
Chapter 5

Restrictions and Extensions

This chapter introduces several restricted and extended versions of scattered

context grammars. Two types of these modifications are discussed—modifications

that only change the definition of the derivation step, and modifications of the

whole concept of scattered context grammars. Most importantly, we investigate

the generative power of scattered context grammars modified in this way.

5.1 n-Limited Derivations

As formal language theory has always studied various left restrictions placed on

grammatical derivations, we investigate this classical topic in terms of propagating

scattered context grammars in this section as well. More specifically, we discuss

the language families generated by propagating scattered context grammars and

propagating unordered scattered context grammars whose derivations are n-

limited, where n is a positive integer. In these derivations, a scattered context

production is always applied within the first n occurrences of nonterminals in

the current sentential form. We demonstrate that this restriction gives rise to an

infinite hierarchy of language families. In addition, we prove that every family

of this hierarchy is properly included in the family of context-sensitive languages.

Based upon this proper inclusion, we obtain several conclusions and formulate new

open problems. Perhaps most importantly, we point out that the language family

generated by propagating scattered context grammars that make derivations in the

above n-limited way is properly contained in the context-sensitive language family,

so in this sense, we partially solve Open Problem 3.28. First, we define n-limited

derivations formally.

Definition 5.1. Let G = (V,T,P,S) be a propagating scattered context grammar. If

(A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P,

u = u1A1 . . .ukAkuk+1, and v = u1x1 . . .ukxkuk+1, where ui ∈ V ∗, for all 1 ≤ i ≤
k +1, and u⇒G v satisfies

|u1A1 . . .ukAk|V−T ≤ n,

then the derivation step is n-limited, symbolically written as

u ⇒nlim G v.

72 RESTRICTIONS AND EXTENSIONS

An n-limited derivation, denoted by x ⇒n ∗
lim G y, is a derivation in which every

derivation step u ⇒j
lim G v satisfies j≤ n. Define the language of degree n generated

by G as

L(G, lim,n) = {x : x ∈ T ∗,S ⇒n ∗
lim G x}.

The family of languages of degree n generated by propagating scattered context

grammars is denoted by L (PSC, lim,n), and

L (PSC, lim,∞) =
∞
⋃

i=1

L (PSC, lim, i).

Analogously, we define n-limited derivations for propagating unordered scattered

context grammars. The family of languages of degree n generated by propagating

unordered scattered context grammars is denoted by L (PSC,un, lim,n), and

L (PSC,un, lim,∞) =
∞
⋃

i=1

L (PSC,un, lim, i).

We prove the main result, L (PSC, lim,n) = L (ST,n), for all n ≥ 1, by

demonstrating that L (ST,n) ⊆L (PSC, lim,n) and L (PSC, lim,n) ⊆L (ST,n)
in Lemmas 5.2 and 5.3, respectively.

Lemma 5.2. L (ST,n)⊆L (PSC, lim,n), for all n≥ 1.

Proof. Let G = (V,T,K,P,S, p0) be a state grammar of degree n. Set

N1 =
{

〈A, p,k〉 : A ∈V −T, p ∈ K,1≤ k ≤ n
}

,

N2 =
{

〈Â, p,k〉 : A ∈V −T, p ∈ K,1≤ k ≤ n
}

,

N3 =
{

〈A′, p,n−1〉 : A ∈V −T, p ∈ K
}

,

N4 =
{

Â : A ∈V −T
}

.

Set α(p) =
{

A : (A, p) → (x,q) ∈ P
}

, for each p ∈ K. Define the propagating

scattered context grammar

Ḡ =
(

V ∪N1∪N2∪N3∪N4∪{S̄},T, P̄, S̄
)

with P̄ constructed as follows (throughout the construction, we add intuitive

explanation of the purpose of the constructed productions):

1. Add (S̄)→
(

〈Ŝ, p0,1〉
)

to P̄.

2. For each A1, . . . , Ak ∈V −T , where 1≤ k ≤ n, each

(Ar, p)→ (x1B1 . . .xtBtxt+1,q) ∈ P,

where 1 ≤ r ≤ k, B1, . . . , Bt ∈ V − T , x1, . . . , xt+1 ∈ T ∗, for some t ≥ 0,

Ai /∈ α(p), for every 1≤ i < r (A1, . . . , Ak denote the first k nonterminals in

n-LIMITED DERIVATIONS 73

the sentential form; k is the number of nonterminals present in the sentential

form if it contains fewer than n nonterminals, otherwise k = n; Ar is the

nonterminal whose rewriting is simulated; t is the number of nonterminals

appearing on the right-hand side of the simulated production),

(a) and r + t−1 > n, add

i. (used when the sentential form contains more than n nontermi-

nals)

(

〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,

〈Ar+1, p,n〉, . . . ,〈An, p,n〉
)

→
(

〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,

x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉

xn−r+2Bn−r+2 . . .xtBtxt+1,Ar+1, . . . ,An

)

to P̄;

ii. (used when the sentential form contains at most n nonterminals

and Ar is not the last nonterminal)

if r < k, add

(

〈A1, p,k〉, . . . ,〈Ar−1, p,k〉,〈Ar, p,k〉,

〈Ar+1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉
)

→
(

〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,

x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉

xn−r+2Bn−r+2 . . .xtBtxt+1,Ar+1, . . . ,Ak−1, Âk

)

to P̄;

iii. (used when the sentential form contains at most n nonterminals

and Ar is the last nonterminal)

if r = k, add

(

〈A1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉
)

→
(

〈A1,q,n〉, . . . ,〈Ak−1,q,n〉,

x1〈B1,q,n〉 . . .xn−k+1〈Bn−k+1,q,n〉

xn−k+2Bn−k+2 . . .xt−1Bt−1xt B̂txt+1

)

to P̄;

(b) and r + t−1≤ n, k + t−1 > n, add

74 RESTRICTIONS AND EXTENSIONS

i. (used when the sentential form contains more than n nontermi-

nals)

(

〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,

〈Ar+1, p,n〉, . . . ,〈An−t+1, p,n〉,

〈An−t+2, p,n〉, . . . ,〈An, p,n〉
)

→
(

〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1,

〈Ar+1,q,n〉, . . . ,〈An−t+1,q,n〉,An−t+2, . . . ,An

)

to P̄;

ii. (used when the sentential form contains at most n nonterminals

and Ar is not the last nonterminal)

if r < k, add

(

〈A1, p,k〉, . . . ,〈Ar−1, p,k〉,〈Ar, p,k〉,

〈Ar+1, p,k〉, . . . ,〈An−t+1, p,k〉,

〈An−t+2, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉
)

→
(

〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1,

〈Ar+1,q,n〉, . . . ,〈An−t+1,q,n〉,An−t+2, . . . ,Ak−1, Âk

)

to P̄;

(c) and k + t−1≤ n, and

i. if t = 0, add

A. (used when the sentential form contains more than n nonter-

minals and Ar is rewritten to x1 ∈ T ∗)

(

〈A1, p,n〉, . . . ,〈Ar−1, p,n〉,〈Ar, p,n〉,

〈Ar+1, p,n〉, . . . ,〈An, p,n〉
)

→
(

〈A′1,q,n−1〉, . . . ,〈A′r−1,q,n−1〉,x1,

〈A′r+1,q,n−1〉, . . . ,〈A′n,q,n−1〉
)

,

B. (used immediately after (2.c.i.A))

(

〈A′1,q,n−1〉, . . . ,〈A′r−1,q,n−1〉,

〈A′r+1,q,n−1〉, . . . ,〈A′n,q,n−1〉,An+1

)

→
(

〈A1,q,n〉, . . . ,〈Ar−1,q,n〉,

〈Ar+1,q,n〉, . . . ,〈An,q,n〉,〈An+1,q,n〉
)

,

where An+1 ∈ (V −T)∪N4, to P̄;

n-LIMITED DERIVATIONS 75

ii. (used when the sentential form contains at most n nonterminals

and Ar is not the last nonterminal)

if r < k, add

(

〈A1, p,k〉, . . . ,〈Ar−1, p,k〉,

〈Ar, p,k〉,〈Ar+1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉
)

→
(

〈A1,q,k + t−1〉, . . . ,〈Ar−1,q,k + t−1〉,

x1〈B1,q,k + t−1〉 . . .xt〈Bt ,q,k + t−1〉xt+1,

〈Ar+1,q,k + t−1〉, . . . ,〈Ak−1,q,k + t−1〉,

〈Âk,q,k + t−1〉
)

to P̄;

iii. (used when the sentential form contains at most n nonterminals

and Ar is the last nonterminal)

if r = k

A. and k > 1 or t 6= 0, add

(

〈A1, p,k〉, . . . ,〈Ak−1, p,k〉,〈Âk, p,k〉
)

→
(

〈A1,q,k + t−1〉, . . . ,〈Ak−1,q,k + t−1〉,

x1〈B1,q,k + t−1〉 . . .xt−1〈Bt−1,q,k + t−1〉

xt〈B̂t ,q,k + t−1〉xt+1

)

to P̄;

B. (simulates the last derivation step of G)

and k = 1, t = 0, add
(

〈Â1, p,1〉
)

→ (x1) to P̄.

Basic Idea.

For every sentential form (x, p) of G, strings u and v can be found so that x = uv

and either |u|V−T = n and |v|V−T ≥ 1 or |u|V−T = k, where k ≤ n, and |v|V−T = 0.

As a result, only nonterminals occurring in u can be rewritten by a production

of G. As n is a finite number, it is possible to construct a propagating scattered

context grammar Ḡ that rewrites all nonterminals occurring in u in every derivation

step. In this way, Ḡ simulates the rewriting of the leftmost nonterminal for a given

state by considering all possible forms of u and constructing productions of Ḡ

accordingly. The constructed grammar simulates every sentential form of G by its

division into two parts. The first part contains only nonterminals from N1 ∪N2,

which can be rewritten by the constructed productions. The other part contains

nonterminals from (V −T)∪N4, which no production rewrites (with the exception

of the productions from (2.c.i.B) whose application is explained next).

By rewriting a nonterminal in the first part, the number of nonterminals

appearing in the first part might exceed n. To prevent this, the constructed

productions move the extra nonterminals from the end of the first part to the

76 RESTRICTIONS AND EXTENSIONS

beginning of the second part (see all productions from (2.a) and (2.b)), so the

number of nonterminals appearing in the first part is no more than n.

Apart from adding nonterminals, a nonterminal can be removed from the first

part as well. This happens when a nonterminal is rewritten to a string over T . In this

case, a special action is in order when the second part contains some nonterminals.

For this purpose, the grammar records the last nonterminal of the sentential form.

If the last nonterminal appears within the first part, it is represented by a symbol

from N2, and if it occurs in the second part, it is represented by a symbol from N4.

Now, consider the case when a nonterminal from the first part is rewritten to a

string over T and the second part contains some nonterminals; in other words, a

symbol from N2 does not appear at the end of the first part. In this case, the first

nonterminal of the second part is removed, converted to a symbol from N1 (or N2 if

it is the last nonterminal), and added to the end of the first part (see the productions

introduced in (2.c.i.A) and (2.c.i.B)). Therefore, the number of nonterminals that

appear in the first part remains n. If a symbol from N2 appears at the end of the first

part, the second part can be ignored because it does not contain any nonterminal. In

this way, the grammar guarantees that if the first part of the sentential form contains

fewer than n nonterminals, the second part does not contain any nonterminal at all.

Productions from (2.c.ii) and (2.c.iii) are used when the second part remains empty

after the sentential form is rewritten.

Every production changes the current state p incorporated into every nonter-

minal of the first part to the new state q. In addition, each of these nonterminals

records the number of nonterminals, k, occurring in the first part of the sentential

form and this number is updated after every single derivation step. Therefore,

productions that simulate the rewriting in a different state and productions that

rewrite a different number of nonterminals are not applicable.

Formal Proof.

By examining the constructed productions, we see that the derivations of G and Ḡ

resemble each other very much. In most cases, one production of Ḡ simulates

one production of G. However, when a production from (2.c.i.A) is applied,

this application is followed by (2.c.i.B), so in this case, one derivation step

in G corresponds to two derivation steps in Ḡ. Formally, we define the term

sf-correspondence between the sentential forms of G and Ḡ by the following

recursive definition, and use this term in the formulation of Claim 1:

1. The sentential form (S, p0) of G sf-corresponds to the sentential form

〈Ŝ, p0,1〉 in Ḡ.

2. Let (x, p)⇒G (y,q) [α], where (x, p) sf-corresponds to some x̄ in Ḡ.

• If (x, p) ⇒G (y,q) [α] satisfies |x|V−T > n, k + t − 1 ≤ n, and t =
0, then (y,q) sf-corresponds to z̄ in Ḡ, where x̄ ⇒2

Ḡ
z̄ [ᾱ1ᾱ2], ᾱ1

and ᾱ2 are productions from (2.c.i.A) and (2.c.i.B), respectively, whose

construction is based on α .

• Otherwise, (y,q) sf-corresponds to ȳ in Ḡ, where x̄ ⇒
Ḡ

ȳ [ᾱ] and the

construction of ᾱ is based on α .

n-LIMITED DERIVATIONS 77

Claim 1. Every sentential form (y1A1 . . .ymAmym+1, p) of G, where y1, . . . , ym+1 ∈
T ∗, p ∈ K, A1, . . . , Am ∈ V − T , for some m ≥ 0, sf-corresponds to one of the

following sentential forms in Ḡ:

1. y1〈A1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1, for m≤ n;

2. y1〈A1, p,n〉 . . .yn〈An, p,n〉yn+1An+1 . . .ym−1Am−1ymÂmym+1, for m > n.

