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Syntax Analysis:

Methods and Theory
Sections 3.2 and 3.3
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Chomsky Normal Form (CNF)

Definition: Let G=(V, T, P, S) be a CFG.

G 1s in Chomsky normal form if every rule 1n
P has one of these forms

e A — BC,where 4, B, C € N,

A —>a,where A € N,a € T;

Example:

G=W,T,P,S),where N=4{A4,B,C,S}, T={a, b},
P={§>CB,C—>AS8,S > AB,A— a, B —> b}

1s 1n Chomsky normal form.

Note: L(G) = {a"b". n > 1}
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Greibach Normal Form (GNF)

Definition: Let G=(V, T, P, S) be a CFG.

G 1s 1n Greibach normal form 1f every rule 1n
P 1s of this form
e 4 —>ax,whereAe NaeT,xe N

Example:

G=(N,T,P,S), where N={B, S}, T= {a, b},
P={8 > aSB,S —> aB, B — b}

1s 1n Greibach normal form.

Note: L(G) = {a"b": n > 1}
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Generative Power of Normal Forms

Theorem: For every CFG G, there 1s an
equivalent grammar G’ 1n

Chomsky normal form.
Proof: Omitted.

Theorem: For every CFG G, there 1s an
equivalent grammar G’ 1n

Greibach normal form.
Proof: Omitted.

Note: Main properties of CNF and GNF:
CNF:if S="w, we T thenn=2|w| -1
GNF: if S=" w; w € T" then n = |»|
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General Parsing Methods

* General Parsing methods (GP) are applicable to
all context-free languages (CFLs)

Illustration:
e o o
O
The family of The family of The family
LL languages LR languages of CFLs
LL Methods LR Methods  General Parsing

Methods

* Note: The family of LR languages =
the family of a deterministic CFL
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GP Based on Chomsky Normal Form

it § € S|1, n] then S[1, n]
S =>%a,...a,
F —> AE / \
Idea: G- DC
-
F, G €Sl1,3 oo S[n-2, nj
-
D €S[1,2] E e S[2,3] oo S[n-1, n]
Ae S[1,1] Be S|2,2] C e S|3, 3] S|n, nj
A—> a, B — a, C—> a,
* Input string:‘ a, a, a; an‘
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Algorithm: GP Based on CNFE

eInput: G=(N, T, P,S)mCNF,w=a,...a,
* Output: YES if w € L(G)
NO ifw ¢ L(G)
* Method:
e for eacha,i=1,...,ndo
Sli,i] ={A: A —> a;, € P}

* Apply the following rule until no S|i, k] can
be changed:
ifA—>BCeP,BeS|ij|,CeS|[jt+]l, k],
where 1 <i<j<k<n then add 4 to S[i, k]

«if § € §[1, n] then write CYES”)

else write CINO”)
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GP Based on CNF: Example 1/5
G=WN,T,P,S),where N=4{4, B, C, S}, T={a, b},
P={§ >AC,C—>SB,A—>a,B—>b,S — c}
Question: aacbb € L(G)?

S, 1]=14;  S12, 2]=14} S[3,3]=15} S, 1=1B} SIS, S|=15;
TA—)a TA—)a TS—)c TB—)b TB—)b
! ! I

| a a C b b |
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GP Based on CNF: Example 2/5
G=WN,T,P,S),where N=4{4, B, C, S}, T={a, b},
P={§>A4AC,C—> SB,A—>a,B—>b,S > c}
Question: aacbb € L(G)?

~ »1s CCoSBD 1r

S[1,2]1=0  S[2,3]=2 S|[3,4]={C} S[4,5]=S

S[1, 1]=14}  S12, 2]=i4} S[5, J]1=18} S[4, 41={B} SIS, 5]1=iB}

a a C b b |
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GP Based on CNF: Example 3/5
G=WN,T,P,S),where N=4{4, B, C, S}, T={a, b},
P={§ >AC,C—>SB,A—>a,B—>b,S — c}
Question: aacbb € L(G)?

CEYTD

S[2, 41={S} S[3,5]=

1=3\/SI ,11@ S4, 51=0

S[1, 1]=14}  S12, 2]=i4} S[5, 5]1=1S} S[4, 4]1={B} SIS, 5]={B}

S[la 3]:®

S[1, 2]=J S12,

a a C b b |




11 / 3 1 © Alexander Meduna & Roman Lukas

GP Based on CNF: Example 4/5
G=WN,T,P,S),where N=4{4, B, C, S}, T={a, b},
P={§ >AC,C—>SB,A—>a,B—>b,S — c}
Question: aacbb € L(G)?

S[1, 1]=14}  S12,2]=i4} SI3,3]={S} S[4,4]={B} SIS, S]={B}

a a C b b |
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GP Based on CNF: Example 5/5

G=WN,T,P,S),where N=4{4, B, C, S}, T={a, b},
P={§ >AC,C—>SB,A—>a,B—>b,S — c}
Question: aacbb € L(G)?

