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Lexical Analysis:

Theory

Section 2.3
(Section 2.3.2 excluded)
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Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite
iteration of some substring in RLs.

e Let L be a RL. Then, there is £ > 1 such that
if z € L and |z| > k, then there exist u,v,w: z =uvw,
1) v+e2)|uv|<k 3)foreachm >0, uv™w € L

Example: for RE r = ab”c, L(r) is regular.
There 1s & = 3 such that 1), 2) and 3) holds.

s forz=abc:z € L(r) & |z| = 3:uv'w = ab’c = ac € L(r)
AEAR uvlw = ablc = abc € L(r)
uvw = ab*c = abbc € L(r)
v£g, luy|=2<3 :
e for z=abbc: z € L(r) & |z| = 3uv’w = abb®c = abc € L(7)
7T uvlw = abblc = abbc € L(r)
e UVW uvw = abb?c = abbbc € L(r)
* wv#g |lu|=2<3 :
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Pumping Lemma: Illustration

L = any regular language:
k

-

E L ‘nothing interesting

[u W |

1)

2)

) u w le L

| u W |e L

| u % W | e L
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Proof of Pumping Lemma 1/3

* Let L be a regular language. Then, there exists
DFA M=(0,2,R,s, F), and L = L(M).

* For z € L(M), M makes |z| moves and M visits
z| + 1 states:

cforz=aa,...a,

lz| + 1 states

2|
Sad,...d, |_ q4.145...4, |_ oo |_ 4,14, |_ q,
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Proot of Pumping Lemma 2/3
* Let k= card(Q) (the number of states).
Foreachz € L and |z| > k, M visits kK + 1 or
more states. As k + 1 > card(Q), there exists a

state g that M visits at least twice.
e For z exist u, v, w such that z = nvw:

Summary:
sz=suvw |- gww|-igw|-"f, fe F
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Proof of Pumping Lemma 3/3

e There exist moves:
Osv =g, @uvl-'q; @ywl="f.f € F,so0

e form =0, uv™w = 1w = uw,

n Paw P, fe F

e for each m > 0,

s g g PP, pe r

Summary:
1) gv|-/q, ; therefore, |[v|>1,so0v#¢
2) suv|-gqv|-/q, ; therefore, |nv| < k

3) For each m > 0: suv™w |- f, f € F, therefore nv™w € L
QED
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Pumping Lemma: Application I

* Based on the pumping lemma, we often make a proof by
contradiction to demonstrate that a language 1s not regular

’l Assume that L 1s regular ‘
}

Consider the PL constant &k and select 7 € L, whose
length depends on & so |z| = k& 1s surely true.

!

For all decompositions of z into uvw, v # ¢, |uv| < k , show:
: | there exists m > 0 such that uv"w ¢ L
: | from the pumping lemma, wv"w € L

: !
: - Therefore,
false assumptlon ‘ - L 1s not regu]ar

contradiction
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Pumping Lemma: Example

Prove that L = {¢"b": n > 0} 1s not regular:

1) Assume that L is regular. Let k > 1 be the

pumping lemma constant for L.
2) Let z = akb*: a*b* € L, |z| = |a*b¥| =2k > k

3) All decompositions of z into uvw, v # €, [uv| < k:

I X « pumping lemma: uv’w € L
[ 5b. .59 hpi <
oy v tww=uw= bb...bble L
W « ~ J
luv| < k J— "1 W

Contradiction!

4) Therefore, L 1s not regular
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Note on Use of Pumping Lemma

* Pumping lemma:

if ‘Lis regular‘ th& ‘existhOand...‘

Main application of the pumping lemma:
 proof by contradiction that L 1s not regular.

 However, the next implication is incorrect:

el — h :
if [ O reauiar]

* We cannot use the pumping lemma to
prove that L is regular.




10/26 © Alexander Meduna & Roman Luk4s

Pumping Lemma: Application II. 1/3

* We can use the pumping lemma to prove
some other theorems.

Illustration:

* Let M be a DFA and & be the pumping lemma
constant (k 1s the number of states in M). Then,
L(M) 1s infinite < there exists z € L(M), k< |z| < 2A

Proof:

‘1) there exists z € L(M), k < |z| < 2k = L(M) 1s infinite:
ifz € L(M), k < |z|, then by PL:

Z=uvw, v #£e, and for each m > 0: wv"w € L(M)

—

\l L(M) 1s infinite I‘/
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Pumping Lemma: Application II. 2/3
2) L(M) 1s infinite = there exists z € L(M), k < |z| < 2k:

* We prove by contradiction, that

| L(M) is infinite |- 2| there exists z € L(M), |2| > k]
b)y
‘there exists z € L(M), k< |z| < Zk‘

a) Prove by contradiction that

e L(M) is infinite = there exists z € L(M), 7| = k
Assume that L(M) is infinite and there existsnoz € L(M), |z| =2 k

/ for all z € L(M) holdsl z| <k

. L. [ !
‘ Contradiction ! ‘ T~ L(M) is finite
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Pumping Lemma: Application II. 3/3

b) Prove by contradiction
* there exists z € L(M), |z| 2 k=
there exists z € L(M), k < |z| <2k

Assume that thereisz € L(M), |z| 2k  k 2k
and thereisno z € L(M), k< |z| <2k ')e‘(—)(—)(—’—",

Let z, be the shortest string satisfying z, € L(M), |z,| = k
Because there exists no z € L(M), k <|z| <2k, so
If z, € L(M) and |zy| = k, the PL implies: z, = uvw,
, and for each m > 0, uwv"w € L(M)
|
|uw| = =v =2k for m = 0: w"w = uw € L(M)
Summary: uw € L(M), |luw| = k and |uw| < |z,|!
Zo is not tl{shortest string satisfying_zi e LIM), |z)| = k

jl Contradiction !
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Closure properties 1/2

Definition: The family of regular languages
1s closed under an operation o 1f the language
resulting from the application of o to any
regular languages 1s also regular.