Proof. Every derivation in Ḡ starts by the production from (1), and this production

is not used during the rest of the derivation process, so

S⇒
Ḡ
〈Ŝ, p0,1〉.

The rest of the claim is proved by induction on length h of derivations, for h≥ 0.

Basis. Let h = 0. Then, (S, p0)⇒
0
G (S, p0) corresponds to 〈Ŝ, p0,1〉 ⇒

0
Ḡ
〈Ŝ, p0,1〉.

Induction Hypothesis. Suppose that the claim holds for all derivations of length h

or less, for some h≥ 0.

Induction Step. First, consider a sentential form (y1A1 . . .ymAmym+1, p) of G,

where m≤ n, and a production

(Ar, p)→ (x1B1 . . .xtBtxt+1,q) ∈ P,

where 1 ≤ r ≤ m, B1, . . . , Bt ∈ V −T , x1, . . . , xt+1 ∈ T ∗, for some t ≥ 0, that is

applicable to the above sentential form (that is, Ai /∈ α(p), for every 1 ≤ i < r).

Then,

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ymAmym+1, p)

⇒G (y1A1 . . .yr−1Ar−1yrx1B1 . . .xtBtxt+1yr+1Ar+1 . . .ymAmym+1,q).

By the induction hypothesis, for m≤ n, the sentential form of Ḡ sf-corresponding

to

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ymAmym+1, p)

is of the form

y1〈A1, p,m〉 . . .yr〈Ar, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1.

Now, one of the productions from (2.a.ii), (2.a.iii), (2.b.ii), (2.c.ii), or (2.c.iii) is

applicable depending on the simulated production, m, and n:

• If r+ t−1 > n and r < m, then a production introduced in (2.a.ii) is applied,

so

y1〈A1, p,m〉 . . .yr−1〈Ar−1, p,m〉yr〈Ar, p,m〉

yr+1〈Ar+1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yr

x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉xn−r+2Bn−r+2 . . .xtBtxt+1

yr+1Ar+1 . . .ym−1Am−1ymÂmym+1.

78 RESTRICTIONS AND EXTENSIONS

• If r+t−1 > n and r = m, then a production introduced in (2.a.iii) is applied,

so

y1〈A1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .ym−1〈Am−1,q,n〉ym

x1〈B1,q,n〉 . . .xn−m+1〈Bn−m+1,q,n〉

xn−m+2Bn−m+2 . . .xt−1Bt−1xt B̂txt+1.

• If r + t − 1 ≤ n, m + t − 1 > n, and r < m, then a production introduced

in (2.b.ii) is applied, so

y1〈A1, p,m〉 . . .yr−1〈Ar−1, p,m〉yr〈Ar, p,m〉

yr+1〈Ar+1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yrx1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1

yr+1〈Ar+1,q,n〉 . . .yn−t+1〈An−t+1,q,n〉

yn−t+2An−t+2 . . .ym−1Am−1ymÂmym+1.

• If m+t−1≤ n and r < m, then a production introduced in (2.c.ii) is applied,

so

y1〈A1, p,m〉 . . .yr−1〈Ar−1, p,m〉yr〈Ar, p,m〉

yr+1〈Ar+1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

⇒n
lim Ḡ

y1〈A1,q,m+ t−1〉 . . .yr−1〈Ar−1,q,m+ t−1〉yr

x1〈B1,q,m+ t−1〉 . . .xt〈Bt ,q,m+ t−1〉xt+1

yr+1〈Ar+1,q,m+ t−1〉 . . .ym−1〈Am−1,q,m+ t−1〉

ym〈Âm,q,m+ t−1〉ym+1.

• If m+ t−1≤ n and r = m, and m > 1 or t 6= 0, then a production introduced

in (2.c.iii.A) is applied, so

y1〈A1, p,m〉 . . .ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

⇒n
lim Ḡ

y1〈A1,q,m+ t−1〉 . . .ym−1〈Am−1,q,m+ t−1〉ym

x1〈B1,q,m+ t−1〉 . . .xt−1〈Bt−1,q,m+ t−1〉

xt〈B̂t ,q,m+ t−1〉xt+1ym+1.

• If m = 1, t = 0, then a production introduced in (2.c.iii.B) is applied, so

y1〈Â1, p,1〉y2 ⇒n
lim Ḡ

y1x1y2.

Observe that this production removes the last symbol from N1∪N2 from the

sentential form and that this symbol appears on the left-hand side of every

production introduced in (2). As a result, this production can be used only

during the very last derivation step.

n-LIMITED DERIVATIONS 79

Second, consider a sentential form (y1A1 . . .ymAmym+1, p) of G, where m > n,

and a production

(Ar, p)→ (x1B1 . . .xtBtxt+1,q) ∈ P,

where 1 ≤ r ≤ m, B1, . . . , Bt ∈ V −T , x1, . . . , xt+1 ∈ T ∗, for some t ≥ 0, that is

applicable to the above sentential form. Then,

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ynAn . . .ymAmym+1, p)

⇒G (y1A1 . . .yr−1Ar−1yrx1B1 . . .xtBtxt+1

yr+1Ar+1 . . .ynAn . . .ymAmym+1,q).

By the induction hypothesis, for m > n, the sentential form of Ḡ sf-corresponding

to

(y1A1 . . .yr−1Ar−1yrAryr+1Ar+1 . . .ynAn . . .ymAmym+1, p)

is of the form

y1〈A1, p,n〉 . . .yr〈Ar, p,n〉 . . .yn〈An, p,n〉yn+1An+1 . . .ym−1Am−1ymÂmym+1.

Now, one of the productions from (2.a.i), (2.b.i), and (2.c.i.A) is applicable

depending on the simulated production, m, and n:

• If r + t−1 > n, then a production introduced in (2.a.i) is applied, so

y1〈A1, p,n〉 . . .yr−1〈Ar−1, p,n〉yr〈Ar, p,n〉

yr+1〈Ar+1, p,n〉 . . .yn〈An, p,n〉

yn+1An+1 . . .ym−1Am−1ymÂmym+1

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yr

x1〈B1,q,n〉 . . .xn−r+1〈Bn−r+1,q,n〉xn−r+2Bn−r+2 . . .xtBtxt+1

yr+1Ar+1 . . .ynAnyn+1An+1 . . .ym−1Am−1ymÂmym+1.

• If r + t−1≤ n and m + t−1 > n, then a production introduced in (2.b.i) is

applied, so

y1〈A1, p,n〉 . . .yr−1〈Ar−1, p,n〉yr〈Ar, p,n〉

yr+1〈Ar+1, p,n〉 . . .yn−t+1〈An−t+1, p,n〉

yn−t+2〈An−t+2, p,n〉 . . .yn〈An, p,n〉

yn+1An+1 . . .ym−1Am−1ymÂmym+1

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yr

x1〈B1,q,n〉 . . .xt〈Bt ,q,n〉xt+1

yr+1〈Ar+1,q,n〉 . . .yn−t+1〈An−t+1,q,n〉

yn−t+2An−t+2 . . .ynAnyn+1An+1 . . .ym−1Am−1ymÂmym+1.

80 RESTRICTIONS AND EXTENSIONS

• If m+t−1≤ n and t = 0, then a production introduced in (2.c.i.A) is applied,

so

y1〈A1, p,n〉 . . .yr−1〈Ar−1, p,n〉yr〈Ar, p,n〉

yr+1〈Ar+1, p,n〉 . . .yn〈An, p,n〉

yn+1An+1 . . .ym−1Am−1ymÂmym+1

⇒n
lim Ḡ

y1〈A
′
1,q,n−1〉 . . .yr−1〈A

′
r−1,q,n−1〉yrx1

yr+1〈A
′
r+1,q,n−1〉 . . .yn〈A

′
n,q,n−1〉

yn+1An+1 . . .ym−1Am−1ymÂmym+1.

Recall that the last nonterminal in every sentential form of Ḡ is from N2∪N4.

As 〈An, p,n〉 /∈ N2 ∪N4, there is at least one nonterminal in the sentential

form following 〈An, p,n〉. Therefore, a production from (2.c.i.B) can be

used. This production rewrites a nonterminal A ∈ (V − T)∪N4 in its last

component. Because we generate the language of degree n, A = An+1, so

– either

y1〈A
′
1,q,n−1〉 . . .yr−1〈A

′
r−1,q,n−1〉yrx1

yr+1〈A
′
r+1,q,n−1〉 . . .yn〈A

′
n,q,n−1〉

yn+1An+1yn+2An+2 . . .ym−1Am−1ymÂmym+1

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yrx1

yr+1〈Ar+1,q,n〉 . . .yn〈An,q,n〉

yn+1〈An+1,q,n〉yn+2An+2 . . .ym−1Am−1ymÂmym+1,

for An+1 ∈V −T ,

– or

y1〈A
′
1,q,n−1〉 . . .yr−1〈A

′
r−1,q,n−1〉yrx1

yr+1〈A
′
r+1,q,n−1〉 . . .yn〈A

′
n,q,n−1〉yn+1Ân+1yn+2

⇒n
lim Ḡ

y1〈A1,q,n〉 . . .yr−1〈Ar−1,q,n〉yrx1

yr+1〈Ar+1,q,n〉 . . .yn〈An,q,n〉yn+1〈Ân+1,q,n〉yn+2,

for Ân+1 ∈ N4.

To see that for a given sentential form and a production of G, there exists only

one of the above derivations in Ḡ, let us make the following observations:

• Notice that every sentential form of G determines the number of nontermi-

nals m, first k ≤ n nonterminals, and the state p. Furthermore, a production

of G determines the new state q, B1, . . . , Bt , and the constants r and t.

Observe that for any sentential form and a production like these, there exists

only one production in Ḡ that simulates this production.

• The simulating production rewrites all nonterminals from N1∪N2 appearing

in the sentential form of Ḡ. Indeed, as k is included in each of these

n-LIMITED DERIVATIONS 81

nonterminals, no production rewriting fewer than k nonterminals can be

used.

• The last nonterminal of the sentential form in Ḡ is always from N2∪N4.

• A production of G is properly simulated by the corresponding production

of Ḡ—that is, all the constructed productions satisfy Ai /∈ α(p), for every

1≤ i < r, and p is changed to q in all nonterminals from N1∪N2. In addition,

in every nonterminal from N1∪N2, k is properly updated.

Finally, notice that if a sentential form of Ḡ is of the form (1) or (2) as described

in Claim 1, the sentential form obtained after performing a derivation step is of one

of these forms as well. As the right-hand side of the production introduced in (1)

of the construction is of the form (1), every sentential form obtained during the

derivation process satisfies the properties given in Claim 1.

From Claim 1 and the derivations described in its proof, it is easy to see that Ḡ

rewrites at most n first nonterminals in a sentential form and that L(G,n) =
L(Ḡ, lim,n). �

Lemma 5.3. L (PSC, lim,n)⊆L (ST,n), for all n≥ 1.

Proof. Let L(G, lim,n) be a language of degree n generated by a propagating

scattered context grammar G = (V,T,P,S). Set

N =
{

〈A, i〉 : A ∈V −T,1≤ i≤ n
}

.

Furthermore, set K1 =
{

〈p, i〉 : p ∈ P,0≤ i < n
}

and

K2 =
{

〈p, i, j〉 : p = (A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P,0≤ i≤ n,0≤ j ≤ k
}

.

Define the state grammar

Ḡ =
(

V ∪N∪{S̄},T,K1∪K2∪{p0}, P̄, S̄, p0

)

with P̄ constructed as follows:

1. For each p = (S)→ (x) ∈ P, add

(S̄, p0)→
(

S,〈p,0〉
)

to P̄.

2. For each A ∈V −T , p = (A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P, 0≤ i < n, add

(a)
(

A,〈p, i〉
)

→
(

〈A, i+1〉,〈p, i+1〉
)

,

(b)
(

A,〈p, i〉
)

→
(

〈A, i+1〉,〈p, i+1,k〉
)

to P̄.

3. For each p = (A1, . . . ,A j, . . . ,Ak)→ (x1, . . . ,x j, . . . ,xk) ∈ P, q ∈ P, A ∈V −
T , 1≤ i≤ n, 0≤ j ≤ k, add

(a)
(

〈A, i〉,〈p, i, j〉
)

→
(

A,〈p, i−1, j〉
)

,

82 RESTRICTIONS AND EXTENSIONS

(b) if j ≥ 1, add
(

〈A j, i〉,〈p, i, j〉
)

→
(

x j,〈p, i−1, j−1〉
)

to P̄.

(c) Add
(

A,〈p,0,0〉
)

→
(

A,〈q,0〉
)

to P̄.

Basic Idea.

Every derivation step of G is simulated in two phases in Ḡ. In the first phase,

performed by productions from (2), Ḡ assigns a sequence number to the first m

nonterminals in the sentential form, where m≤ n is selected non-deterministically.

