
xiii

Preface

�is book is designed to serve as a text for a one-semester introductory course in the theory of formal
languages and computation. It covers all the traditional topics of this theory, such as automata,
grammars, parsing, computability, decidability, computational complexity, and properties of formal
languages. Special attention is paid to the fundamental models for formal languages and their appli-
cations in computer science.

Subject

Formal language theory de!nes languages mathematically as sets of sequences consisting of sym-
bols. �is de!nition encompasses almost all languages as they are commonly understood. Indeed,
natural languages, such as English, are included in this de!nition. Of course, all arti!cial lan-
guages introduced by various scienti!c disciplines can be viewed as formal languages; perhaps
most illustratively, every programming language represents a formal language in terms of this
de!nition. It thus comes as no surprise that formal language theory, which represents a math-
ematically systematized body of knowledge concerning formal languages, is important to all the
scienti!c areas that make use of these languages to a certain extent.

�e theory of formal languages represents the principal subject of this book. �e text focuses
its attention on the fundamental models for formal languages and their computation-related appli-
cations in computer science, hence its title Formal Languages and Computation: Models and !eir
Applications.

Models

�e strictly mathematical approach to languages necessitates introducing formal models that
de!ne them. Most models of this kind are underlain by rewriting systems, which are based on
rules by which they repeatedly change sequences of symbols, called strings. Despite their broad
variety, most of them can be classi!ed into two basic categories—generative and accepting lan-
guage models. Generative models, better known as grammars, de!ne strings of their language, so
their rewriting process generates them from a special start symbol. On the other hand, accepting
 models, better known as automata, de!ne strings of their language by a rewriting process that
starts from these strings and ends in a prescribed set of !nal strings.

xiv ◾ Preface

Applications

�e book presents applications of language models in both practical and theoretical computer
science.

In practice, the text explains how appropriate language models underlie computer science engi-
neering techniques used in language processors. It pays special attention to programming language
 ana lyzers based on four language models—regular expressions, !nite automata, context-free
 grammars, and pushdown automata. More speci!cally, by using regular expressions and !nite autom-
ata, it builds up lexical analyzers, which recognize lexical units and verify that they are properly
formed. Based on context-free grammars and pushdown automata, it creates syntax analyzers, which
recognize syntactic structures in computer programs and verify that they are correctly written accord-
ing to grammatical rules. �at is, the text !rst explains how to specify the programming language
syntax by using context-free grammars, which are considered the most widely used speci!cation tool
for this purpose. �en, it describes how to write syntax analyzers based on pushdown automata.

In theory, the book makes use of language-de!ning models to explore the very heart of the
 foundations of computation. �at is, the text introduces the mathematical notion of a Turing
machine, which has become a universally accepted formalization of the intuitive notion of a proce-
dure. Based on this strictly mathematical notion, it studies the general limits of computation. More
speci!cally, it performs this study in terms of two important topics concerning computation—
computability and decidability. Regarding computability, it considers Turing machines as
 computers of functions over nonnegative integers and demonstrates the existence of functions
whose computation cannot be speci!ed by any procedure. As far as decidability is concerned, it
formalizes problem-deciding algorithms by Turing machines that halt on every input. �e book
formulates several important problems concerning the language models discussed earlier in this
book and constructs algorithms that decide them. On the other hand, it describes several problems
that are not decidable by any algorithm. Apart from giving several speci!c undecidable problems,
this book builds up a general theory of undecidability. Finally, the text approaches decidability in a
much !ner and realistic way. Indeed, it reconsiders problem-deciding algorithms in terms of their
computational complexity measured according to time and space requirements. Perhaps most
importantly, it shows that although some problems are decidable in principle, they are intractable
for absurdly high computational requirements of the algorithms that decide them.

Use

As already stated, this book is intended as a textbook for a one-term introductory course in formal
language theory and its applications in computer science.

Second, the book can also be used as an accompanying textbook for a compiler class at an
undergraduate level because the text allows the "exibility needed to select only the topics relevant
to compilers.

Finally, this book is useful to all researchers, including people out of computer science, who
somehow deal with formal languages and their models in their scienti!c !elds.

Approach

Primarily, this book represents a theoretically oriented treatment of formal languages and
their models. Indeed, it introduces all formalisms concerning them with enough rigor to
make all results quite clear and valid. Every complicated mathematical passage is preceded

Preface ◾ xv

by its intuitive explanation so that even the most complex parts of the book are easy to grasp.
Every new concept or algorithm is preceded by an explanation of its purpose and followed by
some examples with comments to reinforce its understanding. All applications are given in a
quite realistic way to clearly demonstrate a strong relation between the theoretical concepts
and their uses.

Secondarily, as already pointed out, the text also presents several signi�cant applications of
formal languages and their models in practice. All applications are given in a quite realistic way to
clearly show a close relation between the theoretical concepts and their uses.

Prerequisites

On the part of the student, no previous knowledge concerning formal languages is assumed.
Although this book is self-contained, in the sense that no other sources are needed for understand-
ing the material, a familiarity with the rudiments of discrete mathematics is helpful for a quick
comprehension of formal language theory. A familiarity with a high-level programming language
helps to grasp the material concerning applications in this book.

Organization

Synopsis

!e entire text contains 12 chapters, which are divided into 5 sections.
Section I, which consists of Chapters 1 and 2, gives an introduction to the subject. Chapter 1

recalls the basic mathematical notions used in the book. Chapter 2 gives the basics of formal
 languages and rewriting systems that de�ne them.