D1, 5= S € STL SIMYES

—
@@ SI2, 51={C}

S[1,3]=0  S[2,4]={S} S[3,5]=C

S[1,2]1=0  S12,3]=5 S|3,4]={C} S[4,5]=S

S[1, 1]=14}  S12,2]=i4} SI3,3]={5} S[4,4]={B} SIS, S]={B}

a a C b b |
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Pumping Lemma for CFL

e Let L be CFL. Then, there exists £ > 1 such that:
if z € L and |z| > k then there exist u, v, w, X, y so
z = uvwxy and

1) vx # € 2) |[vwx| < k 3) for each m > 0, uwnv™wx™y € L

Example:
G=({S,A4}, {a,b, c}, {S > ada,A —> bAb, A — c}, )
generate L(G) = {ab"cb"a : n >0}, so L(G) 1s CFL.
There 1s k£ = 5 such that 1), 2) and 3) holds:
o forz=abcba: z € L(G) and |z] > 5:
u\}vt)ty uv0wx0y = ab’cha = aca € L(G)
_ wvlwxly = ableb'a = abeba € L(G)
vx =bb # ¢ ¥ =
x| =3:1<3<5 uvwx?y = ab*cb*a = bbc.bb e L(G)

» for z 5 abbcbba: z € L(G) and |z] > 5: :
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Pumping Lemma: Illustration
* L = any context-free language:

r =S E L ‘nothing interesting
K

C ﬁ: | € L
K

[w v w [x] Y |

D T o Xe

2) Yk

HN u| w | ¥ | e L

lu | v ]| w | x| y le L

lulv]iv] w | x| X | % le L
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Pumping Lemma: Application

* Based on the pumping lemma for CFL, we often make a proof
by contradiction to demonstrate that a language 1s not a CFL.

...................... ’l ASSUIIIG thatL IS q CFL ‘
5 }

Consider the PL constant &k and select 7 € L, whose
length depends on & so |z| = k& 1s surely true.

!

For all decompositions of z into uvwxy: vx # €, [ywx| < k, show that
: | there exists m > 0 such that uv™wx™y ¢ L;
: | from the pumping lemma, uv"wx"y € L

: !
: heref
false assumption ‘ - L ?s Ielzet gr%FL

} contradiction
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Pumping Lemma: Example 1/2

Prove that L = {a"b"c" : n > 1} 1s not CFL.

1) Assume that L is a CFL. Let £ > 1 be the pumping
lemma constant for L.

2) Let z = akb*ck: akbrck e L, |z| = |a*bc¥| =3k > k
3) All decompositions of z into uvwxy; vx # ¢, hwx| < k:

k k k
7 T ‘ISb...Jb{)...bi)rcc...Jccccc?
L AN
a) vwx € { Y {b}", b) vwx € {b}*{c}",

VX # & VX # &
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Pumping Lemma: Example 2/2

a) vwx € {a}"{b}": k

* Pumping lemma: | IL ... bb ...ljibcc ...ccl
wwxy € L u VWX y

o uvwxy = uwy =D l bb..JbLbcc ...ch g L

Note: uwy containsu k cs, buT fewer thanyk s or bs.

b) vwx € {b}*{c}™: k k K

e Pumping lemma: ‘ b“!; .bbcc . chl
wwxly e L e V

o uvwxly = ywy =L th bbcc J @ ¢ L

Note: uwy contains k S, but fewer than k bs or cs.
All these decompositions lead to a contradiction!

4) Theretore, L 1s not a CFL.
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Closure properties of CFL

Definition: The family of CFLs 1s closed
under an operation o 1f the language resulting
from the application of o to any CFLs 1s a
CFL as well.

Illustration:

* The family of CF languages 1s closed under union.
It means:

® The family of CF

languages
L |[u][ 2, ][=]] L.
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Algorithm: CFG for Union

* Input: Grammars G, =(N,, T, P,, S,) and
Gz — (N29 Ta P29 S2)9
* OQutput: Grammar G, = (N, T, P, S) such that
L(G,) = L(G)) VU L(G,)

* Method:

eletS¢ N,UN,, let NN N,=:
e N:={S} UN,UN,;
cP=8->58,5—=>58}UP UP,;




20 / 3 1 © Alexander Meduna & Roman Lukas

Algorithm: CFG for Concatenation
* Input: G, =(N,, T, P,, S,) and
G, =(N,, T, Py, 55);
* Qutput: G, = (N, T, P, S) such that
L(G,) = L(G)) . L(G,)

* Method:

eletS¢ N,UN,, let NN N,=:
e N:={S} UN,UN,;
e P:={§->5,5}UP UP,;
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Algorithm: CFG for Iteration

e Input: G=(N,T,P,S,)
* Qutput: G, = (N, T, P, S) such that L(G,) = L(G)"
* Method:
eletS ¢ N;:
e N:= {8} UN,;
e P={§5>5S8S5—>¢etUP;
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Closure properties

Theorem: The family of CFLs is closed under
union, concatenation, iteration.