The form of the constructed productions guarantees that no nonterminal is skipped

during this phase. Ḡ enters the second phase by a production from (2b). In

the second phase, Ḡ simulates the scattered context production backwards; it

starts by simulating the last context-free component of the scattered context

production and ends by simulating its first context-free component. The previously

numbered nonterminals are processed backwards from this point on; as before,

none of them can be skipped. The state of Ḡ consists of three components. First,

it contains the scattered context production that is being simulated; second, it

contains the position of the nonterminal within the sentential form that is being

rewritten; finally, it contains the position of the context-free component within

the scattered context production whose rewriting is being simulated. If the current

nonterminal coincides with the left-hand side of the currently simulated context-

free component, the simulation can be performed by a production from (3b). Every

nonterminal can be skipped by a production from (3a), which only removes the

sequence number assigned during the first phase. Finally, when the simulation of

the whole scattered context production is completed (the last component of the

state equals 0) and the sequence numbers are removed from all nonterminals (the

second component of the state equals 0), the simulation of the following scattered

context production can be initiated by a production from (3c). Otherwise, the

simulation is unsuccessful and the derivation is blocked.

Formal Proof.

The derivation starts in Ḡ by a production introduced in (1), and because no

production contains S̄ on its right-hand side, none of the productions from (1)

is used during the rest of the derivation.

Consider a sentential form u1A1 . . .ukAkuk+1 of G, where u1, . . . , uk+1 ∈V ∗, and

a production

p = (A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P.

Obviously, for a sentential form satisfying |u1A1 . . .ukAk|V−T ≤ n,

u1A1 . . .ukAkuk+1 ⇒nlim G u1x1 . . .ukxkuk+1 [p].

Consider now a sentential form

(

u1A1 . . .ukAkuk+1,〈p,0〉
)

of Ḡ corresponding to the above sentential form of G. Notice that
(

S,〈q,0〉
)

, where

q = (S) → (x) ∈ P, obtained by the application of a production from (1) is a

n-LIMITED DERIVATIONS 83

sentential form of this kind as well. To describe the derivation of G, we express

(

u1A1 . . .ukAkuk+1,〈p,0〉
)

as
(

w1B1 . . .wmBm . . .wnBn . . .wtBtwt+1,〈p,0〉
)

,

where w1, . . . , wt+1 ∈ T ∗, B1, . . . , Bt ∈ V −T , t = |u1A1 . . .ukAkuk+1|V−T , Bli =
Ai, for some 1 ≤ li ≤ m, for all 1 ≤ i ≤ k, and l j < l j+1, for all 1 ≤ j ≤ k− 1.

(Discussion of other possible kinds of this sentential form, for example when t < n,

is left to the reader.) Then, the derivation performed by productions from (2a) can

be expressed as

(

w1B1 . . .wmBm . . .wtBtwt+1,〈p,0〉
)

⇒
Ḡ

(

w1〈B1,1〉w2B2 . . .wmBm . . .wtBtwt+1,〈p,1〉
)

...

⇒
Ḡ

(

w1〈B1,1〉 . . .wm−1〈Bm−1,m−1〉wmBm . . .wtBtwt+1,〈p,m−1〉
)

.

Finally, a production from (2b) is used, so

(

w1〈B1,1〉 . . .wm−1〈Bm−1,m−1〉wmBm . . .wtBtwt+1,〈p,m−1〉
)

⇒
Ḡ

(

w1〈B1,1〉 . . .wm〈Bm,m〉wm+1Bm+1 . . .wtBtwt+1,〈p,m,k〉
)

.

Next, productions from (3) simulate all context-free components of p in reverse

order. The simulation of Ak → xk is performed as follows:

(

w1〈B1,1〉 . . .wm〈Bm,m〉wm+1Bm+1 . . .wtBtwt+1,〈p,m,k〉
)

⇒
Ḡ

(

w1〈B1,1〉 . . .wm−1〈Bm−1,m−1〉wmBm . . .wtBtwt+1,〈p,m−1,k〉
)

...

⇒
Ḡ

(

w1〈B1,1〉 . . .wlk〈Blk , lk〉wlk+1Blk+1 . . .wtBtwt+1,〈p, lk,k〉
)

⇒
Ḡ

(

w1〈B1,1〉 . . .wlk−1〈Blk−1, lk−1〉

wlk xkwlk+1Blk+1 . . .wtBtwt+1,〈p, lk−1,k−1〉
)

.

The context-free components Ak−1→ xk−1, . . . , A1→ x1 are simulated analogously

until a sentential form
(

u1x1 . . .ukxkuk+1,〈p,0,0〉
)

is obtained. Notice that when a state 〈p,0, i〉, where i≥ 1, is reached, the derivation

is blocked. This means that either in the non-deterministic part of the derivation

the value of m was chosen too low so the whole scattered context production

cannot be simulated or more than n first nonterminals need to be rewritten to

84 RESTRICTIONS AND EXTENSIONS

simulate the scattered context production. Finally, a production from (3c) finishes

the simulation of p and starts the simulation of some q ∈ P:

(

u1x1 . . .ukxkuk+1,〈p,0,0〉
)

⇒
Ḡ

(

u1x1 . . .ukxkuk+1,〈q,0〉
)

.

This simulation continues until we obtain the sentential form
(

w,〈r,0,0〉
)

, where

w ∈ T ∗ and r ∈ P. �

As L (ST,n)⊆L (PSC, lim,n) and L (PSC, lim,n)⊆L (ST,n), for all n≥ 1,

we obtain the the following result.

Theorem 5.4. L (PSC, lim,n) = L (ST,n), for all n≥ 1. �

Next, we reformulate Theorem 5.4 in terms of L (PSC,un, lim,n).

Theorem 5.5. L (PSC,un, lim,n) = L (ST,n), for all n≥ 1.

Proof. To prove this theorem, we demonstrate that L (ST,n)⊆L (PSC,un, lim,n)
and L (PSC,un, lim,n)⊆L (ST,n), for all n≥ 1.

The first inclusion can be proved similarly to the proof of Lemma 5.2. However,

in this case, the constructed grammar must also record the sequence number of

each of the first n nonterminals in the sentential form in order to guarantee that the

right component of the unordered scattered context production is used; without

this record, any permutation of the unordered scattered context production could

be applied. Therefore, the elements of the sets N1,N2, and N3 have to be changed

to contain one more component that determines the order of the nonterminal in the

sentential form. In addition, each of the constructed productions has to be modified

so that it preserves the correct sequence numbers of these nonterminals in every

sentential form. This can be easily accomplished because each of these productions

rewrites all the nonterminals from N1∪N2∪N3 in the sentential form. The rest of

the proof is analogous to the proof of Lemma 5.2 and, therefore, left to the reader.

The second inclusion, L (PSC,un, lim,n) ⊆ L (ST,n), can be proved as fol-

lows. For any propagating unordered scattered context grammar G of degree n, we

can construct a propagating scattered context grammar Ḡ of the same degree such

that L(G, lim,n) = L(Ḡ, lim,n). Indeed, if we construct Ḡ so that it contains all

possible permutations of every production of G, we obtain a grammar satisfying

these properties. Therefore, L(G, lim,n) = L(Ḡ, lim,n) and L (PSC,un, lim,n) ⊆
L (PSC, lim,n). As L (PSC, lim,n) = L (ST,n), we obtain L (PSC,un, lim,n)⊆
L (ST,n). �

Recall that

L (CF) = L (ST,1)⊂L (ST,2)⊂ ·· · ⊂L (ST,∞)⊂L (ST) = L (CS),

where every L (ST,n), for some n ≥ 1, is an abstract family of languages (see

Theorems 2.32 and 2.33). These properties together with Theorems 5.4 and 5.5

imply the following two corollaries.

LEFTMOST DERIVATIONS 85

Corollary 5.6.

L (PSC,un, lim,1) = L (PSC, lim,1) = L (ST,1) = L (CF)

⊂L (PSC,un, lim,2) = L (PSC, lim,2) = L (ST,2)
...

⊂L (PSC,un, lim,∞) = L (PSC, lim,∞) = L (ST,∞)

⊂L (CS).

�

Corollary 5.7. Every L (PSC, lim,n) and L (PSC,un, lim,n), where n ≥ 1, is an

abstract family of languages. �

We have demonstrated that limiting derivations performed by propagating scat-

tered context grammars and propagating unordered scattered context grammars to

the first n nonterminals gives rise to an infinite hierarchy of languages. This result

is of some practical interest in terms of compilers. When constructing a compiler

based on a grammatical model, we usually need to restrict this model in order to

make the compiler more effective. The presented result shows that if the model

is based on propagating scattered context grammars, by limiting the width of the

window in which the context dependency is checked, we also limit the power of the

resulting compiler. In certain situations, such as parsing of streamed data, limiting

the context dependency checks to a finite window is necessary because the exact

length of the input is unknown.

From a theoretical point of view, the achieved results are interesting too. It is

known that L (PSC,un) ⊂ L (PSC) (see Corollary 5.20). However, when using

n-limited derivations, L (PSC,un, lim,n) = L (PSC, lim,n). On the other hand,

the definition of n-limited derivations induces the following problem.

Open Problem 5.8. Can we construct ordinary propagating scattered context

grammars that automatically perform only n-limited derivations—that is, they

make these derivations without any explicitly required n-limited derivation restric-

tion placed on them? If so, can we establish the results of this section for

them? How would this modification influence the generative power of propagating

unordered scattered context grammars?

5.2 Leftmost Derivations

While the previous section discussed a left restriction placed on sentential forms,

the present section studies a left restriction placed on the use of productions in

propagating scattered context grammars. In essence, this restriction requires that

in the current sentential form, every production p is applied so that p rewrites the

leftmost possible occurrences of the nonterminals corresponding to its left-hand

side. We prove that propagating scattered context grammars restricted in this way

are equivalent to context-sensitive grammars. This result is of some interest for

86 RESTRICTIONS AND EXTENSIONS

two reasons. First, in terms of ordinary propagating scattered context grammars,

this equivalence represents a famous long-standing open problem (see Open

Problem 3.28). Second, regarding all four grammars underlying the Chomsky

hierarchy, analogical restriction does not affect their generative power at all.

From a historical perspective, the equivalence mentioned above was originally

established in [15] by a rather complicated and difficult-to-follow proof. Later on,

the same result was proved by [25] in a simpler way. Naturally, we base this section

on the latter.

Definition 5.9. A propagating scattered context grammar that uses leftmost or

rightmost derivations is a propagating scattered context grammar G = (V,T,P,S)
whose language is defined as

L(G, lm) = {x : x ∈ T ∗,S ⇒∗
lm G x}, or

L(G, rm) = {x : x ∈ T ∗,S ⇒∗
rm G x},

respectively. The family of languages generated by propagating scattered context

grammars that use leftmost or rightmost derivations is denoted by L (PSC, lm) or

L (PSC, rm), respectively.

The following theorem demonstrates that propagating scattered context gram-

mars that perform their derivations in a leftmost way are equivalent to context-

sensitive grammars.

Theorem 5.10. L (PSC, lm) = L (CS).

Proof. As propagating scattered context grammars do not contain erasing pro-

ductions, their derivations can be simulated by context-sensitive grammars. As

a result, L (PSC, lm) ⊆ L (CS). In what follows, we demonstrate that also

L (CS) ⊆ L (PSC, lm) holds true by demonstrating that for every context-

sensitive grammar in Kuroda normal form, there exists an equivalent propagating

scattered context grammar that uses leftmost derivations.

Let G = (V,T,P,S) be a context-sensitive grammar in Kuroda normal form (see

Definition 2.17). Set

N1 = (V −T)∪{ā : a ∈ T}

(suppose that (V −T)∩{ā : a ∈ T} = /0), and N̂1 = {Â : A ∈ N1}. Let n = |N1|;
then, we denote the elements of N1 as {A1, . . . ,An}. Define the homomorphism α

from V ∗ to N∗1 as α(A) = A, for each A ∈V −T , and α(a) = ā, for each a ∈ T . Set

N′2 = {A′ : A ∈V −T},

N3 =
{

〈ab〉 : a,b ∈V
}

,

N′4 =
{

〈Aa〉′ : A ∈V −T,a ∈V
}

,

N5 =
{

〈a,0〉,〈ab,0〉 : a,b ∈V
}

∪
{

〈a, i, j〉 : a ∈V −T,1≤ i≤ 3,1≤ j ≤ n
}

∪
{

〈ab,4〉 : a,b ∈ T
}

.

LEFTMOST DERIVATIONS 87

Without loss of generality, assume that the sets N1, N̂1, N′2, N3, N′4, N5, {S̄,X},
and T are pairwise disjoint. Define the propagating scattered context grammar

Ḡ =
(

N1∪ N̂1∪N′2∪N3∪N′4∪N5∪{S̄,X}∪T,T, P̄, S̄
)

,

where P̄ is constructed as follows:

1. (a) For each a ∈ L(G), where a ∈ T , add

(S̄)→ (a) to P̄.

(b) For each S⇒G ab, where a, b ∈V , add

(S̄)→
(

〈ab,0〉X
)

to P̄.

2. For each a, b, c ∈V , add

(a)
(

〈a,0〉,α(b)
)

→
(

α(a),〈b,0〉
)

,

(b)
(

α(a),〈b,0〉
)

→
(

〈a,0〉,α(b)
)

,

(c)
(

〈a,0〉,〈bc〉
)

→
(

α(a),〈bc,0〉
)

,

(d)
(

α(a),〈bc,0〉
)

→
(

〈a,0〉,〈bc〉
)

to P̄.