Section II, which consists of Chapters 3 through 5, studies regular languages and their
models. Chapter 3 gives the basic de�nitions of these languages and their models, such as regular
 expressions and �nite automata. Chapter 4 is application oriented; speci�cally, it builds lexical
 analyzers by using models for regular languages. Chapter 5 studies properties concerning regular
languages.

Section III, which consists of Chapters 6 through 8, discusses context-free languages and their
models. To a large extent, its structure parallels Section II. Indeed, Chapter 6 de�nes context-free
languages and their models, including context-free grammars and pushdown automata. Chapter 7
explains how to construct syntax analyzers based on these grammars and automata. Chapter 8
establishes certain properties concerning context-free languages.

Section IV, which consists of Chapters 9 through 11, concerns Turing machines as a
 formalization of algorithms. Chapter 9 de�nes them. Based on Turing machines, Chapter 10 gives
the basic ideas, concepts, and results underlying the theory of computation and its crucially impor-
tant parts, including computability, decidability, and computational complexity. Simultaneously,
this chapter establishes important properties concerning languages de�ned by Turing machines.
Chapter 11 presents the essentials concerning general grammars, which represent grammatical
counterparts to Turing machines.

Section V consists of Chapter 12. !is chapter summarizes the entire textbook, points out
selected modern trends, makes many historical and bibliographical remarks, and recommends
further reading to the serious student.

xvi ◾ Preface

Finally, the book contains two appendices. Appendix I gives the index to mathematical sym-
bols used in the text. Appendix II contains the alphabetic index that lists all important language
models introduced in the book.

Numbering

Regarding the technical organization of the text, algorithms, conventions, corollaries, de!nitions,
lemmas, and theorems are sequentially numbered within chapters. Examples and !gures are
 organized similarly. "e end of conventions, corollaries, de!nitions, lemmas, and theorems is
denoted by ◾.

Exercises

At the end of each chapter, a set of exercises is given to reinforce and augment the material covered.
Selected exercises, denoted by S, have their solutions or parts of them at the end of the chapter.

Algorithms

"is textbook contains many algorithms. Strictly speaking, every algorithm requires a veri!cation
that it terminates and works correctly. However, the termination of the algorithms given in
this book is always so obvious that its veri!cation is omitted throughout. "e correctness of
 complicated algorithms is veri!ed in detail. On the other hand, we most often give only the gist
of the straightforward algorithms and leave their rigorous veri!cation as an exercise. "e text
describes the algorithms in Pascal-like notation, which is so simple and intuitive that even the
student unfamiliar with the Pascal programming language can immediately pick it up. In this
description, a Pascal repeat loop is sometimes ended with until no change, meaning that the loop
is repeated until no change can result from its further repetition. As the clear comprehensibility
is a paramount importance in the book, the description of algorithms is often enriched by an
explanation in words.

Support on the World Wide Web

Further backup materials, including lecture notes, are available at http://www.!t.vutbr.cz/~meduna/
books/#c.

xvii

Acknowledgments

For almost a decade, I taught the theory of formal languages and computation at the University
of Missouri-Columbia in the United States back in the 1990s, and since 2000, I have taught this
subject at the Brno University of Technology in the Czech Republic. �e lecture notes I wrote
at these two universities underlie this book, and I have greatly bene�ted from conversations with
many colleagues and students there. In addition, this book is based on notes I have used for my
talks at various American, Asian, and European universities over the past three decades. Notes
made at the Kyoto Sangyo University in Japan were particularly helpful.

Writing this book was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070). �is work was also
 supported by the Visual Computing Competence Center (TE01010415).

My thanks to Martin Čermák and Jiří Techet for their comments on a draft of this text.
Without the great collaboration, encouragement, and friendship with Zbyněk Křivka, I would
have hardly started writing this book, let alone complete it. I am also grateful to John Wyzalek
at Taylor & Francis for excellent editorial work. Finally, I thank my wife Ivana for her patience
and, most importantly, love.

xix

Author

Alexander Meduna, PhD, is a full professor of computer science at the Brno University of
Technology in the Czech Republic, where he earned his doctorate in 1988. From 1988 until
1997, he taught computer science at the University of Missouri-Columbia in the United States.
Even more intensively, since 2000, he has taught computer science and mathematics at the Brno
University of Technology. In addition to these two universities, he has taught computer science
at several other American, European, and Japanese universities for shorter periods of time. His
classes have been primarily focused on formal language theory and its applications in theoretical
and practical computer science. His teaching has also covered various topics including automata,
discrete mathematics, operating systems, and principles of programming languages. Among many
other awards for his scholarship and writing, he received the Distinguished University Professor
Award from Siemens in 2012. He very much enjoys teaching classes related to the subject of
this book.

Dr. Meduna has written several books. Speci�cally, he is the author of two textbooks—Automata
and Languages (Springer, 2000) and Elements of Compiler Design (Taylor & Francis, 2008; trans-
lated into Chinese in 2009). Furthermore, he is the coauthor of three monographs—Grammars with
Context Conditions and !eir Applications (along with Martin Švec, Wiley, 2005), Scattered Context
Grammars and !eir Applications (with Jiří Techet, WIT Press, 2010), and Regulated Grammars and
Automata (with Petr Zemek, Springer, 2014). He has published over 90 studies in prominent inter-
national journals, such as Acta Informatica (Springer), International Journal of Computer Mathematics
(Taylor & Francis), and !eoretical Computer Science (Elsevier). All his scienti�c work discusses the
theory of formal languages and computation, the subject of this book, or closely related topics, such
as compiler writing.

Alexander Meduna’s website is http://www.�t.vutbr.cz/~meduna. His scienti�c work is
described in detail at http://www.�t.vutbr.cz/~meduna/work.