Illustration:
* The family of regular languages is closed under union.
It means:

The family of
regular languages
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Closure properties 2/2

Theorem: The family of regular languages 1s
closed under union, concatenation, iteration.

Proot:
e Let L,, L, be two regular languages
 Then, there exist two REs r, r,: L(r) = Ly, L(r,) = L,;
* By the definition of regular expressions:
* 7.7, 1s a RE denoting L, L,
*r; +ryisaRE denoting L, U L,
* r," is a RE denoting L,*
* Every RE denotes regular language, so
L,L, L,v L, L,"arecaregular languages
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Algorithm: FA for Complement
* Input: Complete FA: M =(0, X, R, s, F)
* Output: Complete FA: M’ = (0, 2, R, s, F”),
LM’) = L(M)
* Method:
P =0-F
Example:
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FA for Complement: Problem
 Previous algorithm requires a complete FA
 [f M 1s incomplete FA, then M must be converted to

a complete FA before we use the previous algorithm

Example: —
Incomplete DFA: ‘ L(M, ’) - L(M)' -c¢ L(M), c g L(M,) ‘

G@ % \L(M ) = L(M)\

Complete DFA:

BB -804
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Closure properties: Complement

Theorem: The family of regular languages 1s
closed under complement.

Proof:
» Let L be a regular language
* Then, there exists a complete DFA M: L(M) =L _
* We can construct a complete DFA M’: L(M’) = L
by using the previous algorithm
* Every FA defines a regular language, so
L 1s a regular language
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Closure properties: Intersection

Theorem: The family of regular languages 1s
closed under intersection.

Proof:

e Let L,, L, be two regular languages

» L,, L, are regular languages

(the family of regular languages 1s closed under complement)

« L, U L, 1s aregular language

(the family of regular languages 1s closed under union)

-Tl UTZ is a regular language

(the family of regular languages is closed under complement)

» L, " L,=L,UL,is aregular language (DeMorgan’s law)
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Boolean Algebra of Languages

Definition: Let a family of languages be
closed under union, intersection, and
complement. Then, this family represents a
Boolean algebra of languages.

Theorem: The family of regular languages 1s
a Boolean algebra of languages.

Proof:

* The family of regular languages 1s closed
under union, intersection, and complement.
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Main Decidable Problems

1. Membership problem:
 Instance: FA M, w € X%; Question: w € L(M)?

2. Emptiness problem:
 Instance: FA M, Question: L(M) = O?

3. Finiteness problem:
* Instance: FA M; Question: Is L(M) finite?

4. Equivalence problem:
* Instance: FA M, M,; Question: L(M,)=L(M,)?
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Algorithm: Membership Problem

e Input: DFA M=(0,%, R, s, F);we X"
* Qutput: YES if w € L(M)
NO ifw ¢ L(M)

* Method:
«if sw |- f, f € F then write CYES’)
else write CNO”’)

Summary:

The membership problem for FAs is decidable
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Algorithm: Emptiness Problem

* Input: FA M=(0, 2, R, s, F);
* Output: YES if L(M) =
NO if LM)# D

* Method:
e if 5 1s nonterminating then write CYES”)
else write CNO”’)

Summary:

The emptiness problem for FAs 1s decidable
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Algorithm: Finiteness Problem

* Input: DFA M= (0, 2, R, s, F);

* Qutput: YES 1f L(M) 1s finite
NO 1if L(M) 1s infinite

 Method:

 Let k= card(Q)

o if there exist z € L(M), k < |z| < 2k then write CNO’)
else write CYES”)

Note: This algorithm 1s based on
L(M) 1s infinite < there exists z: z € L(M), k< |z| <2k

Summary:

The finiteness problem for FAs 1s decidable
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Decidable Problems: Example

. 0H@O

Question: «b € L(M) ?
sab|-sb|-f, fe F
Answer: YES because sab |-* f, fe F

Question: L(M)=OD ?
Oy =V}

l.ga’ > fiqe Q;a’ € X: sb>f,fa—>f

O,=1{f} U {s,f} = {f, s} ... s1s terminating

Answer: NO because s is terminating

Question: Is L(M) finite? k = card(Q) =2

All strings z € *: 2 < |z| < 4: v, bb)ab € L(M), ...
Answer: NO because there exist z € L(M), k < |z| <2k




2 5 /26 © Alexander Meduna & Roman Lukas

Algorithm: Equivalence Problem

* Input: Two minimum state FA, M,and M,
* Output: YES 1f L(M,) = L(M,)

NO if L(M,) # L(M,)
* Method:

* if M, coincides with M, except for the name of states
then write CYES’)
else write CINO”)

Summary:

The equivalence problem for FA 1s decidable
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Equivalence Problem: Example
Question: L(M,) = L(M,)?

A minimum state FA

Answer: YES because M, . , coincides with M

min?
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