3. For each A→ a ∈ P and b ∈V , add

(a)
(

〈A,0〉
)

→
(

〈a,0〉
)

,

(b)
(

〈Ab,0〉
)

→
(

〈ab,0〉
)

,

(c)
(

〈bA,0〉
)

→
(

〈ba,0〉
)

to P̄.

4. For each A→ BC ∈ P and a ∈V , add

(a)
(

〈A,0〉
)

→
(

B〈C,0〉
)

,

(b)
(

〈Aa,0〉
)

→
(

B〈Ca,0〉
)

,

(c)
(

〈aA,0〉
)

→
(

α(a)〈BC,0〉
)

to P̄.

5. For each AB → CD ∈ P, a ∈ V , E ∈ N3 ∪N′4, F ′ ∈
{

B′,〈Ba〉′
}

, 1 ≤ i ≤ n,

and 1≤ j ≤ n−1, add

(a)
(

〈AB,0〉
)

→
(

〈CD,0〉
)

,

(b) i.
(

〈A,0〉,B,X
)

→
(

〈A,1,1〉,B′,A1

)

,

ii.
(

〈A,0〉,〈Ba〉,X
)

→
(

〈A,1,1〉,〈Ba〉′,A1

)

,

(c) i.
(

〈A,1, i〉,Ai

)

→
(

〈A,2, i〉, Âi

)

,

ii.
(

〈A,2, i〉,F ′, Âi

)

→
(

〈A,3, i〉,F ′,Ai

)

,

iii.
(

〈A,3, j〉,E,A j

)

→
(

〈A,1, j +1〉,E,A j+1

)

,

(d) i.
(

〈A,3,n〉,B′,E,An

)

→
(

〈C,0〉,D,E,X
)

,

ii.
(

〈A,3,n〉,〈Ba〉′,An

)

→
(

〈C,0〉,〈Da〉,X
)

to P̄.

6. For each a, b, c ∈ T , add

88 RESTRICTIONS AND EXTENSIONS

(a)
(

〈ab,0〉
)

→
(

〈ab,4〉
)

,

(b)
(

c̄,〈ab,4〉
)

→
(

c,〈ab,4〉
)

,

(c)
(

〈ab,4〉,X
)

→ (a,b) to P̄.

Basic Idea.

Productions introduced in (1) initiate the derivation. Productions from (2) select

the nonterminal to be rewritten. Productions from (3), (4), and (5) simulate

productions of G of the form A→ a, A→ BC, and AB→CD, respectively. Finally,

productions from (6) finish the derivation.

Formal Proof.

Every derivation starts either by a production introduced in (1a) to generate

sentences a∈ L(G), where a∈ T , or by a production introduced in (1b) to generate

sentences x ∈ L(G), where |x| ≥ 2. As S̄ does not occur on the right-hand side of

any production, productions from (1) are not used during the rest of the derivation.

Consider a sentential form a1 . . .ak of G, where a1, . . . , ak ∈V , for some k ≥ 2.

In Ḡ, this sentential form corresponds

• either to

b1 . . .br−1〈ar,0〉br+1br+2 . . .bk−2〈ak−1ak〉X ,

where bi = α(ai), for all

i ∈ {1,2, . . . ,r−1,r +1,r +2, . . . ,k−2},

for some 1≤ r ≤ k−2,

• or to

b1 . . .bk−2〈ak−1ak,0〉X ,

where bi = α(ai), for all 1≤ i≤ k−2 (observe that every right-hand side of

a production from (1b) represents a sentential form of this kind).

To simulate a production of G, the leftmost nonterminal from its left-hand side

has to be selected in the sentential form of Ḡ. This is made by appending 0 to

the selected symbol by productions from (2). Specifically, for a symbol a∈V , (2a)

selects the leftmost symbol a immediately following the currently selected symbol,

and (2b) selects the leftmost symbol a preceding the currently selected symbol.

Productions from (2c) and (2d) select and deselect the penultimate nonterminal in

a sentential form of Ḡ, which consists of two symbols from V . Observe that in

this way, any symbol (except for the final X) in every sentential form of Ḡ can

be selected. Furthermore, observe that during a derivation, always one symbol is

selected.

After the nonterminal is selected, the application of the production of G can be

simulated. Productions of the form A→ a are simulated by (3a) for every selected

nonterminal a1, . . . , ak−2, and by (3b), (3c) if the penultimate nonterminal (which

contains ak−1, ak) of the sentential form of Ḡ is selected. Analogously, productions

of the form A→ BC are simulated by productions from (4).

LEFTMOST DERIVATIONS 89

Productions from (5a) simulate applications of productions of the form AB →
CD within the penultimate nonterminal of a sentential form of Ḡ. In what follows,

we demonstrate how productions from (5b), (5c), and (5d) are used if this

production is simulated within a1 . . .ak−2. Suppose that the sentential form in Ḡ

has the form

b1 . . .br−1〈ar,0〉br+1br+2 . . .bk−2〈ak−1ak〉X ,

and we simulate the application of arar+1 → crcr+1 ∈ P. Recall that N1 =
{A1, . . . ,An} denotes the set of all symbols that may occur in br+1br+2 . . .bk−2.

First, to select br+1 = α(ar+1), the production

(

〈ar,0〉,br+1,X
)

→
(

〈ar,1,1〉,b′r+1,A1

)

from (5bi) is applied in a successful derivation, so

b1 . . .br−1〈ar,0〉br+1br+2 . . .bk−2〈ak−1ak〉X

⇒
lm Ḡ

b1 . . .br−1〈ar,1,1〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉A1.

Observe that if br+1 does not immediately follow 〈ar,0〉, the leftmost

b ∈ alph(br+2br+3 . . .bk−2)

satisfying b = br+1 is selected by the production from (5bi). The purpose of

productions from (5c) is to verify that the nonterminal immediately following

〈ar,0〉 has been selected. First, the production

(

〈ar,1,1〉,A1

)

→
(

〈ar,2,1〉, Â1

)

from (5ci) is applied to tag the first A1 following 〈ar,1,1〉, so

b1 . . .br−1〈ar,1,1〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉A1

⇒
lm Ḡ

b1 . . .br−1〈ar,2,1〉b′r+1y1〈ak−1ak〉d1,

where

• either d1 = A1,

y1 = br+2br+3 . . .bm−1Â1bm+1bm+2 . . .bk−2,

satisfying A1 /∈ alph(br+2br+3 . . .bm−1), for some 1≤ m≤ k−2,

• or d1 = Â1,

y1 = br+2br+3 . . .bk−2,

satisfying A1 /∈ alph(y1).

90 RESTRICTIONS AND EXTENSIONS

Then, the production

(

〈ar,2,1〉,b′r+1, Â1

)

→
(

〈ar,3,1〉,b′r+1,A1

)

from (5cii) is applied to untag the first symbol Â1 following b′r+1, so

b1 . . .br−1〈ar,2,1〉b′r+1y1〈ak−1ak〉d1

⇒
lm Ḡ

b1 . . .br−1〈ar,3,1〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉A1.

This means that if A1 occurs between 〈ar,2,1〉 and b′r+1, it is tagged by the

production from (5ci), but it cannot be untagged by any production from (5cii),

so the derivation is blocked. Finally, the production

(

〈ar,3,1〉,〈ak−1ak〉,A1

)

→
(

〈ar,1,2〉,〈ak−1ak〉,A2

)

from (5ciii) is applied, so

b1 . . .br−1〈ar,3,1〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉A1

⇒
lm Ḡ

b1 . . .br−1〈ar,1,2〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉A2,

and the same verification can be performed for A2. This verification proceeds for

all symbols from N1, so this part of the derivation can be expressed as

u1 ⇒
lm Ḡ

v1 [p11] ⇒
lm Ḡ

w1 [p12]

⇒
lm Ḡ

u2 [p13] ⇒
lm Ḡ

v2 [p21] ⇒
lm Ḡ

w2 [p22]
...

⇒
lm Ḡ

un [p(n−1)3] ⇒
lm Ḡ

vn [pn1] ⇒
lm Ḡ

wn [pn2]

with

ui = b1 . . .br−1〈ar,1, i〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉Ai,

vi = b1 . . .br−1〈ar,2, i〉b′r+1yi〈ak−1ak〉di,

wi = b1 . . .br−1〈ar,3, i〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉Ai,

where pi1, pi2, and p j3 are productions from (5ci), (5cii), and (5ciii), respectively,

for all 1≤ i≤ n, 1≤ j ≤ n−1, and

• either di = Ai,

yi = br+2br+3 . . .bim−1
Âibim+1

bim+2
. . .bk−2,

satisfying Ai /∈ alph(br+2br+3 . . .bim−1
), for some 1≤ im ≤ k−2,

• or di = Âi,

yi = br+2br+3 . . .bk−2,

satisfying Ai /∈ alph(yi).

LEFTMOST DERIVATIONS 91

After the verification is finished, the application of arar+1 → crcr+1 ∈ P is

simulated by

(

〈ar,3,n〉,b′r+1,〈ak−1ak〉,An

)

→
(

〈cr,0〉,cr+1,〈ak−1ak〉,X
)

from (5di), so

b1 . . .br−1〈ar,3,n〉b′r+1br+2br+3 . . .bk−2〈ak−1ak〉An

⇒
lm Ḡ

b1 . . .br−1〈cr,0〉cr+1br+2br+3 . . .bk−2〈ak−1ak〉X .

Observe that in order to simulate a production of the form AB → CD within

ak−2ak−1, productions from (5bii) and (5dii) have to be used instead of productions

from (5bi) and (5di) in the simulation described above. The details of this

simulation are left to the reader.

Finally, consider a sentence a1 . . .ak ∈ T + of G. After the simulation is

completed, this sentence corresponds in Ḡ

• either to

ā1 . . . ār−1〈ar,0〉ār+1ār+2 . . . āk−2〈ak−1ak〉X

• or to

ā1 . . . āk−2〈ak−1ak,0〉X .

To enter the final phase in Ḡ, we need the sentential form to be in the second above

described form. This can be achieved by applying a production from (2c) to the

first sentential form. The rest of the derivation can be expressed as

ā1 . . . āk−2〈ak−1ak,0〉X

⇒
lm Ḡ

ā1 . . . āk−2〈ak−1ak,4〉X [p6a]

⇒k−2
lm Ḡ

a1 . . .ak−2〈ak−1ak,4〉X [Ξ6b]

⇒
lm Ḡ

a1 . . .ak−2ak−1ak [p6c],

where p6a and p6c are productions introduced in (6a) and (6c), respectively,

and Ξ6b is a sequence of k− 2 productions from (6b). As a result, x ∈ L(Ḡ, lm)
if and only if x ∈ L(G). Therefore, L (CS)⊆L (PSC, lm).

As L (PSC, lm) ⊆L (CS) and L (CS) ⊆L (PSC, lm), we get L (PSC, lm) =
L (CS), so the theorem holds. �

The following corollary reformulates Theorem 5.10 in terms of right derivations.

Corollary 5.11. L (PSC, rm) = L (CS).

Proof. This corollary can be proved by a straightforward modification of the proof

of Theorem 5.10 and its proof is, therefore, left to the reader. �

92 RESTRICTIONS AND EXTENSIONS

5.3 Maximal and Minimal Derivations

In this section, we introduce two natural and simple modifications of propagating

scattered context grammars. As a matter of fact, both modifications only change

the way propagating scattered context grammars perform their derivations while

keeping their grammatical concept unchanged. More specifically, during every

derivation step, these modified versions select an applicable production containing

the maximal or, in contrast, the minimal number of nonterminals on its left-hand

side. We prove that both of these versions generate the family of context-sensitive

languages.

Definition 5.12. Let G = (V,T,P,S) be a scattered context grammar. Define the

maximal derivation step as

u ⇒max G v [p]

if and only if u⇒G v [p] and there is no r ∈ P satisfying len(r) > len(p) such that

u⇒G w [r]. Similarly, define the minimal derivation step as

u ⇒min G v [p]

if and only if u⇒G v [p] and there is no r ∈ P satisfying len(r) < len(p) such that

u ⇒G w [r]. Define the transitive closure and the reflexive and transitive closure

of ⇒
max G and ⇒

min G in the standard way. The language of a scattered context

grammar G that uses maximal or minimal derivations is denoted by L(G,max) or

L(G,min), and defined as

L(G,max) = {x : x ∈ T ∗,S ⇒∗
max G x}, or

L(G,min) = {x : x ∈ T ∗,S ⇒∗
min G x},

respectively. The corresponding language families are denoted by L (PSC,max)
and L (PSC,min).

Next, we demonstrate that propagating scattered context grammars that use

either maximal or minimal derivations characterize the family of context-sensitive

languages.

Theorem 5.13. L (CS) = L (PSC,max).

Proof. Let L be a context-sensitive language. As state grammars characterize the

family of context-sensitive languages (see Theorem 2.32), we suppose that L is

described by a state grammar Ḡ = (V̄ ,T,K, P̄, S̄, p0). Set

Y =
{

〈A,q〉 : A ∈ V̄ −T,q ∈ K
}

and Z = {ā : a ∈ T}. Define the homomorphism α form V̄ ∗ to
(

(V̄ − T)∪ Z
)∗

as α(A) = A, for all A ∈ V̄ −T , and α(a) = ā, for all a ∈ T . Set V = V̄ ∪Y ∪Z∪
{S,X}. Define the propagating scattered context grammar G = (V,T,P,S), where P

is constructed as follows:

MAXIMAL AND MINIMAL DERIVATIONS 93

1. For each x ∈ L(Ḡ), where |x| ≤ 2, add

(S)→ (x) to P.

