1a, b}, R=1{sa—>q, qb > s}, F = {5}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

i

‘_¢ Read head
a

b sab

Input tape:

18/29 © Alexander Meduna & Roman Luka$

FA: Example 2/3

M=(0, 2, R, s, F), where:
O=1s,495,2=1a, b}, R=1{sa—>q, qb > s}, F = {5}
Question: ab € L(M) ?

Finite Automaton M
Finite State Control:

/% Current Configuration:
| b

Input tape: [g |) sab |- qb

19/29 © Alexander Meduna & Roman Luk4s

FA: Example 3/3

M=(0, 2, R, s, F), where:
O=1s,495,2=1a, b}, R=1{sa—>q, qb > s}, F = {5}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

I

ANnswer:

| YES, ab € L(M),
; Read head|] because s € I

Input tape: | g | b sab |- qb |- §

20/29 © Alexander Meduna & Roman Luk4s

Equivalent Models

Definition: Two models for languages, such
as FAs, are equivalent 1f they both specify the
same language.

Example:

B0 080

Question: Is M, equivalent to M, ?

Answer: M, and M, are equivalent because
L(M,)=L(M,) =1{a":n=>0}

21 /29 © Alexander Meduna & Roman Lukas

Conversion of RE to FA: Basics 1/5

Gist: Algorithm that converts any RE to an
equivalent FA (lex in UNIX).

* For a RE r = (J, there 1s an equivalent FA M,

Proof: My —>®

* For a RE 7 = ¢, there 1s an equivalent FA M..

Proof: M,: —’@ -

 ForaRE r=ua, a € 2, there 1s an equivalent FA M _ .

Proof: M —>@

22 /29 © Alexander Meduna & Roman Lukas

RE to FA: Concatenation 2/5

*letrbeaREoverXand M.=(Q., %2, R, s, {f.}) be
an FA such that L(M) = L(r).

*LettbeaREover2 and M,= (0, 2, R, s,, {/,}) be
an FA such that L(M,) = L(?).
* Then, for the RE r.z, there exists an equivalent FA M,

Proof: Let 0. N Q, = .

Construction:
Mr.t — (Qru Qt? 29 Rru Rt U {fr_) St}9 Sr’ {ft})
M o

r.t°

L@ D@0

23/29 © Alexander Meduna & Roman Luk4s

RE to FA: Union 3/5

eletrbeaREoverXand M.=(0., %2, R, s, {f.}) be
an FA such that L(M) = L(r).

*Lettbe REover 2 and M, = (Q,, X, R,, 5,, {f,}) be
an FA such that L(M,) = L(?).

* For a RE r + ¢, there exists an equivalent FA M

r+
Proof: Let 0.n O, =@, s, f ¢ 0. U 0.
Constructlon
r-l-t (QUQtU{Sf}ZRU US—)S
S_)Staf_)ff—)f} S, IJ}})

24 /29 © Alexander Meduna & Roman Lukas

RE to FA: Iteration 4/5

eletrbeaREoverXand M .=(Q0,,2, R, s, {f,})be
an FA such that L(M) = L(r).
» For the RE 7, there exists an equivalent FA M.

Proof: Lets, f¢ Q..
Construction:

M.=(Q U is,fI,2,RU{s—>s, [/,
o> 8,51, 8, i/})

2 5 /29 © Alexander Meduna & Roman Lukas

RE to FA: Completion 5/5

* Input: RE r over 2
* Output: FA M such that L(r) = L(M)

* Method:
* From “inside” of r, repeatedly use the next
rules to construct M:
» for RE &, construct FA M,
e for RE ¢, construct FA M, — (see 1/5)
 for RE a € X, construct FA M
e let for REs r and ¢, there already exist FAs M, and
M., respectively; then,
* for RE r.t, construct FA M,, (see 2/5)
» for REr +¢ construct FAM, _, (see 3/5)
e for RE r” construct FA M. (see 4/5)

26/29 © Alexander Meduna & Roman Luka$

RE to FA: Example 1/3

Transform RE » = ((ab) + (cd))” to an equivalent FA M

For RE =—>‘—>‘ For RE b:

S

M,,I ’b' I
For RE «b: b._’®_’@ - M,,I bl
”"

E

For RE c: For RE J-

j

| M. R

27/29 © Alexander Meduna & Roman Luk4s

RE to FA: Example 2/3

For RE ab: Mb' g b

For RE ¢ Mc=c D=
W W
For RE b+éMb. 8 @m X
b+ cd: v

Q{M P)

28/29 © Alexander Meduna & Roman Luka$

RE to FA: Example 3/3

For RE
b+ cd:

For a final RE (ab + cd)™: '

M(b+c)*: M, : i . -
o LO-O-0-B). o
gl \& @@@ 88

29/29 © Alexander Meduna & Roman Luk4s

Models for Regular Languages

Theorem: For every RE r, there 1s an FA M
such that L(r) = L(M).

Proof 1s based on the previous algorithm.

Theorem: For every FA M, there 1s an RE 7
such that L(M) = L(r).

Proof: Omitted.

Conclusion: The fundamental models for

regular languages are
1) Regular expressions 2) Finite Automata

	Regular Expressions (RE): Definition
	Regular Expressions: Example
	Simplification
	Regular Language (RL)
	Finite Automata (FA)
	Finite Automata: Definition
	Graphical Representation
	Graphical Representation: Example
	Tabular Representation
	Tabular Representation: Example
	Configuration
	Move
	Sequence of Moves 1/2
	Sequence of Moves 2/2
	Accepted Language
	FA: Example 1/3
	FA: Example 2/3
	FA: Example 3/3
	Equivalent Models
	Conversion of RE to FA: Basics 1/5
	RE to FA: Concatenation 2/5
	RE to FA: Union 3/5
	RE to FA: Iteration 4/5
	RE to FA: Completion 5/5
	RE to FA: Example 1/3
	RE to FA: Example 2/3
	RE to FA: Example 3/3
	Models for Regular Languages