Proof:
e LetL,, L, be two CFLs.
* Then, there exist two CFGs G, G, such that
L(G)) = Ly, L(Gy) = Ly;
» Construct grammars
* G, such that L(G,) = L(G,) U L(G,)
* G.such that L(G,) = L(G,) . L(G,)
* G;such that L(G,) = L(G,)"
by using the previous three algorithms
* Every CFG denotes CFL, so
L, L, L,v L, L, are CFLs.
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Intersection: Not Closed

Theorem: The family of CFLs is not closed
under intersection.

Proof:
« The intersection of some CFLs 1s not a CFL:

e L, =1{a"b"c"-m,n=1}1saCFL
e L,=1{a"b"c": m,n=1}1saCFL
L NL,={a"b"c":n=1} 1snota CFL
(proof based on the pumping lemma) OED
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Complement: Not Closed

Theorem: The family of CFLs is not closed
under complement.

Proof by contradiction:
» Assume that family of CFLs 1s closed under

complement.
e L, = {a"b"c".m,n=>1} 1s a CFL
. L2 = {a”b”cm' m,n>1}1sa CFL
L., L, , are CFLs
T] VU L, 1S @ CFL (the family of CFLs is closed under union)
« L, UL, is a CFL (assumption)
* DeMorgan’s law implies L, N L, = {a"b"c": n > 1} 1s a CFL
« {a"b"*c" . n>1} 1snot a CFL = Contradiction
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Main Decidable Problems

1. Membership problem:
* Instance: CFG G, w € X";Question: w € L(G)?

2. Emptiness problem:
e Instance: CFG G;  Question: L(G) = ©O?

3. Finiteness problem:
* Instance: CFG G;  Question: Is L(G) finite?
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Algorithm: Membership

* Input: CFG G=(N, T, P, S) in Chomsky
normal form; w € T"
* Qutput: YES if w € L(G)
NO 1itw ¢ L(G)
 Method I:
oif S =" w, where 1 <n <2|w|— 1, then write CYES’)
else write CNO’)

* Method II:
e See: The general parsing method based on CNF

Summary:

The membership problem for CFLs 1s decidable
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Accessible Symbols

Gist: Symbol X is accessible if § =* ...X...,

where S is the start nonterminal.
Definition: Let G= (N, T, P, S) be a CFG. A symbol

X € NU Tis accessible if there exist u, v € X" such

that S =" uXv; otherwise, X is inaccessible.
Note: Each inaccessible symbol can be removed from CFG

Example:
G=({S,4,B}, {a,b},{S > SB,S >a,A— ab,B— aB },S)

S - accessible: foru=¢, v=¢: §=°8

A - inaccessible: there is no u, v € X" such that § =" uAv
B - accessible: foru =S, v=¢:S=!SB

a - accessible: foru =¢, v=¢: S=la

b - inaccessible: there is no u, v € X" such that S =~ ubv
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Terminating Symbols
Gist: Symbol X is terminating if X derives a terminal string.
Definition: Let G= (N, T, P, S) be a CFG. A symbol
X € Nu Tis terminating if there exists w € T" such
that X =™ w; otherwise, X is nonterminating

Note: Each nonterminating symbol can be removed
from any CFG.

Example:

G=({S,A4,B},{a, b}, {S—>SB,S >a,A— ab, B— aB },.5)
Symbol S - terminating: forw=a: S ='a

Symbol A4 - terminating: for w = ab: A =' ab

Symbol B - nonterminating: there isnow € 7" such that B =" w
Symbol a - terminating: forw=a:a =" a
Symbol b - terminating: forw=>5: b =% b
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Algorithm: Emptiness

° IIlpllt: CFG G = (Np T9 Pa S)a
* Qutput: YES if L(G) =
NO if L(G) #

* Method:
*if S 1s nonterminating then write CYES’)
else write CNO”’)

Summary:

The emptiness problem for CFLs is decidable
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Algorithm: Finiteness

* Input: CFG G=(N, T, P, S);

* Qutput: YES if L(G) 1s finite
NO 1f L(G) 1s infinite

* Method:

e Let k= 2¢ard®)

o if there exist z € L(M), k < |z| < 2k then write CNO’)
else write CYES”)

Summary:
The finiteness problem for CFLs 1s decidable
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Main Undecidable Problems

1. Equivalence problem:
* Instance: CFGs G, G,;Question: L(G,) = L(G,)?

2. Ambiguity problem:
* Instance: G; Question: Is G ambiguous?

Note:
It 1s mathematically proved that there
ex1sts no algorithm, which solve these

problems 1n finite time.
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