2. For each

(x,q) ∈
{

(x,q) : (S̄, p0)⇒
+
Ḡ

(x,q), for some q ∈ K,

and 3≤ |x| ≤max
(

{3}∪{|y| : (B, p)→ (y, p′) ∈ P̄}
)

}

,

where

(a) x ∈ T ∗, add

(S)→ (x) to P;

(b) x = x1Ax2, A ∈ V̄ −T , x1, x2 ∈ V̄ ∗, add

(S)→
(

α(x1)〈A,q〉α(x2)
)

to P.

3. For each (A, p)→ (x,q), (B, p)→ (y,r) ∈ P̄, C ∈ V̄ , Γ21 ∈ perm(2,1), and

z = reorder
(

(

B,〈A, p〉,α(C)
)

,Γ21

)

,

add z→ (X ,X ,X) to P.

4. For each (A, p)→ (x,q) ∈ P̄, B ∈ V̄ −T , C ∈ V̄ , Γ11 ∈ perm(1,1), and

y = reorder
(

(

〈A, p〉,α(C)
)

,Γ11

)

,

add

(a)
(

B,〈A, p〉
)

→
(

〈B,q〉,α(x)
)

,

(b)
(

〈A, p〉,B
)

→
(

α(x),〈B,q〉
)

to P;

(c) if x = vBw, v, w ∈ V̄ ∗, for each

z = reorder
(

(

α(v)〈B,q〉α(w),α(C)
)

,Γ11

)

,

add y→ z to P;

(d) for each

u = reorder
(

(

α(x),α(C)
)

,Γ11

)

,

add y→ u to P.

5. For each a ∈ T , add

(ā)→ (a) to P.

Basic Idea.

The state grammar Ḡ is simulated by the propagating scattered context grammar G

that performs maximal derivations. Productions introduced in (1) are used to

94 RESTRICTIONS AND EXTENSIONS

generate a sentence w ∈ L(Ḡ), where |w| ≤ 2, while productions introduced in (2)

start the simulation of a derivation of a sentence w∈ Ḡ, where |w| ≥ 3. Let (A, p)→
(x,q) be a production of Ḡ that is applicable to a sentential form (w1Aw2, p)
generated by Ḡ. The sentential form (w1Aw2, p) in Ḡ corresponds to the sentential

form α(w1)〈A, p〉α(w2) in G. Consider the application of a production (A, p)→
(x,q) in Ḡ. G simulates this application as follows. First, G checks whether the

production is applied to the leftmost nonterminal of the sentential form for the

given state p. If not, a production from (3) is applicable. This production is applied

because it has the highest priority of all productions, and its application introduces

the symbol X into the sentential form, which blocks the derivation. The successful

derivation proceeds by applying a production from (4a), (4b), and (4c), which non-

deterministically selects the next nonterminal to be rewritten, and appends the new

state to it. The production that finishes the derivation of a sentence in Ḡ is simulated

by a production from (4d), which removes the compound nonterminal 〈. . .〉 from

the sentential form. Finally, every symbol ā, where a ∈ T , is rewritten to a.

Formal Proof.

We establish the theorem by Claims 1 through 4 stated below.

Claim 1. Every x ∈ L(Ḡ), where |x| ≤ 2, is generated by G as follows:

S ⇒max G x [p1],

where p1 is one of the productions introduced in (1).

Claim 2. Every

(S̄, p0)⇒
+
Ḡ

(x,q),

where q ∈ K, x ∈ T +, and

3≤ |x| ≤max
(

{3}∪
{

|y| : (B, p)→ (y, p′) ∈ P̄
}

)

,

is generated by G as follows:

S ⇒max G x [p2a],

where p2a is one of the productions introduced in (2a).

Claim 3. Every

(S̄, p0)⇒
+
Ḡ

(x,q)⇒+
Ḡ

(u,r),

where q, r ∈ K, u ∈ T +, x = v0Aw0, A ∈ V̄ −T , v0, w0 ∈ V̄ ∗, and

3≤ |x| ≤max
(

{3}∪
{

|y| : (B, p)→ (y, p′) ∈ P̄
}

)

,

can only be generated by G as follows:

S ⇒
max G α(v0)〈A,q〉α(w0) [p2b]

⇒∗
max G y [Ξ4]

⇒
max G z [p4d]

⇒
|u|

max G u [Ξ5],

MAXIMAL AND MINIMAL DERIVATIONS 95

where y ∈ Z∗Y Z∗, z = α(u); p2b and p4d denote one of the productions introduced

in (2b) and (4d), respectively, Ξ4 is a sequence of productions from (4a), (4b),

and (4c), and Ξ5 is a sequence of productions from (5).

Proof. Observe that the productions from (1) and (2) are the only productions

containing S on their left-hand sides and no other productions contain S on their

right-hand sides. To generate a sentence u, |u| ≥ 3, the derivation has to start as

S ⇒max G α(v0)〈A,q〉α(w0) [p2b],

and productions from (1) and (2) are not used during the rest of the derivation.

Further, observe that none of the productions introduced in (3) can be applied

during a successful derivation because no production rewrites the nonterminal X

that appears on the right-hand side of every production from (3).

To generate a sentence over T , all symbols from V̄ − T have to be removed

from the sentential form, and only productions from (4) can perform this removal

because only these productions contain symbols from V̄ − T on their left-hand

sides. Furthermore, productions (4a), (4b), and (4c) contain one symbol from Y

both on their left-hand sides and their right-hand sides while productions from (4d)

contain a symbol from Y only on their left-hand sides. Therefore, after the

application of a production from (4d), none of the productions from (4) is

applicable. Because for each production p4 and p5 introduced in (4) and (5),

respectively, it holds that len(p4) > len(p5), no production from (5) is used while

some production from (4) is applicable. As a result, the corresponding part of the

derivation can be expressed as follows:

α(v0)〈A,q〉α(w0) ⇒∗
max G y [Ξ4]

⇒
max G z [p4d].

At this point, z = α(u) in a successful derivation. Productions from (5) replace

every ā ∈ alph(z) with a in |u| steps, so we obtain

z ⇒
|u|

max G u [Ξ5].

Putting together all the previous observations, we obtain Claim 3.

Claim 4. In a successful derivation, every

α(v0)〈B0,q0〉α(w0)

⇒
max G α(v1)〈B1,q1〉α(w1) [p0]

...

⇒
max G α(vn)〈Bn,qn〉α(wn) [pn−1]

96 RESTRICTIONS AND EXTENSIONS

is performed in G if and only if

(v0B0w0,q0)

⇒
Ḡ

(v1B1w1,q1)
[

(B0,q0)→ (x1,q1)
]

...

⇒
Ḡ

(vnBnwn,qn)
[

(Bn−1,qn−1)→ (xn,qn)
]

is performed in Ḡ, where vi, wi ∈ V̄ ∗, Bi ∈ V̄ −T , qi ∈K, for all 0≤ i≤ n, for some

n≥ 0, x1, . . . , xn ∈ V̄ +, and p0, . . . , pn−1 are productions introduced in (4a), (4b),

and (4c).

Proof. We start by proving the only-if part of the claim.

Only If. We show that

α(v0)〈B0,q0〉α(w0) ⇒m
max G α(vm)〈Bm,qm〉α(wm)

implies

(v0B0w0,q0)⇒
m
Ḡ

(vmBmwm,qm)

by induction on m≥ 0.

Basis. Let m = 0. Then,

α(v0)〈B0,q0〉α(w0) ⇒0
max G α(v0)〈B0,q0〉α(w0)

and clearly,

(v0B0w0,q0)⇒
0
Ḡ

(v0B0w0,q0).

Induction Hypothesis. Suppose that the claim holds for all k-step derivations,

where k ≤ m, for some m≥ 0.

Induction Step. Let us consider a derivation

α(v0)〈B0,q0〉α(w0) ⇒m+1
max G α(vm+1)〈Bm+1,qm+1〉α(wm+1).

Since m+1≥ 1, there is some

α(vm)〈Bm,qm〉α(wm) ∈
(

(V̄ −T)∪Z
)∗

Y
(

(V̄ −T)∪Z
)∗

and a production pm such that

α(v0)〈B0,q0〉α(w0) ⇒m
max G α(vm)〈Bm,qm〉α(wm)

⇒
max G α(vm+1)〈Bm+1,qm+1〉α(wm+1) [pm].

By the induction hypothesis, there is a derivation

(v0B0w0,q0)⇒
m
Ḡ

(vmBmwm,qm).

As pm is a production introduced in (4a) through (4c), it has one of the following

forms depending on the placement of Bm+1:

MAXIMAL AND MINIMAL DERIVATIONS 97

•
(

Bm+1,〈Bm,qm〉
)

→
(

〈Bm+1,qm+1〉,α(xm+1)
)

, for vm = v′mBm+1v′′m;

•
(

〈Bm,qm〉,Bm+1

)

→
(

α(xm+1),〈Bm+1,qm+1〉
)

, for wm = w′mBm+1w′′m;

•
(

〈Bm,qm〉,α(A)
)

→
(

α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1),α(A)
)

, or
(

α(A),〈Bm,qm〉
)

→
(

α(A),α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1)
)

,

for xm+1 = x′m+1Bm+1x′′m+1,

where A∈ V̄ and xm+1, x′m+1, x′′m+1 ∈ V̄ ∗. Their construction is based on P̄, so there

is a production (Bm,qm)→ (xm+1,qm+1) ∈ P̄.

Simulating a derivation of G by Ḡ, we now prove that for the given state qm,

the leftmost nonterminal in the sentential form is rewritten in G. We make this

proof by contradiction. Suppose that there is a production p′m ∈ P from (4) that

rewrites some B′m ∈ V̄ − T in a state qm, and B′m ∈ alph(vm). Then, there exists

(B′m,qm)→ (x′m+1,q
′
m+1)∈ P̄ and, as a result, there also exist productions from (3),

which are based on (Bm,qm)→ (xm+1,qm+1) and (B′m,qm)→ (x′m+1,q
′
m+1). These

productions have the following forms:

(

B′m,〈Bm,qm〉,α(A)
)

→ (X ,X ,X),
(

B′m,α(A),〈Bm,qm〉
)

→ (X ,X ,X),
(

α(A),B′m,〈Bm,qm〉
)

→ (X ,X ,X),

where A ∈ V̄ . Because
∣

∣α(vm)〈Bm,qm〉α(wm)
∣

∣ ≥ 3, one of these productions is

applicable. As productions introduced in (3) have higher priority than productions

introduced in (4), one of them is applied, which introduces X to the sentential

form. However, this symbol can never be removed from the sentential form, so the

derivation is unsuccessful in this case.

As a result, the leftmost nonterminal in the state qm is rewritten in G, so

(Bm,qm)→ (xm+1,qm+1) is used in Ḡ, and we obtain

(vmBmwm,qm)⇒
Ḡ

(vm+1Bm+1wm+1,qm+1)
[

(Bm,qm)→ (xm+1,qm+1)
]

.

If. We demonstrate that

(v0B0w0,q0)⇒
m
Ḡ

(vmBmwm,qm)

implies

α(v0)〈B0,q0〉α(w0) ⇒m
max G α(vm)〈Bm,qm〉α(wm)

by induction on m.

Basis. Let m = 0. Then,

(v0B0w0,q0)⇒
0
Ḡ

(v0B0w0,q0).

Clearly,

α(v0)〈B0,q0〉α(w0) ⇒0
max G α(v0)〈B0,q0〉α(w0).

Induction Hypothesis. Suppose that the claim holds for all k-step derivations,

where k ≤ m, for some m≥ 0.

98 RESTRICTIONS AND EXTENSIONS

Induction Step. Consider a derivation

(v0B0w0,q0)⇒
m+1
Ḡ

(vm+1Bm+1wm+1,qm+1).

Since m + 1 ≥ 1, there is some (vmBmwm,qm), where vm, wm ∈ V̄ ∗, Bm ∈ V̄ −T ,

and a production (Bm,qm)→ (xm+1,qm+1) such that

(v0B0w0,q0)⇒
m
Ḡ

(vmBmwm,qm)

⇒
Ḡ

(vm+1Bm+1wm+1,qm+1)
[

(Bm,qm)→ (xm+1,qm+1)
]

.

By the induction hypothesis, there is a derivation

α(v0)〈B0,q0〉α(w0) ⇒m
max G α(vm)〈Bm,qm〉α(wm).

Because (Bm,qm)→ (xm+1,qm+1) rewrites the leftmost rewritable symbol Bm in

a given state qm, there is no production (B′m,qm)→ (x′m+1,q
′
m+1) satisfying B′m ∈

alph(vm). As a result, none of the productions from (3) is applicable.

For each (Bm,qm)→ (xm+1,qm+1) ∈ P̄, there are productions of the following

forms in G whose application depends on the placement of Bm+1:

•
(

Bm+1,〈Bm,qm〉
)

→
(

〈Bm+1,qm+1〉,α(xm+1)
)

, for vm = v′mBm+1v′′m;

•
(

〈Bm,qm〉,Bm+1

)

→
(

α(xm+1),〈Bm+1,qm+1〉
)

, for wm = w′mBm+1w′′m;

•
(

〈Bm,qm〉,α(A)
)

→
(

α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1),α(A)
)

, or
(

α(A),〈Bm,qm〉
)

→
(

α(A),α(x′m+1)〈Bm+1,qm+1〉α(x′′m+1)
)

,

for xm+1 = x′m+1Bm+1x′′m+1,

where A ∈ V̄ and xm+1, x′m+1, x′′m+1 ∈ V̄ ∗. As
∣

∣α(vm)〈Bm,qm〉α(wm)
∣

∣ ≥ 3, one of

them is applicable in G, so we obtain

α(vm)〈Bm,qm〉α(wm) ⇒max G α(vm+1)〈Bm+1,qm+1〉α(wm+1).

By Claims 1 through 4, it follows that L (CS)⊆L (PSC,max). As propagating

scattered context grammars do not contain erasing productions, their derivations

can be simulated by context-sensitive grammars. As a result, L (PSC,max) ⊆
L (CS). Therefore, L (CS) = L (PSC,max). �

Theorem 5.14. L (CS) = L (PSC,min).

Proof. Let L be a context-sensitive language described by a state grammar Ḡ =
(V̄ ,T,K, P̄, S̄, p0). Set

Y =
{

〈A,q〉 : A ∈ V̄ −T,q ∈ K
}

and Z = {ā : a ∈ T}. Define the homomorphism α form V̄ ∗ to
(

(V̄ −T)∪Z
)∗

as

α(A) = A, for all A∈ V̄−T , and α(a) = ā, for all a∈ T . Set V = V̄ ∪Y ∪Z∪{S,X}.

MAXIMAL AND MINIMAL DERIVATIONS 99

Define the propagating scattered context grammar G′ = (V,T,P′,S), where P′ is

constructed as follows:

1. For each x ∈ L(Ḡ), where |x| ≤ 3, add

(S)→ (x) to P′.

2. For each

(x,q) ∈
{

(x,q) : (S̄, p0)⇒
+
Ḡ

(x,q), for some q ∈ K,

and 4≤ |x| ≤max
(

{4}∪{|y| : (B, p)→ (y, p′) ∈ P̄}
)

}

,

where

(a) x ∈ T ∗, add

(S)→ (x) to P′;

(b) x = x1Ax2, A ∈ V̄ −T , and x1, x2 ∈ V̄ ∗, add

(S)→
(

α(x1)〈A,q〉α(x2)
)

to P′.

3. For each (A, p)→ (x,q) and (B, p)→ (y,r) ∈ P̄, add
(

B,〈A, p〉
)

→ (X ,X) to P′.

4. For each (A, p)→ (x,q) ∈ P̄, B ∈ V̄ −T , D, E ∈ V̄ , Γ21 ∈ perm(2,1), Γ12 ∈
perm(1,2), and

u = reorder
(

(

B,〈A, p〉,α(D)
)

,Γ21

)

,

u′ = reorder
(

(

〈B,q〉,α(x),α(D)
)

,Γ21

)

,

r = reorder
(

(

〈A, p〉,B,α(D)
)

,Γ21

)

,

r′ = reorder
(

(

α(x),〈B,q〉,α(D)
)

,Γ21

)

,

y = reorder
(

(

〈A, p〉,α(D),α(E)
)

,Γ12

)

,

add

(a) u→ u′,

(b) r→ r′ to P′;

(c) if x = vBw and v, w ∈ V̄ ∗, for each

z = reorder
(

(

α(v)〈B,q〉α(w),α(D),α(E)
)

,Γ12

)

,

add y→ z to P′.

(d) For each

u = reorder
(

(

α(x),α(D),α(E)
)

,Γ12

)

,

add y→ u to P′.

100 RESTRICTIONS AND EXTENSIONS

5. For each a, b, c, d ∈ T , add

(a) (ā, b̄, c̄, d̄)→ (a, b̄, c̄, d̄),

(b) (ā, b̄, c̄, d̄)→ (a,b,c,d) to P′.

Claim 1. Every

(S̄, p0)⇒
+
Ḡ

(x,q)⇒+
Ḡ

(u,r),

where q, r ∈ K, u ∈ T +, x = v0Aw0, A ∈ V̄ −T , v0, w0 ∈ V̄ ∗,

4≤ |x| ≤max
(

{4}∪
{

|y| : (B, p)→ (y, p′) ∈ P̄
}

)

,

can only be generated by G′ as follows:

S ⇒
min G α(v0)〈A,q〉α(w0) [p2b]

⇒∗
min G y [Ξ4]

⇒
min G z [p4d]

⇒
|u|−4

min G v [Ξ5]

⇒
min G u [p5b],

where y ∈ Z∗Y Z∗, z = α(u), v ∈ (T ∪Z)+, p2b, p4d , and p5b represent productions

introduced in (2b), (4d), and (5b), respectively, Ξ4 is a sequence of productions

from (4a), (4b), and (4c), and Ξ5 is a sequence of productions from (5a).

Proof. The proof of the form of the beginning of the derivation,

S ⇒
min G α(v0)〈A,q〉α(w0) [p2b]

⇒∗
min G y [Ξ4]

⇒
min G z [p4d],

is analogous to the proof of Claim 3 (in terms of minimal derivations) and,

therefore, left to the reader.

Recall that z satisfies z = α(u). Each of the productions from (5a) replaces one

occurrence of ā with a, for some a ∈ T , and finally, the application of a production

from (5b) replaces the remaining four nonterminals with their terminal variants.

Therefore,

z ⇒
|u|−4

min G v [Ξ5]

⇒
min G u [p5b],

so the claim holds.

Notice that len(p3) < len(p4) < len(p5), for each production p3, p4, and p5

introduced in (3), (4), and (5), respectively, so the priorities of the productions

from the individual steps are the same as in the case of grammars that use maximal

derivations. As a result, Claim 1, 2, and 4 can be straightforwardly rephrased

UNORDERED SCATTERED CONTEXT GRAMMARS 101

in terms of minimal derivations, and we leave this simple task to the reader.

Therefore, L (CS) ⊆ L (PSC,min), and for the same reason as in the proof of

Theorem 5.13, L (PSC,min)⊆L (CS). Thus, L (CS) = L (PSC,min). �

Before closing this section, let us point out a potential use of the obtained

results in the future. Simply and briefly stated, we have demonstrated that both

of the modified versions of propagating scattered context grammars, which make

either maximal or minimal derivations, characterize the family of context-sensitive

languages. Consequently, if in the future formal language theory proves that these

versions are as powerful as ordinary propagating scattered context grammars, it

also achieves “yes” as the answer to the long-standing open problem whether

context-sensitive and propagating scattered context grammars are equivalent.

5.4 Unordered Scattered Context Grammars

Unordered scattered context grammars belong to the most natural modifications of

scattered context grammars. As indicated by their name, the order of the context-

free components in an unordered scattered context production is unimportant; that

is, these components can be applied by simultaneously rewriting their left-hand

sides no matter in what order these left-hand sides appear in the current sentential

form. This important modification was independently introduced and studied

in [21] and [26]. After their introduction, [15, 27] discussed special derivation

forms of these grammars.

Definition 5.15. An unordered scattered context grammar is a quadruple G =
(V,T,P,S), where V , T , P, and S are defined as in the case of a scattered context

grammar. If there is a permutation π ∈ perm(n), for some n≥ 1, such that

p = reorder
(

(A1, . . . ,An),π
)

→ reorder
(

(x1, . . . ,xn),π
)

∈ P,

and

u = u1A1 . . .unAnun+1,

v = u1x1 . . .unxnun+1,

where ui ∈ V ∗, for all 1 ≤ i ≤ n + 1, then G makes a derivation step from u to v

according to p, symbolically written as

u⇒G v [p],

or, simply, u ⇒G v. In the standard way, define the transitive closure and the

reflexive and transitive closure of ⇒G, and the language generated by G. If every

production

(A1, . . . ,Ak)→ (x1, . . . ,xk) ∈ P

satisfies xi ∈ V +, for all 1 ≤ i ≤ k, G is a propagating unordered scattered

context grammar. The language families generated by unordered scattered context

grammars and propagating unordered scattered context grammars are denoted by

L (SC,un) and L (PSC,un), respectively.

102 RESTRICTIONS AND EXTENSIONS

Example 5.16 (see [19]). Consider the unordered scattered context grammar

G =
(

{S,A,a,b,c},{a,b,c},P,S
)

,

where

P =
{

(S)→ (AAA),

(A,A,A)→ (aA,bA,cA),

(A,A,A)→ (ε,ε,ε)
}

.

This grammar generates the language

L(G) =
{

x1 . . .x3n : n≥ 0,{x j,xn+ j,x2n+ j}= {a,b,c}, for all 1≤ j ≤ n
}

while the generated language of the scattered context grammar with the same set

of productions is {anbncn : n≥ 0}.

Propagating unordered scattered context grammars are as powerful as pro-

grammed grammars without erasing productions and appearance checking as

demonstrated both in [21] and [26]. Next, we establish two lemmas that straight-

forwardly imply this result.

Lemma 5.17. L (P)⊆L (PSC,un).

Proof. Observe that the construction used in the proof of Lemma 3.22 can be used

to prove this lemma as well; however, the constructed grammar Ḡ is a propagating

unordered scattered context grammar in this case. �

Lemma 5.18. L (PSC,un)⊆L (P).

Proof. Let G = (V,T,P,S) be a propagating unordered scattered context grammar.

Set

N =
{

〈xi〉 : (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P,1≤ i≤ n
}

.

Define the programmed grammar Ḡ = (V ∪ N,T, P̄,S), where P̄ is defined as

follows:

1. Let Q2 denote the set of all productions introduced in step (2) of this

construction (see below). For each

p = (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P,

add

p1 =
(

A1 → 〈x1〉,{p2}
)

,
...

pn−1 =
(

An−1 → 〈xn−1〉,{pn}
)

,

pn =
(

An → 〈xn〉,{r1}
)

,

r1 =
(

〈x1〉 → x1,{r2}
)

,
...

rn−1 =
(

〈xn−1〉 → xn−1,{rn}
)

,

rn =
(

〈xn〉 → xn,Q2

)

to P̄.

UNORDERED SCATTERED CONTEXT GRAMMARS 103

2. Let Q1 denote the set of all productions of the form p1 =
(

A1 → 〈x1〉,{p2}
)

introduced in step (1) of this construction. For each A ∈V −T , add

(A→ A,Q1) to P̄.

To give an insight into the construction above, we informally explain how Ḡ

simulates the application of a production from G. The application of every

production of the form (A1, . . . ,An)→ (x1, . . . ,xn) is simulated by 2n derivation

steps in Ḡ. First, all left-hand sides of its context-free components, A1, . . . , An, are

rewritten to 〈x1〉, . . . , 〈xn〉, respectively, which are symbols that encode the real

right-hand sides of the context-free productions. As a result, in this phase of the

simulation, Ḡ cannot rewrite x1, . . . , xn, which would lead to an illegal simulation.

Second, all the symbols 〈x1〉, . . . , 〈xn〉 are rewritten back to the original right-

hand sides, x1, . . . , xn, respectively. Finally, to start the simulation of the following

production of G, a production from (2) is used, which non-deterministically selects

the next production of the propagating unordered scattered context grammar to be

simulated. The simulation is successfully completed when the resulting sentential

form w does not contain any nonterminal. Clearly, w ∈ L(Ḡ) if and only if

w ∈ L(G). �

Putting together Lemmas 5.17 and 5.18, we obtain the following result:

Theorem 5.19. L (PSC,un) = L (P). �

From Theorems 3.24 and 5.19, we obtain:

Corollary 5.20. L (PSC,un)⊂L (PSC). �

Obviously, the constructions described in Lemmas 3.22 and 5.18 can be applied

to unordered scattered context grammars with erasing productions as well. In this

way, we obtain the following corollary.

Corollary 5.21. L (SC,un) = L (P,ε). �

From Theorem 3.20, and Corollaries 5.21 and 2.29, we obtain:

Corollary 5.22. L (SC,un)⊂L (SC). �

In the conclusion of this section, we summarize the most important results

achieved in the papers dealing with unordered scattered context grammars. A

normal form similar to 2-limited unordered scattered context grammars was

established in [26] by using a technique that resembles the proof of Theorem 3.4.

Unordered scattered context grammars in which productions are applied in

the leftmost way were studied in [15]. This paper demonstrates that these

grammars are less powerful than phrase-structure grammars, but more powerful

than ordinary unordered scattered context grammars. Finally, [27] summarizes all

results concerning regulated versions of scattered context grammars. In essence,

this study demonstrates that all well-known mechanisms of derivation regulation,

such as appearance checking or unconditional transfer, applied to scattered

104 RESTRICTIONS AND EXTENSIONS

context grammars result in the generative power that coincides with the power

of programmed grammars regulated in the same way. To put it more generally,

under regulating restrictions, unordered scattered context grammars behave just

like most regulated grammars do.

5.5 Linear Scattered Context Grammars

Indisputably, linear and right-linear grammars represent more than significant

special cases of context-free grammars. As context-free grammars underlie scat-

tered context grammars, it is natural and important to discuss special cases of

scattered context grammars based upon linear and right-linear grammars—the

subject of the present section. These special cases of scattered context grammars

first apply a context-free starting production to generate an initial string consisting

of n nonterminals, where n is a positive integer. After this initial application,

however, only scattered context productions with linear or right-linear components

are applied. First, this section proves that linear versions of scattered context

grammars with n-nonterminal initial strings are as powerful as linear simple

matrix grammars of degree n. Then, it demonstrates that right-linear versions of

scattered context grammars with n-nonterminal initial strings are equivalent to

right-linear simple matrix grammars of degree n. In addition, the present section

derives several corollaries from these two main results and discusses the generative

power of scattered context grammars with context-sensitive and phrase-structure

productions.

We start by defining linear and right-linear scattered context grammars formally.

Definition 5.23. A linear scattered context grammar is a scattered context gram-

mar G = (V,T,P,S), where P is a finite set of productions of the following two

forms:

1. (S)→ (x1A1 . . .xkAkxk+1), where Ai ∈ (V −T)−{S}, x j ∈ T ∗, for all 1 ≤
i≤ k, 1≤ j ≤ k +1;

2. (A1, . . . ,Ak)→ (z1, . . . ,zk), where Ai ∈ (V −T)−{S}, and

• either zi = xiBiyi, where xi,yi ∈ T ∗, Bi ∈ (V −T)−{S},

• or zi ∈ T ∗, for all 1≤ i≤ k and some k ≥ 1.

A linear scattered context grammar is of degree n if (S)→ (x1A1 . . .xnAnxn+1) ∈ P

satisfies n ≥ m, for all (S)→ (y1A1 . . .ymAmym+1) ∈ P. The family of languages

generated by linear scattered context grammars of degree n is denoted by

L (SC,LIN,n), and

L (SC,LIN) =
∞
⋃

n=1

L (SC,LIN,n).

Definition 5.24. A right-linear scattered context grammar is a linear scattered

context grammar G = (V,T,P,S), where P is a finite set of productions of the

following two forms:

LINEAR SCATTERED CONTEXT GRAMMARS 105

1. (S)→ (x1A1 . . .xkAk), where Ai ∈ (V −T)−{S}, xi ∈ T ∗, for all 1 ≤ i ≤ k

and some k ≥ 1;

2. (A1, . . . ,Ak)→ (z1, . . . ,zk), where Ai ∈ (V −T)−{S}, and

• either zi = xiBi, where xi ∈ T ∗, Bi ∈ (V −T)−{S},

• or zi ∈ T ∗, for all 1≤ i≤ k and some k ≥ 1.

The family of languages generated by right-linear scattered context grammars of

degree n is denoted by L (SC,RLIN,n), and

L (SC,RLIN) =
∞
⋃

n=1

L (SC,RLIN,n).

To prove that L (SM,LIN,n) = L (SC,LIN,n), for every n ≥ 1, we first give

two preliminary lemmas.

Lemma 5.25. For every n≥ 1, L (SM,LIN,n)⊆L (SC,LIN,n).

Proof. Let Ḡ = (V̄1, . . . ,V̄n,T, P̄, S̄) be a linear simple matrix grammar of degree n.

Set N =
{

〈p, i〉 : p ∈ P̄,1≤ i≤ n
}

. Define the linear scattered context grammar of

degree n,

G =
(

V̄1∪·· ·∪V̄n∪N∪{S},T,P,S
)

,

where P is defined as follows:

1. For each (S̄)→ (x1A1 . . .xnAnxn+1) ∈ P̄, where xi ∈ T ∗, for all 1≤ i≤ n+1,

and p = (A1, . . . ,An)→ (y1, . . . ,yn) ∈ P̄, add

(S)→
(

x1〈p,1〉x2A2 . . .xnAnxn+1

)

to P.

2. For each p = (A1, . . . ,Ai, . . . ,An) → (x1B1y1, . . . ,xiBiyi, . . . ,xnBnyn) ∈ P̄,

where x j,y j ∈ T ∗, A j,B j ∈ V̄j−T , for all 1≤ j ≤ n, and

(a) for each i < n, add
(

〈p, i〉,Ai+1

)

→
(

xiBiyi,〈p, i+1〉
)

to P;

(b) for each q = (B1, . . . ,Bn)→ (z1, . . . ,zn) ∈ P̄, add

i.
(

B1,〈p,n〉
)

→
(

〈q,1〉,xnBnyn

)

to P;

ii. if n = 1, add
(

〈p,1〉
)

→
(

x1〈q,1〉y1

)

to P.

3. For each p = (A1, . . . ,Ai, . . . ,An

)

→ (x1, . . . ,xi, . . . ,xn) ∈ P̄, where x j ∈ T ∗,

for all 1≤ j ≤ n, and

(a) for each i < n, add
(

〈p, i〉,Ai+1

)

→
(

xi,〈p, i+1〉
)

to P;

(b) add
(

〈p,n〉
)

→ (xn) to P.

106 RESTRICTIONS AND EXTENSIONS

Every production introduced in (1) simulates the initial production of Ḡ and, in

addition, selects the next production p to be simulated. After its application, we

obtain the sentential form of the form

w1〈p,1〉w2A2 . . .wnAnwn+1,

where wi ∈ T ∗, for all 1≤ i≤ n, and

p = (A1, . . . ,An)→ (z1, . . . ,zn) ∈ P̄.

Consider any derivation

w1A1w2A2 . . .wnAnwn+1 ⇒Ḡ
w1x1B1y1 . . .wnxnBnynwn+1 [p],

where

p = (A1, . . . ,An)→ (x1B1y1, . . . ,xnBnyn),

xi, yi ∈ T ∗, and Ai, Bi ∈ V̄i − T , for all 1 ≤ i ≤ n. This derivation is simulated

by G in n derivation steps by first applying a production from (2a) n−1 times and,

finally, applying a production from (2bi), so

w1〈p,1〉w2A2 . . .wnAnwn+1

⇒G w1x1B1y1w2〈p,2〉 . . .wnAnwn+1

...

⇒G w1x1B1y1w2x2B2y2 . . .wn〈p,n〉wn+1

⇒G w1x1〈q,1〉y1w2x2B2y2 . . .wnxnBnynwn+1,

where

q = (B1, . . . ,Bn)→ (z1, . . . ,zn) ∈ P̄.

Observe that no nonterminal Ai can be skipped by a production from (2a) because

the sentential form contains exactly n nonterminals and the form of the productions

from (2a) requires their n applications during every simulation. For the same

reason, a production from (2bi) has to select the first nonterminal in a sentential

form of G. If n = 1, a production from (2bii) is used instead of a production

from (2a) or (2bi). Finally, a production of the form (A1, . . . ,An)→ (x1, . . . ,xn)∈ P̄,

where xi ∈ T ∗, for all 1 ≤ i ≤ n, is simulated by productions from (3a) and (3b)

that perform the simulation analogously to the productions from (2a) and (2bi),

respectively. By removing the symbol from N from the sentential form, (3b)

finishes the derivation. �

As the number of components in every production of G constructed in the proof

of Lemma 5.25 is at most 2, we state the following corollary.

Corollary 5.26. For every linear simple matrix grammar Ḡ of degree n, there is

a linear scattered context grammar G of degree n such that L(Ḡ) = L(G), and

mcs(G) = 1. �

LINEAR SCATTERED CONTEXT GRAMMARS 107

Lemma 5.27. For every n≥ 1, L (SC,LIN,n)⊆L (SM,LIN,n).

Proof. Let Ḡ = (V̄ ,T, P̄, S̄) be a linear scattered context grammar of degree n. Set

V1 =
{

〈a,1〉 : a ∈
(

V̄ −{S̄}
)

∪{ε}
}

∪T,

...

Vn =
{

〈a,n〉 : a ∈
(

V̄ −{S̄}
)

∪{ε}
}

∪T.

For all 1≤ i≤ n, set α(xay, i)= x〈a, i〉y, where a∈ V̄−{S̄}, x, y∈T ∗, and α(ε, i)=
〈ε, i〉. Define the linear simple matrix grammar G = (V1, . . . ,Vn,T,P,S) of degree n,

where P is defined as follows:

1. For each (S̄)→ (x1A1 . . .xkAkxk+1) ∈ P̄, where k ≤ n, add

(S)→
(

x1〈A1,1〉 . . .xk〈Ak,k〉xk+1〈ε,k +1〉 . . .〈ε,n〉
)

to P.

2. For each (A1, . . . ,Ak)→ (z1, . . . ,zk) ∈ P̄, where k ≤ n, Ai ∈ (V̄ −T)−{S̄},
for all 1≤ i≤ k, c1, . . . , cn−k ∈

(

V̄ −{S̄}
)

∪{ε}, Γ ∈ perm(k,n− k), and

(d1, . . . ,dn) = reorder
(

(A1, . . . ,Ak,c1, . . . ,cn−k),Γ
)

,

(u1, . . . ,un) = reorder
(

(z1, . . . ,zk,c1, . . . ,cn−k),Γ
)

,

add
(

〈d1,1〉, . . . ,〈dn,n〉
)

→
(

α(u1,1), . . . ,α(un,n)
)

to P.

3. For each ai ∈ T ∪{ε}, for all 1≤ i≤ n, add
(

〈a1,1〉, . . . ,〈an,n〉
)

→
(

a1, . . . ,an

)

to P.

Productions from (1) simulate productions of Ḡ of the form

(S̄)→ (x1A1 . . .xkAkxk+1),

where k≤ n, so that each Ai ∈ (V̄ −T)−{S̄} is converted to 〈Ai, i〉 ∈Vi−T , for all

1 ≤ i ≤ k, and the string 〈ε,k + 1〉 . . .〈ε,n〉, which is erased in the last step of the

derivation, is added to the end of the resulting sentential form so that the sentential

form contains n nonterminals. Consider the sentential form of the form

w1〈B1,1〉 . . .wm〈Bm,m〉wm+1〈ε,m+1〉 . . .〈ε,n〉,

where w j ∈ T ∗ and 〈Bi, i〉 ∈ Vi−T , for all 1 ≤ j ≤ m + 1, 1 ≤ i ≤ m. Each 〈Bi, i〉
may be of the form

• 〈ε, i〉, which indicates that the ith nonterminal was deleted in Ḡ;

• 〈a, i〉, where a ∈ T , which indicates that the ith nonterminal was rewritten

to a in Ḡ;

• 〈A, i〉, where A ∈ (V̄ −T)−{S̄}.

108 RESTRICTIONS AND EXTENSIONS

The application of a production (A1, . . . ,Ak) → (z1, . . . ,zk) ∈ P̄, where k ≤ n,

Ai ∈ (V̄−T)−{S̄}, for all 1≤ i≤ k, can be simulated in G if B j1 . . .B jk = A1 . . .Ak,

where ji < ji+1, 1 ≤ ji ≤ m, for all 1 ≤ i ≤ k. The productions of G constructed

in (2) permute A1, . . . , Ak (preserving their order) with symbols from
(

V̄ −
{S̄}

)

∪ {ε} (not preserving their order), and convert them to the corresponding

symbols from (V1 ∪ ·· · ∪Vn)− T . The same is performed with the right-hand

side of the production for the same permutation. As a result, every symbol 〈Bi, i〉
remains unchanged if 〈Bi, i〉= 〈ε, i〉, 〈Bi, i〉= 〈a, i〉, where a ∈ T , or the simulated

production is not applied to Bi. Otherwise, 〈Bi, i〉 is rewritten to x〈C, i〉y, x〈a, i〉y, or

〈ε, i〉, where x,y ∈ T ∗, a ∈ T , and C ∈ (V̄ −T)−{S̄}, depending on the right-hand

side of the simulated context-free component applied to Bi. Finally, a production

from (3) finishes the derivation by rewriting all 〈a, i〉, where a∈ T , to a and erasing

all 〈ε, i〉. �

The main result of this section follows next.

Theorem 5.28. For every n≥ 1,

L (SC,LIN,n) = L (SM,LIN,n),

L (SC,LIN) = L (SM,LIN).

Proof. This theorem follows from Lemmas 5.25 and 5.27. �

A similar result can be proved for right-linear scattered context grammars as

well.

Theorem 5.29. For every n≥ 1,

L (SC,RLIN,n) = L (SM,RLIN,n),

L (SC,RLIN) = L (SM,RLIN).

Proof. The proof is analogous to the proof of Theorem 5.28 and, therefore, left to

the reader. �

Theorems 5.28, 5.29, and Theorems 2.23, 2.24 imply the following two

corollaries.

Corollary 5.30. For every n≥ 1,

L (SC,LIN,n)⊂L (SC,LIN,n+1),

L (SC,RLIN,n)⊂L (SC,RLIN,n+1),

L (SC,RLIN,n)⊂L (SC,LIN,n).

�

EXTENDED PROPAGATING SCATTERED CONTEXT GRAMMARS 109

Corollary 5.31.

L (CF)−L (SC,LIN) 6= /0,

L (CF)−L (SC,RLIN) 6= /0,

and

L (SC,RLIN)⊂L (SC,LIN)⊂L (PSC).

�

We have proved that linear scattered context grammars are equivalent to linear

simple matrix grammars. The main difference of these grammars consists in

the way of applying their productions. While in linear simple matrix grammars

every production contains exactly n components, each of which rewrites symbols

over its own alphabet, the number of components in the productions of linear

scattered context grammars may vary, and all the components share the same

alphabet. In addition, we have proved that the generative power of linear scattered

context grammars depends on the number of nonterminals appearing in the starting

production, but it is independent of the number of components in scattered

context productions (see Corollary 5.26). As a result, linear scattered context

grammars are more convenient for describing languages than linear simple matrix

grammars because the total number of their nonterminals is lower; in addition,

their productions can capture only true context dependencies while avoiding

unnecessary rewriting of certain symbols.

Interestingly enough, when we restrict scattered context grammars and simple

matrix grammars to their linear and right-linear variants, the power of the resulting

grammars is identical; as opposed to this identity, ordinary scattered context

grammars are more powerful than simple matrix grammars (see Theorem 3.27).

Taking into account the Chomsky hierarchy, we add a concluding note about

scattered context grammars with context-sensitive and phrase-structure produc-

tions. As obvious, scattered context grammars with context-sensitive productions

generate the family of context-sensitive languages while the others characterize

the family of phrase-structure languages. Therefore, as these scattered context

grammars are as powerful as the grammars underlying them, their use is of little

or no interest.

5.6 Extended Propagating Scattered Context Grammars

In classical formal language theory, monotone grammars, which generate the

family of context-sensitive languages, represent phrase-structure grammars in

which every production has its right-hand side at least as long as its left-hand

side. In this section, we discuss analogically restricted scattered context grammars.

That is, by concatenating all the strings occurring on the right-hand side of

any n-component production, we obtain a string of length n or more. Clearly,

all propagating scattered context grammars satisfy this requirement, but not all

scattered context grammars satisfying this requirement are propagating because

they allow the empty string to appear on the right-hand side of their productions. In

110 RESTRICTIONS AND EXTENSIONS

this sense, they represent an extension of propagating scattered context grammars,

so we refer to them as extended propagating scattered context grammars. In [28],

it was proved that these grammars generate the family of context-sensitive

languages. Before establishing this result, we define these grammars formally.

Definition 5.32. An extended propagating scattered context grammar is a scat-

tered context grammar G = (V,T,P,S) in which every

(A1, . . . ,An)→ (x1, . . . ,xn) ∈ P

satisfies

|x1 . . .xn| ≥ n.

The family of languages generated by extended propagating scattered context

grammars is denoted by L (PSC,ext).

In what follows, we prove that L (PSC,ext) = L (CS). We use a slightly

modified construction of the proof presented in [28]. First, we prove that L (CS)⊆
L (PSC,ext).

Lemma 5.33. L (CS)⊆L (PSC,ext).

Proof. Let G = (V,T,P,S) be a context-sensitive grammar in Kuroda normal form

(see Definition 2.17). Set

N̄1 = {a′ : a ∈ T},

N̄2 =
{

â : a ∈ (V −T)∪ N̄1

}

,

N̄3 =
{

〈a〉 : a ∈ (V −T)∪ N̄1∪ N̄2

}

,

N̄4 = {â : a ∈ T}.

Define the extended propagating scattered context grammar

Ḡ =
(

V ∪ N̄1∪ N̄2∪ N̄3∪ N̄4∪{S̄},T, P̄, S̄
)

,

where P̄ is constructed as follows:

1. For each S⇒∗
G w, where w ∈ T ∗ and |w| ≤ 3, add

(S̄)→ (w) to P̄.

2. For each S⇒∗
G ABCD, where A, B, C, D ∈V −T , add

(S̄)→
(

〈Â〉BC〈D〉
)

to P̄.

3. For each a, b, c ∈ (V −T)∪ N̄1, add

(a)
(

〈a〉,b,〈c〉
)

→
(

ε,〈b〉,c〈a〉
)

,

(b)
(

〈â〉,b,〈c〉
)

→
(

ε,〈b〉,c〈â〉
)

,

(c)
(

〈a〉, b̂,〈c〉
)

→
(

ε,〈b̂〉,c〈a〉
)

,

(d)
(

〈a〉,b,〈ĉ〉
)

→
(

ε,〈b〉, ĉ〈a〉
)

to P̄.

EXTENDED PROPAGATING SCATTERED CONTEXT GRAMMARS 111

4. For each AB→CD ∈ P, where A, B, C, D ∈V −T , and a, b ∈ (V −T)∪ N̄1,

add

(a)
(

〈A〉,B,a,〈b〉
)

→
(

ε,ε,〈a〉,bC〈D〉
)

,

(b)
(

〈Â〉,B,a,〈b〉
)

→
(

ε,ε,〈a〉,bĈ〈D〉
)

,

(c)
(

〈A〉,B, â,〈b〉
)

→
(

ε,ε,〈â〉,bC〈D〉
)

,

(d)
(

〈A〉,B,a,〈b̂〉
)

→
(

ε,ε,〈a〉, b̂C〈D〉
)

to P̄.

5. For each A→ BC ∈ P, where A, B, C ∈V −T , and a, b ∈ (V −T)∪ N̄1, add

(a)
(

〈A〉,a,〈b〉
)

→
(

ε,〈a〉,bB〈C〉
)

,

(b)
(

〈Â〉,a,〈b〉
)

→
(

ε,〈a〉,bB̂〈C〉
)

,

(c)
(

〈A〉, â,〈b〉
)

→
(

ε,〈â〉,bB〈C〉
)

,

(d)
(

〈A〉,a,〈b̂〉
)

→
(

ε,〈a〉, b̂B〈C〉
)

to P̄.

6. For each A→ a ∈ P, where A ∈V −T , a ∈ T , and b, c ∈ (V −T)∪ N̄1, add

(a)
(

〈A〉,b,〈c〉
)

→
(

ε,〈b〉,c〈a〉
)

,

(b)
(

〈Â〉,b,〈c〉
)

→
(

ε,〈b〉,c〈â〉
)

,

(c)
(

〈A〉, b̂,〈c〉
)

→
(

ε,〈b̂〉,c〈a〉
)

,

(d)
(

〈A〉,b,〈ĉ〉
)

→
(

ε,〈b〉, ĉ〈a〉
)

to P̄.

7. For each a, b ∈ T , add

(a)
(

〈â′〉,〈b′〉
)

→ (â,b′),

(b) (â,b′)→ (a, b̂),

(c) (â)→ (a) to P̄.

Basic Idea.

The simulation of G is started in Ḡ by using a production from (2). The

simulation is performed by cycling through every sentential form by productions

from (3) until the nonterminals to be rewritten appear at the beginning of the

current sentential form. Then, depending on the production whose application

is being simulated, a production from (4), (5), or (6) is used. After this, another

simulation can be performed analogically. The derivation is completed by applying

productions from (7).

To be able to cycle through the sentential form, the grammar marks the first and

the last nonterminal. During one cycle, the current first symbol is placed to the

end of the sentential form and is marked as the last; the previously second symbol

is marked as the first. The simulation of an application of a production from G is

simulated analogously.

In addition, the grammar records the symbol corresponding to the first symbol

of the sentential form of G. The derivation is successful only if this symbol appears

at the beginning of the sentential form during the final phase of the derivation.

112 RESTRICTIONS AND EXTENSIONS

Formal Proof.

First, we prove Claims 1 through 4 stated below.

Claim 1. Every w ∈ L(Ḡ), where |w| ≤ 3, is generated by a production from (1).

Proof. As the constructed grammar is monotone, the only productions that are able

to generate sentences consisting of at most 3 terminals are those from (1).

Claim 2. Every derivation of w ∈ L(Ḡ), where |w| ≥ 4, can only be performed in

the following way:

S̄⇒
Ḡ

x [p2]

⇒∗
Ḡ

y [Ξ1]

⇒
Ḡ

z [p7a]

⇒∗
Ḡ

w [Ξ2],

where x ∈ N̄3(V −T)(V −T)N̄3, every sentential form yi in x⇒∗
Ḡ

y satisfies

yi ∈
(

(V −T)∪ N̄1∪ N̄2∪ N̄3

)+
,

every sentential form wi in z⇒∗
Ḡ

w satisfies wi ∈ (T ∪N̄1∪N̄4)
+, p2 is a production

from (2), p7a is a production from (7a), and Ξ1 and Ξ2 are sequences of productions

introduced in (3) through (6) and (7), respectively.

Proof. First, observe that the only productions that can start the derivation of

w ∈ L(Ḡ), where |w| ≥ 4, are those from (2). After the application of a production

from (2), we obtain a sentential form x ∈ N̄3(V − T)(V − T)N̄3. Productions

from (2) cannot be used during the rest of the derivation because S̄ does not appear

on the right-hand side of any production.

Now, productions from (3) through (6) can be used. Notice that these produc-

tions rewrite only symbols from (V −T)∪ N̄1∪ N̄2∪ N̄3, so after their application,

the resulting sentential forms also contain only these symbols. In addition, each of

these productions contains precisely 2 symbols from N̄3 both on its left-hand side

and right-hand side. As a result, every sentential form contains exactly 2 symbols

from N̄3. Productions from (7b) and (7c) cannot be used as they require a symbol

from N̄4 to be present in the sentential form.

During this phase, a production from (7a) can be used as well. It rewrites the

symbols from N̄3 and introduces a symbol from N̄4 to the sentential form. From this

moment, only productions from (7b) and (7c) are applicable. As these productions

rewrite only symbols from N̄1 ∪ N̄4 and no other productions can be used, every

sentential form wi has to satisfy wi ∈ (T ∪ N̄1 ∪ N̄4)
+ in order to generate w ∈

T +.

EXTENDED PROPAGATING SCATTERED CONTEXT GRAMMARS 113

Claim 3. In the derivation

S̄⇒
Ḡ

x [p2]

⇒∗
Ḡ

y [Ξ1]

⇒
Ḡ

z [p7a]

⇒∗
Ḡ

w [Ξ2]

from Claim 2, every sentential form yi in x⇒∗
Ḡ

y satisfies

yi ∈ N̄3

(

(V −T)∪ N̄1∪ N̄2

)∗
N̄3

and every sentential form wi in z⇒∗
Ḡ

w satisfies wi ∈ T ∗N̄4N̄∗1 .

Proof. To show that

yi ∈ N̄3

(

(V −T)∪ N̄1∪ N̄2

)∗
N̄3

and wi ∈ T ∗N̄4N̄∗1 , first notice that

x ∈ N̄3

(

(V −T)∪ N̄1∪ N̄2

)∗
N̄3.

Furthermore, observe that the form of the productions from (3) through (6)

guarantees that a nonterminal from N̄3 remains at the end of yi. In addition,

productions from (3) through (6) move the nonterminal from N̄3 right in the

sentential form. Productions from (7) replace this nonterminal with a symbol

from N̄4, which can only move right as well. In this way, the grammar guarantees

that if any nonterminal appears in front of this symbol, it can never be rewritten

during the rest of the derivation, and the derivation is unsuccessful. As a result,

yi ∈ N̄3

(

(V −T)∪ N̄1∪ N̄2

)∗
N̄3

and wi ∈ T ∗N̄4N̄∗1 .

Claim 4. In the derivation

S̄⇒
Ḡ

x [p2]

⇒∗
Ḡ

y [Ξ1]

⇒
Ḡ

z [p7a]

⇒∗
Ḡ

w [Ξ2]

from Claim 2, every sentential form yi in x ⇒∗
Ḡ

y contains precisely one symbol

from N̄2∪
{

〈a〉 : a ∈ N̄2

}

.

Proof. Productions from (3) through (6) either do not contain any symbol from

N̄2 ∪
{

〈a〉 : a ∈ N̄2

}

or they contain precisely one, occurring both on their left-

hand sides and right-hand sides. Because x contains one symbol from N̄2∪
{

〈a〉 :

a ∈ N̄2

}

, this number is preserved after applications of productions from (3)

through (6).

Now, it is easy to see that every production of the form AB → CD ∈ P is

simulated properly by Ḡ. Indeed, when applying a production from (4), the

114 RESTRICTIONS AND EXTENSIONS

symbols corresponding to A and B in Ḡ necessarily occur as two neighbors at

the beginning of the sentential form; if some nonterminals occur between them,

these nonterminals eventually appear in front of the leading nonterminal from N̄3,

and by Claim 3, they can never be rewritten. Symbols corresponding to C and D

are placed to the end of the sentential form. Productions from (4b), (4c), and (4d)

handle different positions of the nonterminal from N̄2 ∪
{

〈a〉 : a ∈ N̄2

}

, and they

make sure that its position remains correct after the simulation. In particular, notice

that there is no production of the form

(

〈A〉, B̂,a,〈b〉
)

→
(

ε,ε,〈a〉,bC〈D̂〉
)

.

This production would check the context between the first and the last nonterminal

of the original sentential form of G, which is illegal in context-sensitive grammars.

The simulation of A→ BC ∈ P, A→ a∈ P, and cycling through the sentential form

is performed analogously.

In order to enter the final phase by a production from (7a), in which all

nonterminals are rewritten to terminals by productions from (7b) and (7c), the

symbol from
{

〈a〉 : a ∈ N̄2

}

has to appear at the beginning of the sentential form

in Ḡ; otherwise, the nonterminals preceding this symbol cannot be rewritten.

From these observations and Claims 1 through 4, we obtain w ∈ L(G) if and

only if w ∈ L(Ḡ), so the theorem holds. �

Next, we demonstrate that L (PSC,ext)⊆L (CS).

Lemma 5.34. L (PSC,ext)⊆L (CS).

Proof. By definition, the derivations of extended propagating scattered context

grammars are monotone. Therefore, their derivations can be simulated by context-

sensitive grammars. As a result, L (PSC,ext)⊆L (CS). �

Putting Lemmas 5.33 and 5.34 together, we obtain the main result of this section.

Theorem 5.35. L (PSC,ext) = L (CS). �

