
213

Chapter 10

Applications of Turing
Machines: Theory
of Computation

In Chapter 9, we have considered Turing machines (TMs) as language acceptors by analogy with
other language acceptors, such as �nite and pushdown automata, discussed earlier in this book.
In this chapter, we make use of TMs to show the fundamentals of theory of computation, which
is primarily oriented toward determining the theoretical limits of computation in general. !is
orientation comes as no surprise: by the Church–Turing thesis, which opened Section IV of this
book, every procedure can be formalized by a TM, so any computation beyond the power of TMs
is also beyond the computer power in general.

!is two-section chapter gives an introduction to two key areas of the theory of computation—
computability and decidability. In Section 10.1, regarding computability, we view TMs as
computers of functions over nonnegative integers and show the existence of functions whose
computation cannot be speci�ed by any procedure. !en, regarding decidability, we formalize
algorithms that decide problems by using TMs that halt on every input in Section 10.2, which is
divided into �ve subsections. In Section 10.2.1, we conceptualize this approach to decidability.
In Section 10.2.2, we formulate several important problems concerning the language models
 discussed in Chapters 3 and 6, such as �nite automata (FAs) and context-free grammars (CFGs),
and construct algorithms that decide them. In Section 10.2.3, more surprisingly, we present prob-
lems that are algorithmically undecidable, and in Section 10.2.4, we approach undecidability
from a more general viewpoint. Finally, in Section 10.2.5, we reconsider algorithms that decide
 problems in terms of their computational complexity measured according to time and space
requirements. Perhaps most importantly, we point out that although some problems are decidable
in principle, they are intractable for unreasonably high computational requirements of the algo-
rithms that decide them.

214 ◾ Formal Languages and Computation

10.1 Computability

Considering the TM model as the formalization of an e�ective procedure, we show the existence
of functions whose computation cannot be speci�ed by any procedure, so they can never be com-
puted by any computer. As a matter of fact, the existence of these uncomputable functions imme-
diately follows from the following counting argument. Consider the set of all functions that map
ℕ onto {0, 1} and the set of all procedures. Whereas the former is uncountable, the latter is count-
able under our assumption that every procedure has a �nite description (see Section 9.1). !us,
there necessarily exist functions with no procedures to compute them. In this section, based on the
following TM-based formalization, we take a more speci�c look at functions whose computation
can or, in contrast, cannot be speci�ed by any procedure.

De�nition 10.1 Let M ∈ TMΨ. !e function computed by M, symbolically denoted by M-f, is
de�ned over Δ* as M-f = {(x, y)| x, y ∈ Δ*, ▹▸x◃ ⇒* ▹▪yu◃ in M, u ∈ {▫}*}.

Consider M-f, where M ∈ TMΨ, and an argument x ∈ Δ*. In a general case, M-f is partial,
so M-f(x) may or may not be de�ned. Clearly, if M-f(x) = y is de�ned, M computes ▹▸x◃ ⇒*

▹▪yu◃, where u ∈ {▫}*. However, if M-f(x) is unde�ned, M, starting from ▹▸x◃, never reaches
a con�guration of the form ▹▪vu◃, where v ∈ Δ* and u ∈ {▫}*, so it either rejects x or loops on x
(see Convention 9.8).

De�nition 10.2 A function f is a computable function if there exists M ∈ TMΨ such that f = M-f;
otherwise, f is an uncomputable function.

10.1.1 Integer Functions Computed by Turing Machines

By De�nition 10.1, for every M ∈ TMΨ, M-f is de�ned over Δ*, where Δ is an alphabet. However,
in mathematics, we usually study numeric functions de�ned over sets of in�nitely many numbers.
To use TMs to compute functions like these, we �rst need to represent these numbers by strings
over Δ. In this introductory book, we restrict our attention only to integer functions over 0ℕ, so we
need to represent every nonnegative integer i ∈ 0ℕ as a string over Δ. Traditionally, we represent i
in unary as unary(i) for all i ∈ 0ℕ, where unary is de�ned in Example 2.4. !at is, unary(j) = a j for
all j ≥ 0; for instance, unary(0), unary(2), and unary(999) are equal to ε, aa, and a999, respectively.
Under this representation, used in the sequel, we obviously automatically assume that Δ = {a}
simply because a is the only input symbol needed. Next, we formalize the computation of integer
functions by TMs based on unary.

De�nition 10.3

 I. Let g be a function over 0ℕ and M ∈ TMΨ. M computes g in unary or, more brie#y, M computes
g i� unary(g) = M-f.

II. A function h over 0ℕ is a computable function if there exists M ∈ TMΨ such that M computes
h; otherwise, h is an uncomputable function.

In greater detail, part I of De�nition 10.3 says that M computes an integer function g over 0ℕ
if this equivalence holds:

 g(x) = y i� (unary(x), unary(y)) ∈ M-f, for all x, y ∈ 0ℕ

Applications of Turing Machines: Theory of Computation ◾ 215

Convention 10.4 Whenever M ∈ TMΨ works on an integer x ∈ 0ℕ, x is expressed as unary(x). For
brevity, whenever no confusion exists, instead of stating that M works on x represented as unary(x),
we just state that M works on x in what follows.

Example 10.1 Let g be the successor function de!ned as g(i) = i + 1, for all i ≥ 0. Construct a TM M

that computes ▹▸ai
◃ ⇒

*
 ▹▪ai+1

◃ so it moves across ai to the right bounder ◃, replaces it with a◃,
and returns to the left to !nish its accepting computation in ▹▪ai+1

◃. As a result, M increases the
number of as by one on the tape. "us, by De!nition 10.3, M computes g.

Example 10.2 Let g be the total function de!ned as g(i) = j, for all i ≥ 0, where j is the smallest
prime satisfying i ≤ j. Construct a TM M that tests whether i, represented by ai, is a prime in the
way described in Example 9.2. If i is prime, M accepts in the con!guration ▹▪ai

◃. If not, M contin-
ues its computation from ▹▸ai+1

◃ and tests whether i + 1 is prime; if it is, it accepts in ▹▪ai+1
◃. In

this way, it continues increasing the number of as by one and testing whether the number is prime
until it reaches a j such that j is prime. As this prime j is obviously the smallest prime satisfying i ≤ j,
M accepts in ▹▪a j

◃. "us, M computes g.

Both functions discussed in Examples 10.1 and 10.2 are total. However, there also exist partial
integer functions, which may be unde!ned for some arguments. Suppose that g is a function over 0ℕ,
which is unde!ned for some arguments. Let M ∈ TMΨ compute g. According to De!nition 10.3,
for any x ∈ 0ℕ, g(x) is unde!ned i$ (unary(x), unary(y)) ∉ M-f for all y ∈ 0ℕ. Example 10.3
 illustrates a partial integer function computed in this way.

Convention 10.5 As opposed to Examples 10.1 and 10.2, the next function as well as all other
functions discussed throughout the rest of this section is de!ned over the set of positive integers, ℕ,
which excludes 0.

Example 10.3 In this example, we consider a partial function g over ℕ that is de!ned for 1, 2, 4,
8, 16, …, but it is unde!ned for the other positive integers. More precisely, g(x) = 2x if x = 2n, for
some n ∈ ℕ; otherwise, g(x) is unde!ned (see Figure 10.1).

We construct M ∈ TMΨ that computes g as follows. Starting from ▹▸ai
◃, M computes ▹▸ai

◃ ⇒
*

▹▸aiAj
◃ with j being the smallest natural number simultaneously satisfying i ≤ j and j = 2n with

n ∈ ℕ. If i = j, then i = 2n and g(i) = 2i = 2n+1, so M computes ▹▸aiAj
◃ ⇒

*
 ▹▪aiaj

◃ and, thereby,

de!nes g(i) = 2n+1. If i < j, then 2n−1 < i < 2n and g(i) is unde!ned, so M rejects ai by ▹▸aiAj
◃ ⇒

*

▹♦ai
▫

j
◃.

In somewhat greater detail, we describe M by the following Pascal-like algorithm that explains
how M changes its con!gurations.

x g(x)

1 2

2 4

3

4 8

5

6

7 undefined

undefined

undefined

undefined

8 16

Figure 10.1 Partial function g discussed in Example 10.3.

216 ◾ Formal Languages and Computation

Let ▹▸ai
◃ be the input, for some i ∈ ℕ;

change ▹▸ai
◃ to ▹▸aiA◃;

while the current configuration ▹▸aiA j◃ satisfies j ≤ i do
begin

 if i = j then

 ACCEPT by computing ▹▸aiA j◃ ⇒
*
 ▹▪aiai

◃ {because i = j = 2m for some m ∈ ℕ}
 else

 compute ▹▸aiAj
◃ ⇒

*
 ▹▸aiA2j

◃ by changing each A to AA

end {of the while loop}
REJECT by computing ▹▸aiA j

◃ ⇒* ▹♦ai
▫

j
◃ {because j > i, so i ≠ 2m for any m ∈ ℕ}.

As explained in the conclusion of Section 2.2.3, the set of all rewriting systems is countable
because every de!nition of a rewriting system is !nite, so this set can be put into a bijection with ℕ.
For the same reason, the set of all TMs, which are de!ned as rewriting systems, is countable.
However, the set of all functions is uncountable (see Example 1.3). From this observation, it straight-
forwardly follows the existence of uncomputable functions: there are just more functions than TMs.
More surprisingly, however, even some simple total well-de!ned functions over ℕ are uncomputable
as Example 10.4 illustrates.

Example 10.4 For every k ∈ ℕ, set

 kX = {M ∈ TMΨ| card(MQ) = k + 1, MΔ = {a}}

Informally, kX denotes the set of all TMs in TMΨ with k + 1 states such that their languages are
over {a}. Without any loss of generality, suppose that MQ = {q0, q1, …, qk} with ▸ = q0 and ▪ = qk.
Let g be the total function over ℕ de!ned for every i ∈ ℕ so g(i) equals the greatest integer j ∈ ℕ

satisfying ▹q0a◃ ⇒
*
 ▹qia

ju◃ in M with M ∈ iX, where u ∈ {▫}
*
. In other words, g(i) = j i# j is the

greatest positive integer satisfying M-f(a) = a j, where M ∈ iX. Consequently, for every TM K ∈ iX,
either |K-f(a)| ≤ g(i) or K-f(a) is unde!ned.

Observe that for every i ∈ ℕ, iX is !nite. Furthermore, iX always contains M ∈ TMΨ such that

▹q0a◃ ⇒
*
 ▹qia

ju◃ in M with j ∈ ℕ, so g is total. Finally, g(i) is de!ned quite rigorously because
each TM in iX is deterministic (see Convention 9.8). At !rst glance, these favorable mathematical
properties might suggest that g is computable, yet we next show that g is uncomputable by a proof
based on diagonalization (see Example 1.3).

Gist. To show that g is uncomputable, we proceed, in essence, as follows. We assume that g is
computable. Under this assumption, TMΨ contains a TM M that computes g. We convert M to a
TM N, which we subsequently transform to a TM O and show that O performs a computation
that contradicts the de!nition of g, so our assumption that g is computable is incorrect. $us, g is
uncomputable.

In greater detail, let M ∈ TMΨ be a TM that computes g. We can easily modify M to another
TM N ∈ TMΨ such that N computes h(x) = g(2x) + 1 for every x ∈ ℕ. Let N ∈ mX, where m ∈ ℕ, so

NQ = {q0, q1, …, qm} with ▸ = q0 and ▪ = qm. Modify N to the TM O = (OΣ, OR), O ∈ TMΨ, in the
following way. De!ne qm as a non!nal state. Set OQ = {q0, q1, …, qm, qm+1, …, q2m} with ▸ = q0 and
▪ = q2m, so O ∈ 2mX. Initialize OR with the rules of NR. $en, extend OR by the following new rules:

 ◾ qma → aqm and qm▫ → aqm

 ◾ qh◃ → qh+1▫◃ and qh+1▫ → aqh+1, for all m ≤ h ≤ 2m − 1
 ◾ aq2m → q2ma

Starting from ▹q0a◃, O !rst computes ▹q0a◃ ⇒
*
 ▹qmah(m)u◃ with u ∈ {▫}

*
 just like N does.

$en, by the newly introduced rules, O computes ▹qmah(m)u◃ ⇒
*
 ▹q2mah(m)a|u|am

◃ with q2m = ▪.

In brief, ▹q0a◃ ⇒
*
 ▹q2mah(m)a|u|am

◃ in O, which is impossible, however. Indeed, |ah(m)a|u|am| =
|a g(2m)+1a|u|am| > g(2m), so O-f(1) > g(2m), which contradicts K-f(1) ≤ g(2m) for all K ∈ 2mX because
O ∈ 2mX. From this contradiction, we conclude that g is uncomputable.

Applications of Turing Machines: Theory of Computation ◾ 217

In what follows, we often consider an enumeration of TMΨ. In essence, to enumerate TMΨ means to
list all TMs in TMΨ. We can easily obtain a list like this, for instance, by enumerating their codes
according to length and alphabetic order (see Convention 10.6). If the code of M ∈ TMΨ is the ith
string in this lexicographic enumeration, we let M be the ith TM in the list.

Convention 10.6 In the sequel, ζ denotes some !xed enumeration of all possible TMs,

 ζ = 1M, 2M, …

Regarding ζ, we just require the existence of two algorithms—(1) an algorithm that translates
every i ∈ ℕ to iM and (2) an algorithm that translates every M ∈ TMΨ to i so M = iM, where i ∈ ℕ. Let

 ξ = 1M-f, 2M-f, …

"at is, ξ corresponds to ζ so ξ denotes the enumeration of the functions computed by the
TMs listed in ζ. "e positive integer i of iM-f is referred to as the index of iM-f; in terms of ζ, i is
referred to as the index of iM.

"roughout the rest of this chapter, we frequently discuss TMs that construct other TMs,
 represented by their codes, and the TMs constructed in this way may subsequently create some other
machines, and so on. Let us note that a construction like this commonly occurs in real-world computer
science practice; for instance, a compiler produces a program that itself transforms the codes of some
other programs, and so forth. Crucially, by means of universal TMs described in Section 9.3, we
always know how to run any TM on any string, including a string that encodes another TM.

10.1.2 Recursion Theorem

Consider any total computable function γ over ℕ and apply γ to the indices of TMs in ζ (see
Convention 10.6). "eorem 10.7 says that there necessarily exists n ∈ ℕ, customarily referred to as
a !xed point of γ, such that nM and γ(n)M compute the same function—that is, in terms of ξ, nM-f =

γ(n)M-f. As a result, this important theorem rules out the existence of a total computable function
that would map each index i to another index j so i M-f ≠ j M-f.

!eorem 10.7 Recursion "eorem. For every total computable function γ over ℕ, there is n ∈ ℕ
such that n M-f = γ(n)M-f in ξ.

Proof. Let γ be any total computable function over ℕ, and let X ∈ TMΨ computes γ—that is,
X-f = γ. First, for each i ∈ ℕ, introduce a TM Ni ∈ TMΨ that works on every input x ∈ ℕ as follows:

 1. Ni saves x
 2. Ni runs iM on i (according to Convention 10.6, iM denotes the TM of index i in ζ)
 3. If iM-f(i) is de!ned and, therefore, iM actually computes iM-f(i), then Ni runs X on iM-f(i)

to compute X-f(iM-f(i))
 4. Ni runs X-f(iM-f(i))M on x to compute X-f(iM-f(i))M-f(x)

Let O be a TM in ζ that computes the function O-f over ℕ such that for each i ∈ ℕ, O-f(i)
is equal to the index of Ni in ζ, constructed earlier. Note that although iM-f(i) may be unde!ned
in (3), O-f is total because Ni is de!ned for all i ∈ ℕ. Furthermore, O-f(i)M-f = X-f(iM-f(i))M-f because

218 ◾ Formal Languages and Computation

O-f(i) is the index of Ni in ζ, and Ni computes X-f(iM-f(i))M-f. As X-f = γ, we have X-f(iM-f(i))M-f =

γ(iM-f(i))M-f. Let O = kM in ζ, where k ∈ ℕ; in other words, k is the index of O. Set n = O-f(k) to
obtain nM-f = O-f(k)M-f = X-f(kM-f(k))M-f = γ(kM-f(k))M-f = γ(O-f(k))M-f = γ(n)M-f. !us, n is a "xed point
of γ, and !eorem 10.7 holds true.

!e recursion theorem is a powerful tool frequently applied in the theory of computation as
illustrated next.

Example 10.5 Consider the enumeration ζ = 1M, 2M, … (see Convention 10.6). Observe that
!eorem 10.7 implies the existence of n ∈ ℕ such that nM-f = n+1M-f, meaning that nM and n+1M
compute the same function. Indeed, de"ne the total computable function γ for each i ∈ ℕ as γ(i) =
i + 1. By !eorem 10.7, there is n ∈ ℕ such that nM-f = γ(n)M-f in ξ, and by the de"nition of γ, γ(n) =
n + 1. !us, nM-f = n+1M-f.

From a broader perspective, this result holds in terms of any enumeration of TMΨ, which may
di$er from ζ, provided that it satis"es the simple requirements stated in Convention 10.6. !at is,
the enumeration can be based on any representation whatsoever provided that there exists an algo-
rithm that translates each representation to the corresponding machine in TMΨ and vice versa. As an
exercise, consider an alternative enumeration of this kind and prove that it necessarily contains two
consecutive TMs that compute the same function. To rephrase this generalized result in terms of
the Church–Turing thesis, any enumeration of procedures contains two consecutive procedures that
compute the same function.

Before closing this section, we generalize functions so they map multiple arguments to a set, and
we brie%y discuss their computation by TMs. For k elements, a1, …, ak, where k ∈ ℕ, (a1, …, ak)
denotes the ordered k-tuple consisting of a1 through ak in this order. Let A1, …, Ak be k sets. !e
Cartesian product of A1, …, Ak is denoted by A1 × … × Ak and de"ned as

 A1 × … × Ak = {(a1, …, ak)| ai ∈ Ai, 1 ≤ i ≤ k}

Let m ∈ ℕ and B be a set. Loosely speaking, an m-argument function from A1 × … × Am
to B maps each (a1, …, am) ∈ A1 × … × Am to no more than one b ∈ B. To express that
a function f represents an m-argument function, we write f m (carefully distinguish f m from
f m, which denotes the m-fold product of f, de"ned in the conclusion of Section 1.3). If f m
maps (a1, …, am) ∈ A1 × … × Am to b ∈ B, then f m(a1, …, am) is de"ned as b, written as
f m(a1, …, am) = b, where b is the value of f m for arguments a1, …, am. If f m maps (a1, …, am)
to no member of B, f m(a1, …, am) is unde!ned. If f m(a1, …, am) is de"ned for all (a1, …, am) ∈
A1 × … × Am, f m is total. If we want to emphasize that f m may not be total, we say that f m is
partial.

Next, we generalize De"nition 10.1 to the m-argument function M-f m computed by M ∈ TMΨ.
For the sake of this generalization, we assume that Δ contains #, used in the following de"nition
to separate the m arguments of M-f m.

De!nition 10.8 Let M ∈ TMΨ. !e m-argument function computed by M is denoted by M-f m and
de"ned as

M-f m = {(x, y)| x ∈ Δ*, occur(x, #) = m − 1, y ∈ (Δ − {#})*, ▹▸x◃ ⇒* ▹▪yu◃ in M, u ∈ {▫}*}

!at is, f m(x1, x2, …, xm) = y i$ ▹▸x1#x2#…#xm◃ ⇒* ▹▪yu◃ in M with u ∈ {▫}*, and f m(x1, x2, …, xm)
is unde"ned i$ M loops on x1#x2#…#xm or rejects x1#x2#…#xm. Notice that M-f 1 coincides with M-f
(see De"nition 10.1).

Applications of Turing Machines: Theory of Computation ◾ 219

According to De�nition 10.8, for every M ∈ TMΨ and every m ∈ ℕ, there exists M-f m. At a glance,
it is hardly credible that every M ∈ TMΨ de�nes M-f m because TMΨ obviously contains TMs that never
perform a computation that de�ne any member of M-f m. However, if we realize that we might have
M-f m completely unde�ned—that is, M-f m = ∅, which is perfectly legal from a mathematical point
of view, then the existence of M-f m corresponding to every M ∈ TMΨ comes as no surprise.

De�nition 10.9 Let m ∈ ℕ. A function f m is a computable function if there exists M ∈ TMΨ such
that f m = M-f m; otherwise, f m is uncomputable.

To use TMs as computers of m-argument integer functions, we automatically assume that
TMs work with the unary-based representation of integers by analogy with one-argument integer
functions computed by TMs (see De�nition 10.3 and Convention 10.4).

De�nition 10.10 Let M ∈ TMΨ, m ∈ ℕ, and f m be an m-argument function from A1 × … × Am
to ℕ, where Ai = ℕ, for all 1 ≤ i ≤ m. M computes f m i" this equivalence holds

 f m(x1, …, xm) = y i" (unary(x1)#…#unary(xm), unary(y)) ∈ M-f m

10.1.3 Kleene’s s-m-n Theorem

$eorem 10.12 says that for all m, n ∈ ℕ, there is a total computable function s of m + 1 arguments
such that iM-f m+n(x1, …, xm, y1, …, yn) = s(i, x1, …, xm)M-f n(y1, …, yn) for all i, x1, …, xm, y1, …, yn.
In other words, considering the Church–Turing thesis, there is an algorithm such that from iM
and x1, …, xm, it determines another TM that computes iM-f m+n(x1, …, xm, y1, …, yn) with only
n arguments y1, …, yn. In this way, the number of arguments is lowered, yet the same function is
computed.

Convention 10.11 In this chapter, we often construct M ∈ TMΨ from a �nite sequence of
strings, z1, …, zn (see, for instance, $eorem 10.12 and Example 10.6), and to express this clearly
and explicitly, we denote M constructed in this way by M[z1, …, zn]

. Speci�cally, in the proof of
$eorem 10.12, M[i, x1, …, xm] is constructed from i, x1, …, xm, which are unary strings representing
integers (see Convention 10.4).

!eorem 10.12 Kleene’s s-m-n !eorem. For all i, m, n ∈ ℕ, there is a total computable (m+1)-
argument function sm+1 such that iM-f m+n(x1, …, xm, y1, …, yn) = sm+1(i, x1, …, xm)M-f n(y1, …, yn).

Proof. We �rst construct a TM S ∈ TMΨ. $en, we show that S-f m+1 satis�es the properties of s m+1
stated in $eorem 10.12, so we just take s m+1 = S-f m+1 to complete the proof.

Construction of S. Let m, n ∈ ℕ. We construct a TM S ∈ TMΨ so S itself constructs another
machine in TMΨ and produces its index in ζ as the resulting output value. More precisely, given
input i#x1#…#xm, S constructs a TM, denoted by M[i, x1, …, xm], for i = 1, 2, …, and produces the
index of M[i, x1, …, xm]—that is, j satisfying M[i, x1, …, xm] = jM in ζ—as the resulting output value.
M[i, x1, …, xm] constructed by S works as follows:

 1. When given input y1#…#yn, M[i, x1, …, xm] shifts y1#…#yn to the right, writes x1#…#xm# to its
left, so it actually changes y1#…#yn to x1#…#xm#y1#…#yn

 2. M[i, x1, …, xm] runs iM on x1#…#xm#y1#…#yn

220 ◾ Formal Languages and Computation

Properties of S-f m+1. Consider the (m+1)-argument function S-f m+1 computed by S constructed
earlier. Recall that S-f m+1 maps (i, x1, …, xm) to the resulting output value equal to the index
of M[i, x1, …, xm] in ζ. More brie"y, S-f m+1(i, x1, …, xm) = j with j satisfying M[i, x1, …, xm] = jM in ζ.
Observe that M[i, x1, …, xm] computes iM-f m+n(x1, …, xm, y1, …, yn) on every input (y1, …, yn), where

iM-f m+n denotes the (m+n)-argument computable function. By these properties,

 iM-f m+n(x1, …, xm, y1, …, yn) = jM-f n(y1, …, yn) = S-f
m+1

(i, x1, …, xm)M-f n(y1, …, yn)

#erefore, to obtain the total computable (m+1)-argument function sm+1 satisfying
#eorem 10.12, set s m+1 = S-f m+1.

#eorem 10.12 represents a powerful tool for demonstrating closure properties concerning
computable functions. To illustrate, by using this theorem, we prove that the set of computable
 one-argument functions is closed with respect to composition in Example 10.6.

Example 10.6 #ere is a total computable 2-argument function g 2 such that iM-f(jM-f(x)) =

g 2(i, j)M-f(x) for all i, j, x ∈ ℕ. We de$ne the 3-argument function h3 as h3(i, j, x) = iM-f(jM-f(x)) for
all i, j, x ∈ ℕ. First, we show that h3 is computable. Given i, j, x ∈ ℕ, we introduce a TM H that
computes h3 so it works on every input x as follows:

 1. H runs jM on x
 2. If jM-f(x) is de$ned and, therefore, produced by H in (1), H runs iM on jM-f(x)
 3. If iM-f(jM-f(x)) is de$ned, H produces iM-f(jM-f(x)), so H computes iM-f(jM-f(x))

#us, h3 is computable. Let h3 be computed by kM in ζ. #at is, kM-f 3 = h3. By #eorem 10.12,
there is a total computable function s such that s 3(k, i, j)M-f(x) = kM-f 3(i, j, x) for all i, j, x ∈ ℕ.
Set g 2(i, j) = s3(k, i, j) for all i, j ∈ ℕ. #us, iM-f(jM-f(x)) = s 3(k, i, j)M-f(x) = g 2(i, j)M-f(x), for all i, j,
x ∈ ℕ.

As already noted, from a broader perspective, we have actually proved that the composition of
two computable functions is again computable, so the set of computable one-argument functions is
closed with respect to composition. Establishing more closure properties concerning other common
operations, such as addition and product, is left as an exercise.

Most topics concerning the computability of multi-argument functions are far beyond this
introductory text. #erefore, we narrow our attention to one-argument functions. In fact, we just
consider total functions from Δ* to {ε}, on which we base Section 10.2, which discusses another
crucially important topic of the computation theory—decidability.

10.2 Decidability

In this section, we formally explore the power of algorithms that decide problems. Because
 problem-deciding algorithms are used in most computer science areas, it is unfeasible to examine
them all. #erefore, we consider only the algorithmic decidability concerning problems related to
the language models, such as automata and grammars, discussed in Chapters 3, 6, and 9.

10.2.1 Turing Deciders

In essence, we express every problem by a language in this book. More speci$cally, a problem P is
associated with the set of all its instances ∏ and with a property π that each instance either satis$es or,
in contrast, does not satisfy. Given a particular instance i ∈ ∏, P asks whether i satis$es π. To decide

Applications of Turing Machines: Theory of Computation ◾ 221

P by means of Turing deciders, which work on strings like any TMs, we represent P by an encoding
language as

 PL = {〈i〉| i ∈ ∏, i satis"es π}

where 〈i〉 is a string representing instance i (see Convention 9.13). A Turing decider M, which
halts on all inputs, decides P if (1) M rejects every input that represents no instance from ∏ and
(2) for every 〈i〉 with i ∈ ∏, M accepts 〈i〉 i# i satis"es π, so M rejects 〈i〉 i# i does not satisfy π.
More formally, L(M) = PL, and Δ* − L(M) = (Δ* − {〈i〉| i ∈ ∏}) ∪ {〈i〉| i ∈ ∏, i does not satisfy π}.

In brief, we state P as

Problem 10.13 P.
Question: a formulation of P.
Language: PL.

To illustrate our approach to decidability, we consider the problem referred to as FA-Emptiness.
For any FA M, FA-Emptiness asks whether the language accepted by M is empty. FAΨ is thus the
set of its instances. $e language encoding FA-Emptiness is de"ned as

 FA-EmptinessL = {〈M〉| M ∈ FAΨ, L(M) = ∅}

Formally, FA-Emptiness is speci"ed as

Problem 10.14 FA-Emptiness.
Question: Let M ∈ FAΨ. Is L(M) empty?
Language: FA-EmptinessL = {〈M〉| M ∈ FAΨ, L(M) = ∅}.

We can construct a Turing decider for FA-EmptinessL in a trivial way as demonstrated shortly (see
$eorem 10.20).

In general, a problem that can be decided by a Turing decider is referred to as a decidable problem
while an undecidable problem cannot be decided by any Turing decider. For instance, Problem 10.14
of emptiness reformulated in terms of TMs, symbolically referred to as TM-Emptiness, is undecid-
able as we demonstrate in Section 10.2.3.2 (see Problem 10.56 and $eorem 10.57). $at is, we
encode this important undecidable problem by its encoding language

 TM-EmptinessL = {〈M〉| M ∈ TMΨ, L(M) = ∅}

and prove that no Turing decider accepts TM-EmptinessL (see $eorem 10.57).
Next, we de"ne Turing deciders rigorously. As already pointed out, any Turing decider M halts

on every input string. In addition, we require that M always halts with its tape completely blank.
$e following de"nition makes use of M-f (see De"nition 10.1) and the domain of a function (see
Section 1.3), so recall both notions before reading it.

De!nition 10.15

 I. Let M ∈ TMΨ. If M always halts and M-f is a function from Δ* to {ε}, then M is a Turing
decider (a TD for short).

 II. Let L be a language and M be a TD. M is a TD for L if domain(M-f) = L.
III. A language is decidable if there is a TD for it; otherwise, the language is undecidable.

222 ◾ Formal Languages and Computation

By part I in De�nition 10.15, M ∈ TMΨ is a TD if it never loops, and for every x ∈ Δ*, ▹▸x◃ ⇒*
▹iu◃ in M with i ∈ {▪, ♦} and u ∈ {▫}*. By part II, a TD M for a language L satis"es ▹▸x◃ ⇒*
▹▪u◃ in M for every x ∈ L and ▹▸y◃ ⇒* ▹♦v◃ in M for every y ∈ MΔ

* − L, where u, v ∈ {▫}*.

Convention 10.16 TDΨ denotes the set of all TDs, and TDΦ = {L(M)| M ∈ TDΨ}; in other words,

TDΦ denotes the family of all decidable languages.

We close this section strictly in terms of formal languages—the principal subject of this book.
First, we give a speci"c decidable formal language in Example 10.7. #en, we state a relation
between the language families FAΦ, CFΦ, and TDΦ.

Example 10.7 Return to Example 9.1, in which we have designed a TM that accepts L = {x| x ∈ {a,
b, c}*, occur(x, a) = occur(x, b) = occur(x, c)}. As obvious, the TM does not satisfy Convention 9.8;
in fact, it is not even deterministic. As a result, it is out of TMΨ, so it is de"nitely out of TDΨ as well.

In this example, we design another TM D such that D ∈ TDΨ and D accepts L. D repeatedly
scans across the tape in a left-to-right way, erasing the leftmost occurrence of a, b, and c during
every single scan. When it reaches ◃ after erasing all these three occurrences, it moves left to ▹
and makes another scan like this. However, when D reaches ◃ while some of the three symbols are
missing on the tape, it can decide whether the input string is accepted. Indeed, if all three symbols
are missing, D accepts; otherwise, it rejects. #erefore, D performs its "nal return to ▹ in either of
the following two ways.

 1. If the tape is completely blank and, therefore, all as, bs, and cs have been erased during
the previous scans, D moves its head left to ▹ and accepts in a con"guration of the form
▹▪▫…▫◃.

 2. If the tape is not blank and, therefore, contains some occurrences of symbols from X, where
∅ ⊂ X ⊂ {a, b, c}, then during its return to ▹, D changes all these occurrences to ▫ and rejects
in a con"guration of the form ▹♦▫…▫◃.

Omitting the state speci"cation, Figure 10.2 schematically describes the acceptance of babcca
by D.

Clearly, D is a TD for L, so L is a decidable language. Symbolically and brie$y, D ∈ TDΨ and
L ∈ TDΦ.

We close this section by establishing the relations between FAΦ, CFΦ, and TDΦ, which are used
in Section 11.3.

!eorem 10.17 FAΦ ⊂ CFΦ ⊂ TDΦ.

Proof. By Corollary 6.74, FAΦ ⊂ CFΦ. As an exercise, prove CFΦ ⊆ TDΦ. Consider L in Example 10.7.
By the pumping lemma for CFΦ (see Lemma 8.3), prove that L ∉ CFΦ. Since L ∈ TDΦ (see
Example 10.7), CFΦ ⊂ TDΦ. #us, #eorem 10.17 holds.

Scan Tape

0 babcca

◻◻b◻ca

◻◻◻◻◻◻

1
2

ACCEPT

Figure 10.2 Acceptance of babcca.

Applications of Turing Machines: Theory of Computation ◾ 223

10.2.2 Decidable Problems

In this section, we present several decidable problems for FAs and CFGs. However, we also point
out that there exist problems that are decidable for FAs but undecidable for CFGs.

10.2.2.1 Decidable Problems for Finite Automata

Let M be any FA (see De!nition 3.1). We give algorithms for deciding the following three problems.

 ◾ Is the language accepted by M empty?
 ◾ Is the language accepted by M !nite?
 ◾ Is the language accepted by M in!nite?

In addition, for any input string w, we decide the next problem.

 ◾ Is w a member of the language accepted by M?

Strictly speaking, we decide all these four problems for csDFAs (as stated in Section 3.2.2, a csDFA
stands for a completely speci!ed deterministic f inite automaton) because deciding them in this
way is somewhat simpler than deciding these problems for the general versions of FAs, contained
in FAΨ (see De!nitions 3.1 and 3.17, and Convention 3.2). However, because any FA can be
algorithmically converted to an equivalent csDFA, all four problems are decidable for the general
versions of FAs in FAΨ, too.

Convention 10.18
csDFAΨ denotes the set of all csDFA. We suppose there exist a !xed encoding

and decoding of automata in
csDFAΨ by analogy with the encoding and decoding of TMs (see

Convention 9.13). "at is, 〈M〉 represents the code of M ∈
csDFAΨ. Similarly, we suppose there

exist an analogical encoding and decoding of the members of
csDFAΨ × Δ* and

csDFAΨ ×
csDFAΨ. For

brevity, we denote the codes of (M, w) ∈
csDFAΨ × Δ* and (M, N) ∈

csDFAΨ ×
csDFAΨ by 〈M, w〉 and

〈M, N〉, respectively.

As already stated in Section 10.2.1, the FA-Emptiness problem asks whether the language
accepted by an FA is empty. Next, we prove that FA-Emptiness is decidable by demonstrating that
its encoding language FA-EmptinessL belongs to TDΦ.

Problem 10.19 FA-Emptiness.
Question: Let M ∈

csDFAΨ. Is L(M) empty?
Language: FA-EmptinessL = {〈M〉| M ∈

csDFAΨ, L(M) = ∅}.

!eorem 10.20 FA-EmptinessL ∈ TDΦ.

Proof. As M is a csDFA, each of its states is reachable (see De!nition 3.17). "us, L(M) = ∅ i#

MF = ∅, which says that M has no !nal state. Design a TD D that works on every 〈M〉, where
M ∈

csDFAΨ, so D accepts 〈M〉 i# MF = ∅, and D rejects 〈M〉 i# MF ≠ ∅.

"e FA-Membership problem asks whether a string w ∈ MΔ
* is a member of the language

accepted by M ∈
csDFAΨ. Like FA-Emptiness, FA-Membership is decidable.

224 ◾ Formal Languages and Computation

Problem 10.21 FA-Membership.
Question: Let M ∈

csDFAΨ and w ∈ MΔ*. Is w a member of L(M)?
Language: FA-MembershipL = {〈M, w〉| M ∈

csDFAΨ, w ∈ MΔ
*, w ∈ L(M)}.

!eorem 10.22 FA-MembershipL ∈ TDΦ.

Proof. Recall that any M ∈
csDFAΨ reads an input symbol during every move. !us, after making

precisely |w| moves on w ∈ Δ*, M either accepts or rejects w. !erefore, construct a TD D that
works on every 〈M, w〉 as follows:

 1. D runs M on w until M accepts or rejects w (after |w| moves)
 2. D accepts 〈M, w〉 i" M accepts w, and D rejects 〈M, w〉 i" M rejects w

FA-In niteness is a problem that asks whether the language accepted by M ∈
csDFA

Ψ is in#nite.
To show that the decidability of the same problem can be often proved in several di"erent ways,
we next give two alternative proofs that FA-In niteness is decidable. We only sketch the #rst proof
while describing the other in detail.

Problem 10.23 FA-In niteness.
Question: Let M ∈

csDFA
Ψ. Is L(M) in#nite?

Language: FA-In nitenessL = {〈M〉| M ∈
csDFA

Ψ, L(M) is in#nite}.

Under our assumption that M is from
csDFA

Ψ, we obviously see that L(M) is in#nite i" its state dia-
gram contains a cycle, so we can easily reformulate and decide this problem in terms of the graph the-
ory in this way. Alternatively, we can prove this by using the pumping lemma for regular languages
(see Lemma 5.1) in the following way. For every M ∈

csDFA
Ψ, let ∞?L(M) denote this #nite language

 ∞?L(M) = {x| x ∈ L(M), card(MQ) ≤ |x| < 2card(MQ)} ⊆ L(M)

Lemma 10.24 For every M ∈
csDFA

Ψ, L(M) is in#nite i" ∞?L(M) ≠ ∅.

Proof. To prove the if part of the equivalence, suppose that ∞?L(M) ≠ ∅. Take any z ∈ ∞?L(M).
Recall that the pumping lemma constant k equals card(MQ) in the proof of Lemma 5.1. As
card(MQ) ≤ |z| by the de#nition of ∞?L(M), Lemma 5.1 implies that z = uvw, where 0 < |v| ≤ |uv| ≤
card(MQ), and most importantly, uvmw ∈ L, for all m ≥ 0. Hence, L(M) is in#nite.

To prove the only-if part, assume that L is in#nite. Let z be the shortest string such that z ∈
L(M) and |z| ≥ 2card(MQ). As |z| ≥ 2card(MQ) ≥ card(MQ), Lemma 5.1 implies that z = uvw, where
0 < |v| ≤ |uv| ≤ card(MQ), and uvmw ∈ L, for all m ≥ 0. Take uv0w = uw ∈ L(M). Observe that
uw ∈ L(M) and 0 < |v| imply 2card(MQ) > |uw|; indeed, if 2card(MQ) ≤ |uw| < |z|, then z would
not be the shortest string satisfying z ∈ L(M) and |z| ≥ 2card(MQ)—a contradiction. As 0 < |v| ≤
card(MQ), card(MQ) ≤ |uw| < 2card(MQ) ≤ |z|, so uw ∈ ∞?L(M) and, therefore, ∞?L(M) ≠ ∅.

!eorem 10.25 FA-In nitenessL ∈ TDΦ.

Proof. Construct a TD D that works on every 〈M〉 ∈ FA-In nitenessL so it #rst constructs ∞?L(M).
After the construction of this #nite language, D accepts 〈M〉 i" ∞?L(M) ≠ ∅, and D rejects 〈M〉
i" ∞?L(M) = ∅.

Applications of Turing Machines: Theory of Computation ◾ 225

Consequently, Problem 10.26 is decidable as well.

Problem 10.26 FA-Finiteness.
Question: Let M ∈

csDFA
Ψ. Is L(M) !nite?

Language: FA-FinitenessL = {〈M〉| M ∈
csDFA

Ψ, L(M) is !nite}.

Corollary 10.27 FA-FinitenessL ∈ TDΦ.

"e FA-Equivalence problem asks whether two csDFAs are equivalent; in other words, it asks
whether both automata accept the same language. We decide this problem by using some elemen-
tary results of the set theory.

Problem 10.28 FA-Equivalence.
Question: Let M, N ∈

csDFA
Ψ. Are M and N equivalent?

Language: FA-EquivalenceL = {〈M, N〉| M, N ∈
csDFA

Ψ, L(M) = L(N)}.

!eorem 10.29 FA-EquivalenceL ∈ TDΦ.

Proof. Let M and N be in
csDFA

Ψ. As an exercise, prove that L(M) = L(N) i# ∅ = (L(M) ∩ ~L(N)) ∪
(L(N) ∩ ~L(M)). Construct a TD D that works on every 〈M, N〉 ∈ FA-EquivalenceL as follows:

 1. From M and N, D constructs an FA O such that L(O) = (L(M) ∩ ~L(N)) ∪ (L(N) ∩ ~L(M))
 2. From O, D constructs an equivalent csDFA P
 3. D decides whether L(P) = ∅ (see "eorem 10.20 and its proof)
 4. If L(P) = ∅, L(M) = L(N) and D accepts 〈M, N〉 while if L(P) ≠ ∅, D rejects 〈M, N〉

Consider the constructions in (1) and (2); as an exercise, describe them in detail.

10.2.2.2 Decidable Problems for Context-Free Grammars

Let G be any CFG (see De!nition 6.1). We give algorithms for deciding the following three
problems.

 ◾ Is the language generated by G !nite?
 ◾ Is the language accepted by G in!nite?

In addition, for any input string w, we decide the next problem.

 ◾ Is w a member of the language generated by G?

Rather than discuss these problems in general terms of CFGs in CFGΨ, we decide them for CFGs
in the Chomsky normal form, in which every rule has either a single terminal or two nonterminals
on its right-hand side (see De!nition 6.34). Making use of this form, we !nd easier to decide two
of them—CFG-Membership and CFG-In!niteness. As any grammar in CFGΨ can be turned to an
equivalent grammar in the Chomsky normal form by algorithms given in Section 6.2, deciding
these problems for grammars satisfying the Chomsky normal form obviously implies their decid-
ability for grammars in CFGΨ as well.

226 ◾ Formal Languages and Computation

Convention 10.30 CNF-CFGΨ denotes the set of all CFGs in Chomsky normal form. We suppose
there exist a !xed encoding and decoding of the grammars in CNF-CFGΨ. Similarly to TMs and
FAs (see Conventions 9.13 and 10.18), 〈G〉 represents the code of G ∈ CNF-CFGΨ. Similarly, we
suppose there exist an analogical encoding and decoding of the members of CNF-CFGΨ × Δ* and

CNF-CFGΨ × CNF-CFGΨ. Again, for brevity, we denote the codes of (G, w) ∈ CNF-CFGΨ × Δ* and
(G, H) ∈ CNF-CFGΨ × CNF-CFGΨ by 〈G, w〉 and 〈G, H〉, respectively.

Problem 10.31 CFG-Emptiness.
Question: Let G ∈ CNF-CFGΨ. Is L(G) empty?
Language: CFG-EmptinessL = {〈G〉| G ∈ CNF-CFGΨ, L(G) = ∅}.

!eorem 10.32 CFG-EmptinessL ∈ TDΦ.

Proof. Let G ∈ CNF-CFGΨ. Recall that a symbol in G is terminating if it derives a string of terminals
(see De!nition 6.15). As a result, L(G) is nonempty i# GS is terminating, where GS denotes the
start symbol of G (see Convention 6.2). $erefore, construct a TD D that works on 〈G〉 as follows:

 1. D decides whether GS is terminating by Algorithm 6.16
 2. D rejects 〈G〉 if GS is terminating; otherwise, D accepts 〈G〉

Notice that the decision of CFG-Emptiness described in the proof of $eorem 10.32 is straight-
forwardly applicable to any CFG in CFGΨ because this decision does not actually make use of the
Chomsky normal form. During the decision of the next two problems, however, we make use of
this form signi!cantly.

Given a string w in Δ* and a grammar G in CNF-CFGΨ, the CFG-Membership problem asks
whether w is a member of L(G). Of course, we can easily decide this problem by any of the general
parsing algorithms discussed in Chapter 7 (see Algorithms 7.3 and 7.5). Next, we add yet another
algorithm that decides this problem based on the Chomsky normal form.

Problem 10.33 CFG-Membership.
Question: Let G ∈ CNF-CFGΨ and w ∈ Δ*. Is w a member of L(G)?
Language: CFG-MembershipL = {〈G, w〉| G ∈ CNF-CFGΨ, w ∈ Δ*, w ∈ L(G)}.

$e proof of Lemma 10.34 is simple and left as an exercise.

Lemma 10.34 Let G ∈ CNF-CFGΨ. $en, G generates every w ∈ L(G) by making no more than
2|w| − 1 derivation steps.

!eorem 10.35 CFG-MembershipL ∈ TDΦ.

Proof. As follows from the Chomsky normal form, CNF-CFGΨ contains no grammar that generates ε.
$erefore, we construct the following TD D that works on every 〈G, w〉 in either of the following
two ways (A) and (B), depending on whether w = ε or not.

 A. Let w = ε. Clearly, ε ∈ L(G) i# GS is an ε-nonterminal—that is, GS derives ε (see
De!nition 6.23). $us, D decides whether GS is an ε-nonterminal by Algorithm
6.24, and if so, D accepts 〈G, w〉; otherwise, D rejects 〈G, w〉.

Applications of Turing Machines: Theory of Computation ◾ 227

 B. Let w ≠ ε. !en, D works on 〈G, w〉 as follows:
1. D constructs the set of all sentences that G generates by making no more than

2|w| − 1 derivation steps
2. If this set contains w, D accepts 〈G, w〉; otherwise, it rejects 〈G, w〉

!e CFG-In niteness problem asks whether the language generated by a CFG is in"nite.

Problem 10.36 CFG-In niteness.
Question: Let G ∈ CNF-CFGΨ. Is L(G) in"nite?
Language: CFG-In nitenessL = {〈G〉| G ∈ CNF-CFGΨ, L(G) is in"nite}.

As an exercise, prove Lemma 10.37.

Lemma 10.37 Let G ∈ CNF-CFGΨ. L(G) is in"nite i# L(G) contains a sentence x such that k ≤ |x| <
2k with k = 2card(

G
N).

!eorem 10.38 CFG-In nitenessL ∈ TDΦ.

Proof. Construct a TD D that works on every G ∈ CNF-CFGΨ as follows:

 1. D constructs the set of all sentences x in L(G) satisfying k ≤ |x| < 2k with k = 2card(
G

N)

 2. If this set is empty, D rejects 〈G〉; otherwise, D accepts 〈G〉

!eorem 10.38 implies that we can also decide the following problem.

Problem 10.39 CFG-Finiteness.
Question: Let G ∈ CNF-CFGΨ. Is L(G) "nite?
Language: CFG-FinitenessL = {〈G〉| G ∈ CNF-CFGΨ, L(G) is "nite}.

Corollary 10.40 CFG-FinitenessL ∈ TDΦ.

Recall that for FAs, we have formulated the problem FA-Equivalence and proved that it is
decidable for them (see !eorem 10.29). However, we have not reformulated this problem for
CFGs in this section. !e reason is that this problem is undecidable for these grammars, which
brings us to the topic of Section 10.2.3.

10.2.3 Undecidable Problems

As the central topic of this section, we consider several problems concerning TMs and show that
they are undecidable. In addition, without any rigorous proofs, we brie%y describe some undecid-
able problems not concerning TMs in the conclusion of this section.

Let P be a problem concerning TMs, and let P be encoded by a language PL. Demonstrating
that P is undecidable consists in proving that PL is an undecidable language. Like every rigorous
proof in mathematics, a proof like this requires some ingenuity. Nevertheless, it is usually achieved
by contradiction based on either of these two proof techniques—diagonalization and reduction.

228 ◾ Formal Languages and Computation

10.2.3.1 Diagonalization

As a rule, a diagonalization-based proof is schematically performed in the following way.

 1. Assume that PL is decidable, and consider a TD D such that L(D) = PL.
 2. From D, construct another TD O; then, by using the diagonalization technique (see

Example 1.3), apply O on its own description 〈O〉 so this application results into a contradiction.
 3. !e contradiction obtained in (2) implies that the assumption in (1) is incorrect, so PL is

undecidable.

Following this proof scheme almost literally, we next show the undecidability of the famous halt-
ing problem that asks whether M ∈ TMΨ halts on input x. Observe that the following formulation
of the TM-Halting problem makes use of the encoding language TM-HaltingL, introduced in the
conclusion of Section 9.3.

Problem 10.41 TM-Halting.
Question: Let M ∈ TMΨ and w ∈ Δ*. Does M halt on w?
Language: TM-HaltingL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, M halts on w}.

!eorem 10.42 TM-HaltingL ∉ TDΦ.

Proof. Assume that TM-HaltingL is decidable. !en, there exists a TD D such that L(D) = TM-HaltingL.
!at is, for any 〈M, w〉 ∈ TM-HaltingL, D accepts 〈M, w〉 i" M halts on w, and D rejects 〈M, w〉 i" M
loops on w. From D, construct another TD O that works on every input w, where w = 〈M〉 with
M ∈ TMΨ (recall that according to Convention 9.13, every input string encodes a TM in TMΨ, so
the case when w encodes no TM is ruled out), as follows:

 1. O replaces w with 〈M, M〉, where w = 〈M〉

 2. O runs D on 〈M, M〉

 3. O accepts i" D rejects, and O rejects i" D accepts

!at is, for every w = 〈M〉, O accepts 〈M〉 i" D rejects 〈M, M〉, and since L(D) = TM-HaltingL, D
rejects 〈M, M〉 i" M loops on 〈M〉. !us, O accepts 〈M〉 i" M loops on 〈M〉. Now, we apply the
diagonalization technique in this proof: as O works on every input w, it also works on w = 〈O〉.
Consider this case. Since O accepts 〈M〉 i" M loops on 〈M〉 for every w = 〈M〉, this equivalence
holds for w = 〈O〉 as well, so O accepts 〈O〉 i" O loops on 〈O〉. !us, 〈O〉 ∈ L(O) i" 〈O〉 ∉ L(O)—a
contradiction. !erefore, TM-HaltingL is undecidable; in symbols, TM-HaltingL ∉ TDΦ.

Observe that !eorem 10.42 has its crucial consequences in practice as well as in theory.
Indeed, considering the Church–Turing thesis, it rules out the existence of a universal algorithm
that would decide, for any procedure, whether the procedure is an algorithm, which halts on all
inputs (see Section 9.1). As a result, although we would obviously appreciate an algorithm like this
in practice very much, we have to give up its existence once and for all. In terms of the formal
language theory—the subject of this book—this theorem straightforwardly implies the following
relation between the language families TDΦ and TMΦ.

!eorem 10.43 TDΦ ⊂ TMΦ.

Proof. Clearly, TDΦ ⊆ TMΦ. By !eorems 9.16 and 10.42, TM-HaltingL ∈ TMΦ − TDΦ, so TDΦ ⊂ TMΦ.

Applications of Turing Machines: Theory of Computation ◾ 229

As TM-Halting is undecidable, it comes as no surprise that the problem whether M ∈ TMΨ
loops on w ∈ Δ* is not decidable either.

Problem 10.44 TM-Looping.
Question: Let M ∈ TMΨ and w ∈ Δ*. Does M loop on x?
Language: TM-LoopingL = {〈M, w〉| M ∈ TMΨ, x ∈ Δ*, M loops on w}.

To prove the undecidability of TM-Looping, we establish !eorems 10.45 and 10.46. !e "rst
of them is obvious.

!eorem 10.45 TM-LoopingL is the complement of TM-HaltingL.

Next, we prove that a language L is decidable i# TMΦ contains both L and its complement ~L.

!eorem 10.46 Let L ⊆ Δ*. L ∈ TDΦ i# both L and ~L are in TMΦ.

Proof. To prove the only-if part of the equivalence, suppose that L is any decidable language, sym-
bolically written L ∈ TDΦ. By !eorem 10.43, L ∈ TMΦ. By De"nition 10.15, there is M ∈ TDΨ
such that L = L(M). Change M to a TM N ∈ TMΨ so that N enters a non"nal state in which it
keeps looping exactly when M enters the "nal state ▪ (see Convention 9.8). As a result, L(N) =
~L(M) = ~L, so ~L ∈ TMΦ. !us, L and ~L are in TMΦ.

To prove the if part of the equivalence, suppose that L ∈ TMΦ and ~L ∈ TMΦ. !at is, there
exist N ∈ TMΨ and O ∈ TMΨ such that L(N) = L and L(O) = ~L. Observe that N and O cannot
accept the same string because L ∩ ~L = ∅. On the other hand, every input w is accepted by either
N or O because L ∪ ~L = Δ*. !ese properties underlie the next construction of a TD M for L from
N and O. M works on every input w in the following way.

 1. M simultaneously runs N and O on w so M executes by turns one move in N and O—that
is, step by step, M computes the "rst move in N, the "rst move in O, the second move in N,
the second move in O, and so forth.

 2. M continues the simulation described in (1) until a move that would take N or O to an
accepting con"guration, and in this way, M "nds out whether w ∈ L(N) or w ∈ L(O).

 3. Instead of entering the accepting con"guration in N or O, M halts and either accepts if w ∈
L(N) or rejects if w ∈ L(O)—in greater detail, M changes the current con"guration to a
halting con"guration of the form ▹iu◃, where u ∈ {▫}*, i ∈ {▪, ♦}, i = ▪ i# w ∈ L(N), and
i = ♦ i# w ∈ L(O).

Observe that L(M) = L. Furthermore, M always halts, so M ∈ TDΨ and L ∈ TDΦ.

Making use of !eorems 9.16 and 10.46, we easily show TM-Looping as an undecidable prob-
lem. In fact, we prove a much stronger result stating that TM-LoopingL is not even in TMΦ.

!eorem 10.47 TM-LoopingL ∉ TMΦ.

Proof. Assume TM-LoopingL ∈ TMΦ. Recall that TM-LoopingL is the complement of TM-HaltingL (see
!eorem 10.45). Furthermore, TM-HaltingL ∈ TMΦ (see !eorem 9.16). !us, by !eorem 10.46,

TM-HaltingL would be decidable, which contradicts !eorem 10.42. !us, TM-LoopingL ∉ TMΦ.

230 ◾ Formal Languages and Computation

�eorems 10.45 and 10.47 imply Corollary 10.48, which says that TM-Looping is undecidable.

Corollary 10.48 TM-LoopingL ∉ TDΦ.

10.2.3.2 Reduction

Apart from diagonalization, we often establish the undecidability of a problem P so the decid-
ability of P would imply the decidability of a well-known undecidable problem U, and from this
contradiction, we conclude that P is undecidable. In other words, from the well-known undecid-
ability of U, we actually derive the undecidability of P; hence, we usually say that we reduce U
to P when demonstrating that P is undecidable in this way. In terms of the problem-encoding
languages, to prove that a language PL, encoding P, is undecidable, we usually follow the proof
scheme given next.

 1. Assume that PL is decidable, and consider a TD D such that L(D) = PL.
 2. Modify D to another TD that would decide a well-known undecidable language UL—a

contradiction.
 3. �e contradiction obtained in (2) implies that the assumption in (1) is incorrect, so PL is

undecidable.

On the basis of this reduction-proof scheme, we next show the undecidability of the
TM-Membership problem that asks whether input w is a member of L(M), where M ∈ TMΨ
and w ∈ Δ*. It is worth noting that the following formulation of this problem makes use of the
 encoding language TM-MembershipL that coincides with TM-AcceptanceL de"ned in Section 9.3.

Problem 10.49 TM-Membership.
Question: Let M ∈ TMΨ and w ∈ Δ*. Is w a member of L(M)?
Language: TM-MembershipL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, w ∈ L(M)}.

We prove the undecidability of this problem by reducing Problem 10.41 TM-Halting to it.
�at is, we show that if there were a way of deciding the TM-Membership problem, we could
decide Problem 10.41 TM-Halting, which contradicts �eorem 10.42.

!eorem 10.50 TM-MembershipL ∉ TDΦ.

Proof. Given 〈M, x〉, construct a TM N that coincides with M except that N accepts x i# M halts
on x (recall that M halts on x i# M either accepts or rejects x according to Convention 9.3). In
other words, x ∈ L(N) i# M halts on x. If there were a TD D for TM-MembershipL, we could use D
and this equivalence to decide TM-HaltingL. Indeed, we could decide TM-HaltingL by transforming M to
N as described earlier and asking whether x ∈ L(N); from x ∈ L(N), we would conclude that M
halts on x while from x ∉ L(N), we would conclude that M loops on x. However, Problem 10.41
TM-Halting is undecidable (see �eorem 10.42), which rules out the existence of D. �us, there is
no TD for TM-MembershipL, so TM-MembershipL ∉ TDΦ.

Next, we formulate the Non-TM-Membership problem, and based on �eorems 9.15 and 10.50,
we prove that it is not decidable either.

Applications of Turing Machines: Theory of Computation ◾ 231

Problem 10.51 Non-TM-Membership.
Question: Let M ∈ TMΨ and w ∈ Δ*. Is w out of L(M)?
Language: Non-TM-MembershipL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, w ∉ L(M)}.

By analogy with the proof of !eorem 10.50, we prove that Non-TM-MembershipL is even out of TMΦ.

�eorem 10.52 Non-TM-MembershipL ∉ TMΦ.

Proof. For the sake of obtaining a contradiction, suppose that Non-TM-MembershipL ∈ TMΦ. As already
pointed out, TM-MembershipL = TM-AcceptanceL, so TM-MembershipL ∈ TMΦ (see !eorem 9.15). As obvious,

Non-TM-MembershipL is the complement of TM-MembershipL. !us, by !eorem 10.46, TM-MembershipL would
belong to TDΦ, which contradicts !eorem 10.50. !us, Non-TM-MembershipL ∉ TMΦ.

From !eorems 10.43 and 10.52, we obtain Corollary 10.53, saying that Non-TM-Membership
is an undecidable problem.

Corollary 10.53 Non-TM-MembershipL ∉ TDΦ.

Problem 10.54 asks whether L(M) is regular, where M ∈ TMΨ. By reducing TM-Halting to it,
we prove its undecidability.

Problem 10.54 TM-Regularness.
Question: Let M ∈ TMΨ. Is L(M) regular?
Language: TM-RegularnessL = {〈M〉| M ∈ TMΨ, L(M) ∈ regΦ}.

�eorem 10.55 TM-RegularnessL ∉ TDΦ.

Proof. Consider TM-HaltingL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, M halts on w}. Recall that TM-HaltingL ∈

TMΦ − TDΦ (see !eorems 10.42 and 10.43). Take any TM O such that L(O) = TM-HaltingL;
for instance, in the proof of !eorem 9.16, TM-HaltingU satis#es this requirement because
L(TM-HaltingU) = TM-HaltingL. Next, we construct a TM W ∈ TMΨ so that W converts every input
〈M, w〉, where M ∈ TMΨ and w ∈ Δ*, to a new TM, denoted by N[M, w]. Next, we describe this
conversion in a greater detail. Given 〈M, w〉, W constructs a TM N[M, w] that works on every
input y ∈ Δ* as follows:

 1. N[M, w] places w somewhere behind y on its tape
 2. N[M, w] runs M on w
 3. If M halts on w, N[M, w] runs O on y and accepts if and when O accepts

If M loops on w, N[M, w] never gets behind (2), so the language accepted by N[M, w] equals ∅
in this case. If M halts on w, N[M, w] accepts y in (3) if and when O accepts y, so the language
accepted by N[M, w] coincides with L(O) in this case. !us, the language accepted by N[M, w]
equals L(O) i$ M halts on w, and the language accepted by N[M, w] equals ∅ i$ M loops on w. By
!eorems 10.17 and 10.43, L(O) is not regular because L(O) ∈ TMΦ − TDΦ and regΦ ⊂ TDΦ. By
De#nition 3.23, ∅ is regular. !us, the language accepted by N[M, w] is regular i$ M loops on w,
and the language accepted by N[M, w] is nonregular i$ M halts on w. Hence, if TM-RegularnessL were

232 ◾ Formal Languages and Computation

decidable by a TD V ∈ TDΨ, W could make use of V and these equivalences to decide TM-HaltingL.
Simply put, W would represent a TD for TM-HaltingL, which contradicts !eorem 10.42. !us,

TM-RegularnessL is undecidable.

As an exercise, show the undecidability of the following three problems by analogy with the
proof of !eorem 10.55.

Problem 10.56 TM-Emptiness.
Question: Let M ∈ TMΨ. Is L(M) empty?
Language: TM-EmptinessL = {〈M〉| M ∈ TMΨ, L(M) = ∅}.

!eorem 10.57 TM-EmptinessL ∉ TDΦ.

Problem 10.58 TM-Finiteness.
Question: Let M ∈ TMΨ. Is L(M) "nite?
Language: TM-FinitenessL = {〈M〉| M ∈ TMΨ, L(M) is "nite}.

!eorem 10.59 TM-FinitenessL ∉ TDΦ.

Problem 10.60 TM-Context-freeness.
Question: Let M ∈ TMΨ. Is L(M) context-free?
Language: TM-Context-freenessL = {〈M〉| M ∈ TMΨ, L(M) ∈ CFΦ}.

!eorem 10.61 TM-Context-freenessL ∉ TDΦ.

Consider Problem 10.62 that asks whether L(M) = Δ*, where M ∈ TMΨ. We again prove its
undecidability by reducing Problem 10.41 TM-Halting to it.

Problem 10.62 TM-Universality.
Question: Let M ∈ TMΨ. Is L(M) equal to Δ*?
Language: TM-UniversalityL = {〈M〉| M ∈ TMΨ, L(M) = Δ*}.

!eorem 10.63 TM-UniversalityL ∉ TDΦ.

Proof. We reduce Problem 10.41 TM-Halting to Problem 10.62 TM-Universality. Once again,
recall that TM-HaltingL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, M halts on w}. We introduce a TM W ∈ TMΨ so
that W constructs the following TM N[M, w] from every input 〈M, w〉, where M ∈ TMΨ and w ∈ Δ*.
!at is, given 〈M, w〉, W makes N[M, w] that works on every input y ∈ Δ* as follows:

 1. N[M, w] replaces y with w
 2. N[M, w] runs M on w and halts if and when M halts

As N[M, w] works on every y in this way, its language equals Δ* i$ M halts on w while its language
is empty i$ M loops on w. Assume that TM-UniversalityL ∈ TDΦ, so there is a TD V for TM-UniversalityL.
!us, W could use V and these equivalences to decide TM-HaltingL, which contradicts !eorem
10.42. Hence, TM-UniversalityL ∉ TDΦ.

Applications of Turing Machines: Theory of Computation ◾ 233

10.2.3.3 Undecidable Problems Not Concerning Turing Machines

We have concentrated our attention on the undecidability concerning TMs and their languages so
far. However, undecidable problems arise in a large variety of areas in the formal language theory
as well as out of this theory. �erefore, before concluding this section, we present some of them,
but we completely omit proofs that rigorously show their undecidability.

Take CFGs, which are central to Section III of this book. For these grammars, the following
problems are undecidable.

Problem 10.64 CFG-Equivalence.
Question: Let G, H ∈ CFGΨ. Are G and H equivalent?
Language: CFG-EquivalenceL = {〈G, H〉| G, H ∈ CFGΨ, L(G) = L(H)}.

Problem 10.65 CFG-Containment.
Question: Let G, H ∈ CFGΨ. Does L(G) contain L(H)?
Language: CFG-ContainmentL = {〈G, H〉| G, H ∈ CFGΨ, L(H) ⊆ L(G)}.

Problem 10.66 CFG-Intersection.
Question: Let G, H ∈ CFGΨ. Is the intersection of L(G) and L(H) empty?
Language: CFG-IntersectionL = {〈G, H〉| G, H ∈ CFGΨ, L(H) ∩ L(G) = ∅}.

Problem 10.67 CFG-Universality.
Question: Let G ∈ CFGΨ. Is L(G) equal to GΔ

*?
Language: CFG-UniversalityL = {〈G〉| G ∈ CFGΨ, L(G) = GΔ

*}.

Problem 10.68 CFG-Ambiguity.
Question: Let G ∈ CFGΨ. Is G ambiguous?
Language: CFG-AmbiguityL = {〈G〉| G ∈ CFGΨ, G is ambiguous}.

Within the formal language theory, however, there exist many undecidable problems concern-
ing languages without involving their models, and some of them were introduced long time ago.
To illustrate, in 1946, Post introduced a famous problem, which we here formulate in terms of
ε-free homomorphisms, de!ned in Section 2.1. Let X, Y be two alphabets and g, h be two ε-free
homomorphisms from X * to Y *; Post’s Correspondence Problem is to determine whether there is
w ∈ X+ such that g(w) = h(w). For example, consider X = {1, 2, 3}, Y = {a, b, c}, g(1) = abbb, g(2) =
a, g(3) = ba, h(1) = b, h(2) = aab, and h(3) = b and observe that 2231 ∈ X+ satis!es g(2231) =
h(2231). Consider a procedure that systematically produces all possible w ∈ X+, makes g(w) and
h(w), and tests whether g(w) = h(w). If and when the procedure !nds out that g(w) = h(w), it halts
and answers yes; otherwise, it continues to operate endlessly. Although there is a procedure like
this, there is no algorithm, which halts on every input, to decide this problem. Simply put, Post’s
Correspondence Problem is undecidable.

Of course, out of the formal language theory, there exist many undecidable problems as well.
To illustrate, mathematics will never have a general algorithm that decides whether statements in
number theory with the plus and times are true or false. Although these results are obviously more
than signi!cant from a purely mathematical point of view, they are somewhat out of the scope
of this book, which primarily concentrates its attention on formal languages and their models;
therefore, we leave their discussion as an exercise.

234 ◾ Formal Languages and Computation

10.2.4 General Approach to Undecidability

As showed in Section 10.2.3.2, many reduction-based proofs of undecidability are very similar.
�is similarity has inspired the theory of computation to undertake a more general approach to
reduction, based on De�nition 10.69, which makes use of the notion of a computable function
(see De�nition 10.2).

De�nition 10.69 Let K, L ⊆ Δ* be two languages. A total computable function f over Δ* is a
reduction of K to L, symbolically written as K f∠ L, if for all w ∈ Δ*, w ∈ K i! f(w) ∈ L.

Convention 10.70 Let K, L ⊆ Δ*. We write K ∠ L to express that there exists a reduction of K to L.
Let us note that instead of ∠, ≤ is also used in the literature.

First, we establish a general theorem concerning ∠ in terms of TMΦ.

!eorem 10.71 Let K, L ⊆ Δ*. If K ∠ L and L ∈ TMΦ, then K ∈ TMΦ.

Proof. Let K, L ⊆ Δ*, K ∠ L, and L ∈ TMΦ. Recall that K ∠ L means that there exists a reduction f
of K to L, written as K f∠ L (see De�nition 10.69 and Convention 10.70). As L ∈ TMΦ, there is a
TM M satisfying L = L(M). Construct a new TM N that works on every input w ∈ Δ* as follows:

 1. N computes f(w) (according to De�nition 10.2, f is computable)
 2. N runs M on f(w)
 3. If M accepts, then N accepts, and if M rejects, then N rejects

Notice that N accepts w i! M accepts f(w). As L = L(M), M accepts f(w) i! f(w) ∈ L. As K ∠ L
(see De�nition 10.69), w ∈ K i! f(w) ∈ L. �us, K = L(N), so K ∈ TMΦ.

Corollary 10.72 Let K, L ⊆ Δ*. If K ∠ L and K ∉ TMΦ, then L ∉ TMΦ.

By �eorem 10.71, we can easily prove that a language K belongs to TMΦ. Indeed, we take a
language L ∈ TMΦ and construct a TM M that computes a reduction of K to L, so K ∠ L. �en, by
�eorem 10.71, K ∈ TMΦ. For instance, from �eorem 9.15 (recall that TM-MembershipL = TM-AcceptanceL),
it follows that TM-MembershipL ∈ TMΦ. Take this language. Demonstrate that TM-HaltingL ∠ TM-MembershipL
to prove TM-HaltingL ∈ TMΦ. As a result, we have obtained an alternative proof that TM-HaltingL ∈ TMΦ,
which also follows from �eorem 9.16.

Perhaps even more importantly, Corollary 10.72 saves us much work to prove that a language
L is out of TMΦ. Typically, a proof like this is made in one of the following two ways.

 I. Take a well-known language K ∉ TMΦ and construct a TM M that computes a reduction of
K to L, K ∠ L. As a result, Corollary 10.72 implies L ∉ TMΦ.

 II. By De�nition 10.69, if f is a reduction of K to L, then f is a reduction of ~K to ~L as well.
�erefore, to prove that L ∉ TMΦ, take a language K with its complement ~K ∉ TMΦ and
construct a TM that computes a reduction of K to ~L. As K ∠ ~L, we have ~K ∠ ~~L. �at
is, ~K ∠ L, and by Corollary 10.72, L ∉ TMΦ.

In fact, by a clever use of Corollary 10.72, we can sometimes show that both L ∉ TMΦ and
~L ∉ TMΦ, and both proofs, frequently resemble each other very much. To illustrate, in this way,
we next prove that TM-EquivalenceL ∉ TMΦ and its complement Non-TM-EquivalenceL ∉ TMΦ, where

Applications of Turing Machines: Theory of Computation ◾ 235

 TM-EquivalenceL = {〈M, N〉| M, N ∈ TMΨ, L(M) = L(N)}, and

 Non-TM-EquivalenceL = {〈M, N〉| M, N ∈ TMΨ, L(M) ≠ L(N)}

�eorem 10.73 TM-EquivalenceL ∉ TMΦ.

Proof. To show TM-EquivalenceL ∉ TMΦ, we follow proof method II listed earlier. More speci!cally, we
prove that TM-MembershipL ∠ Non-TM-EquivalenceL (see Problem 10.49 TM-Membership for TM-MembershipL);
therefore, TM-EquivalenceL ∉ TMΦ because Non-TM-MembershipL ∉ TMΦ (see method II listed earlier and
"eorem 10.52). To establish TM-MembershipL ∠ Non-TM-EquivalenceL, we construct a TM X that computes
a reduction of TM-MembershipL to Non-TM-EquivalenceL. Speci!cally, X transforms every 〈O, w〉, where O ∈

TMΨ and w ∈ Δ*, to the following two TMs, M and N[O, w], and produces 〈M, N[O, w]〉 as output
(we denote M without any information concerning 〈O, w〉 because its construction is completely
independent of it—that is, X produces the same M for every 〈O, w〉). M and N[O, w] work as
follows:

 1. M rejects every input
 2. On every input x ∈ Δ*, N[O, w] works so it runs O on w and accepts x if and when O accepts w

As obvious, L(M) = ∅. Because N[O, w] works on every input x ∈ Δ* in the way described earlier,
these two implications hold:

 ◾ If w ∈ L(O), then L(N[O, w]) = Δ*, which implies L(M) ≠ L(N[O, w])
 ◾ If w ∉ L(O), then L(N[O, w]) = ∅, which means L(M) = L(N[O, w])

"us, X computes a reduction of TM-MembershipL to Non-TM-EquivalenceL, so TM-EquivalenceL ∉ TMΦ.

Observe that the proof of "eorem 10.74, which says that the complement of TM-EquivalenceL is
out of TMΦ as well, parallels the proof of "eorem 10.73 signi!cantly. As a matter of fact, while in
the proof of "eorem 10.74, M always rejects, in the following proof, M always accepts; otherwise,
both proofs coincide with each other.

�eorem 10.74 Non-TM-EquivalenceL ∉ TMΦ.

Proof. To show that Non-TM-EquivalenceL ∉ TMΦ, we prove that TM-MembershipL ∠ TM-EquivalenceL. We de!ne
a reduction of TM-MembershipL to TM-EquivalenceL by a TM X that transforms every 〈O, w〉, where O ∈

TMΨ and w ∈ Δ*, to the following two TMs M, N[O, w] ∈ TMΨ and produces 〈M, N[O, w]〉 as output.
M and N[O, w] are de!ned as follows:

 1. M accepts every input string
 2. On every input string x, N[O, w] runs O on w and accepts x if and when O accepts w

As obvious, L(M) = Δ*. If w ∈ L(O), L(N[O, w]) = Δ* and L(M) = L(N[O, w]); otherwise, L(M) ≠
L(N[O, w]). Hence, TM-MembershipL ∠ TM-EquivalenceL. "erefore, by using proof method II, we obtain
 Non-TM-EquivalenceL ∉ TMΦ.

Returning to the key topic of this section, we see that such results as "eorem 10.71 and
Corollary 10.72 have often signi!cant consequences in terms of undecidability. Indeed, if L ∉

TMΦ, then a problem encoded by L is undecidable because TDΦ ⊂ TMΦ (see "eorem 10.43).

236 ◾ Formal Languages and Computation

Speci�cally, in this way, �eorems 10.73 and 10.74 imply the undecidability of the next two
problems encoded by languages TM-EquivalenceL and Non-TM-EquivalenceL, introduced earlier; for con-
venience, we repeat the de�nition of TM-EquivalenceL and Non-TM-EquivalenceL in the following prob-
lems again.

Problem 10.75 TM-Equivalence.
Question: Are M and N equivalent, where M, N ∈ TMΨ?
Language: TM-EquivalenceL = {〈M, N〉| M, N ∈ TMΨ, L(M) = L(N)}.

Problem 10.76 Non-TM-Equivalence.
Question: Are M and N nonequivalent, where M, N ∈ TMΨ?
Language: Non-TM-EquivalenceL = {〈M, N〉| M, N ∈ TMΨ, L(M) ≠ L(N)}.

Corollary 10.77 TM-EquivalenceL ∉ TDΦ and Non-TM-EquivalenceL ∉ TDΦ.

Next, we state results analogical to �eorem 10.71 and Corollary 10.72 in terms of TDΦ.

!eorem 10.78 Let K, L ⊆ Δ*. If K ∠ L and L ∈ TDΦ, then K ∈ TDΦ.

Proof. Let K, L ⊆ Δ*, K ∠ L, and L ∈ TDΦ. Let f be a reduction of K to L. As already pointed out,
by De�nition 10.69, f is a reduction of ~K to ~L, too. By �eorem 10.46, L ∈ TDΦ i! L ∈ TMΦ and
~L ∈ TMΦ. By �eorem 10.71, K ∈ TMΦ and ~K ∈ TMΦ. �us, K ∈ TDΦ by �eorem 10.46.

Corollary 10.79 Let K, L ⊆ Δ*. If K ∠ L and K ∉ TDΦ, then L ∉ TDΦ.

�eorem 10.78 and Corollary 10.79 often save us much work when we show undecidability.
In Examples 10.8 and 10.9, we revisit some of our earlier results concerning undecidability to see
how they follow from Corollary 10.79.

Example 10.8 Reconsider Problem 10.56 TM-Emptiness and �eorem 10.57, stating that this
problem is undecidable. In essence, this undecidability is established so that from any TM M
and any string x, we algorithmically construct a TM N such that L(N) = ∅ i! M halts on x. To
rephrase this in terms of languages, we de�ne a reduction of TM-HaltingL to TM-EmptinessL, so TM-HaltingL ∠

TM-EmptinessL. As TM-HaltingL ∉ TDΦ (see �eorem 10.41), TM-EmptinessL ∉ TDΦ by Corollary 10.79, so
Problem 10.56 TM-Emptiness is undecidable.

Example 10.9 Earlier in this section, by using diagonalization, we proved that Problem 10.41
TM-Halting is undecidable, after which we showed that Problem 10.49 TM-Membership is
undecidable so we reduced TM-Halting to TM-Membership. As this example shows, we could
proceed the other way around. �at is, �rst, by using diagonalization, we could prove that Problem
10.49 TM-Membership is undecidable; a proof like this is similar to the proof of �eorem 10.42
and, therefore, left as an exercise. Next, we show TM-MembershipL ∠ TM-HaltingL, so the undecidability of
TM-Membership implies the undecidability of TM-Halting by Corollary 10.79.

We construct a TM O that computes a total function f over Δ* that maps every 〈M, w〉 to
〈N, v〉 so

〈M, w〉 ∈ TM-MembershipL iff 〈N, v〉 ∈ TM-HaltingL

Applications of Turing Machines: Theory of Computation ◾ 237

�erefore, TM-MembershipL f∠ TM-HaltingL. O is de!ned as follows:

1. On every input 〈M, w〉, O constructs a TM W[M] that works on every input in this way:
a. W[M] runs M on the input
b. W[M] accepts if M accepts, and W[M] loops if M rejects

2. Write 〈W[M], w〉 as output

Observe that W[M] loops on w i" M rejects w or loops on w; thus, in terms of the above
equivalence, W[M] ful!lls the role of N with v equal to w. Clearly, TM-MembershipL ∠ TM-HaltingL. As

TM-MembershipL ∉ TDΦ, TM-HaltingL ∉ TDΦ by Corollary 10.79.

10.2.4.1 Rice’s Theorem

Next, we discuss the undecidability concerning properties of Turing languages in TMΦ rather than
TMs in TMΨ. More speci!cally, we identify a property of Turing languages, π, with the subfamily
of TMΦ de!ned by this property—that is, this subfamily contains precisely the Turing languages
that satisfy π. For instance, the property of being !nite equals {L ∈ TMΦ| L is !nite}. In this way,
we consider π as a decidable property if there exists a TD D ∈ TDΨ such that L(D) consists of all
descriptions of TMs whose languages are in the subfamily de!ned by π.

De�nition 10.80 Let π ⊆ TMΦ. �en, π is said to be a property of Turing languages.

 I. A language L ∈ TMΦ satis!es π if L ∈ π.
 II. Set πL = {〈M〉| M ∈ TMΨ, L(M) ∈ π}. We say that π is decidable if πL ∈ TDΦ; otherwise, π is

undecidable.
 III. We say that π is trivial if π = TMΦ or π = ∅; otherwise, π is nontrivial.

For instance, the property of being !nite is nontrivial because {L ∈ TMΦ| L is !nite} is a non-
empty proper subfamily of TMΦ. As a matter of fact, there are only two trivial properties—TMΦ
and ∅—and both are trivially decidable because they are true either for all members of TMΦ or
for no member of TMΦ. As a result, we concentrate our attention on the nontrivial properties in
what follows. Surprisingly, Rice’s theorem, �eorem 10.81, states that all nontrivial properties are
undecidable.

!eorem 10.81 Rice’s theorem. Every nontrivial property is undecidable.

Proof. Let π be a nontrivial property. Without any loss of generality, suppose that ∅ ∉ π (as an
exercise, reformulate this proof in terms of ~π if ∅ ∈ π). As π is nontrivial, π is nonempty, so there
exists a Turing language K ∈ π. Let N ∈ TMΨ be a TM such that K = L(N).

For the sake of obtaining a contradiction, assume that π is decidable. In other words, there
exists a TD D ∈ TDΨ that decides πL. Next, we demonstrate that under this assumption, TM-HaltingL
would belong to TDΦ, which contradicts �eorem 10.42. Indeed, we construct an algorithm that
takes any 〈M, x〉, where M ∈ TMΨ and x ∈ Δ*, and produces 〈O〉 as output, where O ∈ TMΨ, so
〈M, x〉 ∈ TM-HaltingL i" 〈O〉 ∈ πL, and by using this equivalence and D, we would decide TM-HaltingL.
O is designed so that it works on every input string y as follows:

 1. Saves y and runs M on x
 2. If M halts on x, O runs N on y and accepts i" N accepts y

238 ◾ Formal Languages and Computation

If M loops on x, so does O. As O works on every y in this way, L(O) = ∅ i! M loops on x. If M
halts on x, O runs N on y, and O accepts y i! N accepts y, so L(O) = L(N) = K in this case (recall that
the case when K = ∅ is ruled out because ∅ ∉ π). "us, 〈M, x〉 ∈ TM-HaltingL i! 〈O〉 ∈ πL. Apply D to
decide whether 〈O〉 ∈ πL. If so, 〈M, x〉 ∈ TM-HaltingL, and if not, 〈M, x〉 ∉ TM-HaltingL, so TM-HaltingL would
be in TDΦ, which contradicts TM-HaltingL ∉ TDΦ (see "eorem 10.42). "erefore, πL is undecidable.

Rice’s theorem is a powerful result that has a great variety of consequences. For instance,
consider the properties of being #nite, regular, and context-free as properties of Turing languages.
Rice’s theorem straightforwardly implies that all these properties are undecidable.

10.2.5 Computational Complexity

"is section takes a #ner look at TDs by discussing their computational complexity. "is complex-
ity is measured according to their time and space computational requirements. "e time complexity
equals the number of moves they need to make a decision while the space complexity is de#ned as
the number of visited tape symbols. Perhaps most importantly, this section points out that some
problems are tractable for their reasonable computational requirements while others are intractable
for their unmanageably high computational requirements to decide them. Simply put, there exist
problems that are decidable in theory, but their decision is intractable in practice.

As most topics concerning complexity are too complicated to be discussed in this introductory
text, this section di!ers from Sections 10.1.2 through 10.2.4, which have discussed their material
in the form of mathematical formulas and proofs. Rather than give a fully rigorous presentation
of computational complexity, this section explains only the basic ideas underlying it. Indeed, it
restricts its attention to the very fundamental concepts and results, which are usually described
informally. "is section omits mathematically precise proofs. On the other hand, it points out
some important open problems concerning the computational complexity.

We begin with the explanation of time complexity, after which we brie$y conceptualize space
complexity.

10.2.5.1 Time Complexity

Observe that the following de#nition that formalizes the time complexity of a TD considers the
worst-case scenario concerning this complexity.

De�nition 10.82 Let M = (MΣ, MR) be a TD. "e time-complexity function of M, denoted by

Mtime, is de#ned over 0ℕ so for all n ∈ 0ℕ, Mtime(n) is the maximal number of moves M makes on
an input string of length n before halting.

Example 10.10 Return to the TD D in Example 10.7 such that L(D) = {x| x ∈ {a, b, c}
*
, occur(x, a) =

occur(x, b) = occur(x, c)}. Recall that D scans across the tape in a left-to-right way while erasing the
leftmost occurrence of a, b, and c. When it reaches ◃ after erasing all three occurrences, it moves
left to ▹ and makes another scan of this kind. However, when D reaches ◃ while some of the three
symbols are missing on the tape, D makes its #nal return to ▹ and halts by making one more
move during which it accepts or rejects as described in Example 10.7. Let g be the integer function
over 0ℕ de#ned for all 0ℕ, so that if n ∈ 0ℕ is divisible by 3, g(n) = n(2(n/3)) + 1, and if n ∈ ℕ is
indivisible by 3, g(n) = g(m) + 2n, where m is the smallest m ∈ 0ℕ such that m ≤ n and m is divisible
by 3. Observe that Dtime(n) = g(n). As an exercise, design another TD E such that L(D) = L(E) and

Etime(n) < Dtime(n), for all n ∈ ℕ.

Applications of Turing Machines: Theory of Computation ◾ 239

As a general rule, for M ∈ TDΦ, Mtime is a complicated polynomial, whose determination
represents a tedious and di!cult task. Besides this di!culty, we are usually interested in the time
complexity of M only when it is run on large inputs. As a result, rather than determine Mtime
rigorously, we often consider the highest order term of Mtime; on the other hand, we disregard
the coe!cient of this term as well as any lower terms. "e elegant big-Ο notation, de#ned next, is
customarily used for this purpose.

De�nition 10.83

 I. Let f and g be two functions over 0ℕ. If there exist c, d ∈ ℕ such that for every n ≥ d, f(n)
and g(n) are de#ned and f(n) ≤ cg(n), then g is an upper bound for f, written as f = Ο(g).

 II. If f = Ο(g) and g is of the form nm, where m ∈ ℕ, then g is a polynomial bound for f.
 III. Let M ∈ TDΨ. M is polynomially bounded if there is a polynomial bound for Mtime.

Let f and g be two polynomials. In essence, according to points I and II of De#nition 10.83,
f = Ο(g) says that f is less than or equal to g if we disregard di$erences regarding multiplicative
constants and lower-order terms. Indeed, f = Ο(g) implies kf = Ο(g) for any k ∈ ℕ, so the multi-
plication constants are ignored. As f(n) = cg(n) holds for all n ≥ d, the values of any n ≤ d are also
completely ignored as well. In practice, to obtain g = nm as described in point II, we simply take nm
as the highest-order term of f without its coe!cient; for instance, if f(n) = 918273645n5 + 999n4 +
1111n3 + 71178n2 + 98765431n + 1298726, then f = Ο(n5). On the other hand, if f ≠ Ο(g), then
there exist in#nitely many values of n satisfying f(n) > cg(n).

Based on point III of De#nition 10.83, from a more practical point of view, we next distin-
guish the decidable problems that are possible to compute from those that are not.

De�nition 10.84 Let P be a decidable problem. If P is decided by a polynomially bounded TD,
P is tractable; otherwise, P is intractable.

Informally, this de#nition says that although intractable problems are decidable in principle,
they can hardly be decided in reality as no decision maker can decide them in polynomial time.
On the other hand, tractable problems can be decided in polynomial time, so they are central to
practically oriented computer science. Besides their practical signi#cance, however, tractable prob-
lems lead to some crucial topics of theoretical computer science as demonstrated next.

According to Convention 9.8, up until now, we have automatically assumed that the TMs
work deterministically. We also know that deterministic TMs are as powerful as their nondeter-
ministic versions (see De#nition 9.4 and "eorem 9.5). In terms of their time complexity, however,
their relationship remains open as pointed out shortly. Before this, we reformulate some of the
previous notions in terms of nondeterministic TMs.

De�nition 10.85

 I. Let M be a TM according to De#nition 9.1 (thus, M may not be deterministic). M is a non-
deterministic TD if M always halts on every input string.

 II. Let M be a nondeterministic TD. "e time complexity of M, Mtime, is de#ned by analogy
with De#nition 10.82—that is, for all n ∈ 0ℕ, Mtime(n) is the maximal number of moves M
makes on an input string of length n before halting.

 III. Like in De#nition 10.83, a nondeterministic TD M is polynomially bounded if there is a
polynomial bound for Mtime.

240 ◾ Formal Languages and Computation

Convention 10.86 PΦ denotes the family of languages accepted by polynomially bounded
(deterministic) TDs, and NPΦ denotes the family of languages accepted by polynomially bounded
nondeterministic TDs.

Notice that any TD represents a special case of a nondeterministic TD, so PΦ ⊆ NPΦ. However,
it is a long-standing open problem whether PΦ = NPΦ, referred to as the P = NP problem. By using
various methods, theoretical computer science has intensively attempted to decide this problem.
One of the most important approaches to this problem is based on ordering the languages in

NPΦ. !e equivalence classes de"ned by this ordering consist of languages coding equally di#cult
 problems. Considering the class corresponding to the most di#cult problems, any problem coded
by a language from this family is as di#cult as any other problem coded by a language from NPΦ.
Consequently, if we prove that this class contains a language that also belongs to PΦ, then PΦ = NPΦ;
on the other hand, if we demonstrate that this class contains a language that does not belong to PΦ,
then PΦ ⊂ NPΦ. Next, we describe this approach to the P = NP problem in somewhat greater detail.

Let M ∈ TMΨ. M is a nonerasing TD if it halts on every input string; consequently, as opposed to
the basic de"nition of a TD (see De"nition 10.15), M may halt with a non-blank tape. De"nition
10.87, given next, makes use of the notion of a nonerasing TD.

De!nition 10.87 Let Δ and ς be two alphabets, J ⊆ Δ*, and K ⊆ ς*. !en, J is polynomially
transformable into K, symbolically written as J ∝ K, if there is a polynomially bounded nonerasing
TD M such that M-f (see De"nition 10.1) is a total function from Δ* to ς* satisfying x ∈ J i$
M-f(x) ∈ K.

In other words, J ∝ K means that the di#culty of deciding J is no greater than the di#culty
of deciding K, so the problem encoded by J is no more di#cult than the problem encoded by K.

De!nition 10.88 Let L ∈ NPΦ. If J ∝ L for every J ∈ NPΦ, then L is NP-complete.

A decision problem coded by an NP-complete language is an NP-complete problem. !ere exist
a number of well-known NP-complete problems, such as Problem 10.89.

Problem 10.89 Time-Bounded Acceptance.
Question: Let M be a nondeterministic TM, w ∈ MΔ*, and i ∈ ℕ. Does M accept w by computing
no more than i moves?
Language: TBAL = {〈M, w, i〉| M is a nondeterministic TM, w ∈ MΔ*, i ∈ ℕ, M accepts w by com-
puting i or fewer moves}.

Once again, by "nding an NP-complete language L and proving either L ∈ PΦ or L ∉ PΦ, we
would decide the P = NP problem. Indeed, if L ∈ PΦ, then PΦ = NPΦ, and if L ∉ PΦ, then PΦ ⊂

NPΦ. So far, however, a proof like this has not been achieved yet, and the P = NP problem remains
open.

10.2.5.2 Space Complexity

We close this section by a remark about the space complexity of TDs.

De!nition 10.90 Let M = (MΣ, MR) be a TD. A function over 0ℕ represents the space complexity
of M, denoted by Mspace, if Mspace(i) equals the minimal number j ∈ 0ℕ such that for all x ∈ MΔi,
y, v ∈ Γ*, ▹Msx◃ ⇒* ▹yqv◃ in M implies |yv| ≤ j.

Applications of Turing Machines: Theory of Computation ◾ 241

�us, starting with an input string of length i, M always occurs in a con!guration with no
more than Mspace(i) symbols, including blanks, on the tape. As an exercise, de!ne polynomi-
ally space-bounded (deterministic) TDs and polynomially space-bounded nondeterministic TDs by
analogy with the corresponding deciders in terms of time complexity (see De!nitions 10.83
and 10.85).

Convention 10.91 PSΦ denotes the family of languages accepted by polynomially space-bounded
(deterministic) TDs, and NPSΦ denotes the family of languages accepted polynomially space-
bounded nondeterministic TDs.

As opposed to the unknown relationship between PΦ and NPΦ, we know more about PSΦ and

NPSΦ. Indeed, it holds that PSΦ = NPSΦ ⊂ TDΦ. It is also well-known that NPΦ ⊆ PSΦ, but it is not
known whether this inclusion is proper—another important long-standing open problem in the
theory of computation.

Exercises

 1. �is chapter contains results whose proofs are only sketched or even omitted. �ese results
include Examples 10.5, 10.6, 10.9, and 10.10; Lemmas 10.34 and 10.37; and �eorems 10.17,
10.29, 10.57, 10.59, 10.61, and 10.81. Prove them rigorously.

 2. De!ne the constant function f as f(x) = 0, for all x ∈ 0ℕ. Construct a TM that computes f (see
De!nition 10.3). Verify the construction by a rigorous proof.

 3. Consider each of the following functions de!ned for all x ∈ 0ℕ. Construct a TM that com-
putes it (see De!nition 10.3). Verify the construction by a rigorous proof.

 i. f(x) = 3x
 ii. f(x) = x + 3
 iii. f(x) = 3x + 3
 iv. f(x) = x2

 v. f(x) = 2x

 4 S. Consider each of the following total two-argument functions de!ned for all x, y ∈ 0ℕ.
Construct a TM that computes it (De!nition 10.10). Verify the construction by a rigorous
proof.

 i. f(x, y) = x + y
 ii. f(x, y) = xy
 iii. f(x, y) = xy

 iv. f(x, y) = 1 if x = 0; otherwise, f(x, y) = xy

 v. f(x, y) = 0 if x < y; otherwise, f(x, y) = x − y
 vi. f(x, y) = xy if x ≥ y; otherwise, f(x, y) = yx

 5. Let ξ = 1M-f, 2M-f, … have the same meaning as in Convention 10.6. Let c ∈ ℕ be a
 constant. By analogy with Example 10.5, prove that there necessarily exists i ∈ ℕ satisfying

iM-f = i+c M-f.
 6. For all i, m ∈ ℕ satisfying 1 ≤ i ≤ m, the i-m-projection function, i-m f, is de!ned by

i-m f (n1, …, ni, …, nm) = ni

 for all n1, …, ni, …, nm ∈ 0ℕ. Construct a TM that computes it (see De!nition 10.10). Verify
the construction by a rigorous proof.

 7. Let g be a function of i variables, and let h1 through hi be i functions of j variables, where
i, j ∈ ℕ. �en, the function f de!ned by f = g(h1(n1, …, nj), …, hi(n1, …, nj)), where n1, …,
nj ∈ 0ℕ, represents the composition of g and h1 through hi. Construct a TM that computes it
(see De!nition 10.10). Verify the construction by a rigorous proof.

242 ◾ Formal Languages and Computation

 8. Let m ∈ ℕ. Let h be an m-argument function, g be an (m+2)-argument function of m + 2
variables, and f be the (m+1)-argument function de!ned by

f (n1, …, nm+1) = h(n1, …, nm) if nm+1 = 0; otherwise,

f (n1, …, nm+1) = g(nm+1 − 1, f (n1, …, nm+1 − 1), n1, …, nm) if nm+1 ≠ 0

 for all n1, …, nm+1 ∈ 0ℕ. "en, f is the recursion of h and g. Design a TM that computes f.
Verify the construction by a rigorous proof.

 9. Let i be the constant function (see Exercise 2), a projection function (see Exercise 6), or the
successor function (see Example 10.1); then, i is called an initial function.

 Any initial function is a primitive recursive function. Furthermore, the composition of
primitive recursive functions is a primitive recursive function, and the recursion of primitive
recursive functions is a primitive recursive function (see Exercises 7 and 8).

 Formalize the notion of a primitive recursive function strictly rigorously by a recursive
de!nition. Prove that all primitive recursive functions are computable, but some computable
functions are not primitive recursive functions.

 10. Consider the function f over 0ℕ de!ned for n = 0, f(n) = 1, and for n > 0, f(n) = g(h(n − 1,
f(n − 1))), where g is the constant function and h is a 1-2-projection function. Explain why f
is a primitive recursive function. Simplify the de!nition of f. Design a TM that computes f.
Verify the construction by a rigorous proof.

 11. Let j ∈ ℕ. Let f be a total function of j + 1 variables and g be a partial function of j vari-
ables such that g(n1, …, nj) is the smallest k satisfying f(n1, …, nj, k) = 0, and g(n1, …, nj) is
unde!ned if for any k, f(n1, …, nj, k) ≠ 0, where n1, …, nj, k ∈ 0ℕ. "en, g is the minimiza-
tion of f.

 Design a TM that computes g. Verify the construction by a rigorous proof.
 12. Any primitive recursive function is a recursive function (see Exercise 9). Furthermore, the

composition of recursive functions is a recursive function, the recursion of recursive functions
is a recursive function, and the minimization of a recursive function is a recursive function,
too (see Exercises 7, 8, and 11).
 Formalize the notion of a recursive function strictly rigorously by a recursive de!nition.
Prove statements (a) through (c).
a. Every primitive recursive function is recursive.
b. Some recursive functions are not primitive recursive functions.
c. A function is recursive i# it is computable.

 13. Ackermann’s function f is the two-argument function over 0ℕ de!ned by (i) through (iii) as
follows:

 i. For m ≥ 0, f (0, m) = m + 1
 ii. For n ≥ 1, f (n, 0) = f (n − 1, 1)
 iii. For n, m ≥ 1, f (n, m) = f(n − 1, f(n, m − 1))

 Demonstrate that f is a recursive function (see Exercise 12). "en, prove or disprove that
f is a primitive recursive function (see Exercise 9).

 14 S. Formalize the following problems by analogy with the formalization used throughout
Section 10.2. Prove that all the following problems are decidable.

 i. Let M ∈ FAΨ. Is L(M) = MΔ
*?

 ii. Let M, N ∈ FAΨ. Is L(M) contained in L(N)?
 iii. Let M, N ∈ FAΨ. Is L(M) ∩ L(N) empty?
 15. Consider each of problems (i) through (v). Formalize it by analogy with the formalization

used throughout Section 10.2. Prove or disprove that it is decidable.
 i. Let G ∈ LGΨ (see Example 2.7). Is L(G) regular?
 ii. Let G ∈ LGΨ. Is ~L(G) linear?
 iii. Let G ∈ LGΨ. Is ~L(G) context-free?
 iv. Let G ∈ CFGΨ. Is L(G) linear?
 v. Let G ∈ CFGΨ. Is ~L(G) context-free?

Applications of Turing Machines: Theory of Computation ◾ 243

 16 S. Formalize the following problems by analogy with the formalization used throughout
Section 10.2. Prove that they all are undecidable.

 i. Let G, H ∈ CFGΨ. Is L(G) contained in L(H)?
 ii. Let G, H ∈ CFGΨ. Is L(G) ∩ L(H) empty?
 iii. Let M ∈ TMΨ. Does L(M) contain ε?
 iv. Let M, N ∈ TMΨ. Is L(M) contained in L(N)?
 v. Let M, N ∈ TMΨ. Is L(M) ∩ L(N) empty?
 17. A Post Tag System G is a triple G = (Δ, R, S), where Σ is an alphabet, R is a !nite set of rules

of the form x → y, where x, y ∈ Δ*, and S ∈ Δ+ is the start string. De!ne relation ⇒ over Δ*
so xz ⇒ zy for all x → y ∈ R and z ∈ Δ*. As usual, ⇒* is the transitive and re"exive closure
of ⇒. #e language of G is denoted by L(G) and de!ned as L(G) = {w| w ∈ Δ*, S ⇒* w}.

 Consider the following problem. Formalize it by analogy with the formalization used
throughout Section 10.2. Prove that it is undecidable.
 Let G = (Δ, R, S) be any Post Tag system and w ∈ Δ*. Is w a member of L(G)?

 18. Reconsider Post’s correspondence problem described in the conclusion of Section 10.2.3.3;
pay a special attention to X therein. Assume that X contains a single symbol. Prove that under
this assumption, this problem is decidable.

 19. To demonstrate some very practical consequences implied by the results of undecidability
covered in Section 10.2.3, consider an ordinary programming language, such as Java. Let
L be the set of all well-written programs in this language. Demonstrate that the following
problems are undecidable. In other words, computer science will never have software tools to
answer these natural yes-no questions.

 i. Let p ∈ L. Can p enter an in!nite loop?
 ii. Let p ∈ L. Can p produce any output?
 iii. Let p, q ∈ L. Do p and q produce the same output on all inputs?
 20. Formalize the notion of a nondeterministic TM-based decision maker.
 21. Let γ, η, θ be three functions over ℕ such that γ = Ο(θ) and η = Ο(θ). Prove that γ +

η = Ο(θ).
 22. Let γ and θ be two functions such that θ is polynomial, and γ = Ο(θ). Prove that there exists

a polynomial function η such that γ(n) ≤ η(n) for all n ≥ 1.
 23. Prove the following three results.

a. #e family of polynomial-space-bounded languages contains the family of nondeter-
ministic polynomial-time-bounded languages.

b. TDΦ properly contains the family of nondeterministic polynomial-space-bounded
languages.

c. #e family of polynomial-space-bounded languages coincides with the family of nonde-
terministic polynomial-space-bounded languages.

 24. Prove that Problem 10.89 Time-Bounded Acceptance is NP-complete.

Solutions to Selected Exercises

 4. Only (i) and (ii) are considered here.
 Consider (i). #at is, f(x, y) = x + y for all x, y ∈ 0ℕ. Construct a TM M so (unary(x)#unary(y),
unary(x + y)) ∈ M-f 2 (see De!nition 10.10). Starting from ▹▸ax#a y

◃, M works as follows:
 a. Replaces # with a
 b. Changes the rightmost occurrence of a to ▫

#us, M computes ▹▸ax#ay
◃ ⇒* ▹▪axy

▫◃ and, therefore, f(x, y) = x + y. It is noteworthy that
this construction takes care of the case when x = 0 or y = 0, too.

 Consider (ii). #at is, f(x, y) = xy for all x, y ∈ 0ℕ. Construct a TM M that computes this
function as follows. Starting from ▹▸ax#ay

◃, M !rst !nds out whether x = 0 or y = 0; if so,

it computes ▹▸ax#ay
◃ ⇒

*
 ▹▪▫x+y+1

◃ and halts because f(x, y) = 0 in this case. Suppose that
x ≥ 1 and y ≥ 1. M changes the current ordinary tape to a three-track tape, which has an
analogical meaning to a two-track tape in Exercise 11 in Chapter 9. It places ax and ay on the

244 ◾ Formal Languages and Computation

second and third tracks, respectively, while having the �rst track completely blank. �en, it
performs this loop

 i. Makes one new copy of ax on the �rst track from the second track
 ii. Changes one a to ▫ on the third track
 iii. If an a occurs on the third track, continues from (1), and if no a occurs on the third

track, M leaves this loop
 When the third track contains no a, the �rst track contains xy occurrences of as. M
changes the current three-track tape back to an ordinary one-track tape that contains axy. As
a result, M computes ▹▸ax#ay◃ ⇒* ▹▪axy◃, so it computes f(x, y) = xy.

 14. Consider (i). Formalize this problem in the following way.

 Problem FA-Universality.

Question: Let M ∈
csDFA

Ψ. Is L(M) = MΔ
*?

Language: FA-UniversalityL = {〈M〉| M ∈
csDFA

Ψ, L(M) = MΔ
*}.

 !eorem FA-UniversalityL ∈ TDΦ.

 Proof. From M, construct another N ∈
csDFAΨ so N coincides with M except that NF = MQ −

MF. As M and N are completely speci�ed, all their states are reachable (see De�nition 3.13).
Consequently, L(M) = MΔ

* i" L(N) = ∅. Recall that FA-EmptinessL ∈ TDΦ (see �eorem 10.20);
therefore, FA-UniversalityL ∈ TDΦ.

 �is proof makes use of �eorem 10.20 to demonstrate FA-UniversalityL ∈ TDΦ. However,
in a simpler way, this result can be proved without any involvement of �eorem 10.20. An
alternative proof like this is left as an exercise.

 16. Consider (iii). Formalize the problem in the following way.

 Problem ε-TM-Membership.
Question: Let M ∈ TMΨ. Does M accepts ε?
Language: ε-TM-MembershipL = {〈M〉| M ∈ TMΨ, ε ∈ L(M)}.

 To prove that this problem is undecidable, recall Problem 10.41 TM-Halting and
�eorem 10.42.
 Next, prove that the ε-TM-Membership problem is undecidable by contradiction. �at
is, assume that this problem is decidable. Under this assumption, show that Problem 10.41
TM-Halting would be decidable, which contradicts �eorem 10.42. �us, the ε-TM-Membership
problem is undecidable.

 !eorem ε-TM-MembershipL ∉ TDΦ.

 Proof. Let M be any TM, and let x ∈ Δ* be any input string. Without any loss of generality,
suppose that either M accepts x or M loops on it (see �eorem 9.9). From M and x, construct
a new TM N[M, x] that works on every input string y ∈ Δ* as follows:

 1. Replaces y with x on the tape
 2. Runs M on x
 3. Accepts if M accepts x

 Observe that for all y ∈ Δ*, M accepts x i" N[M, x] accepts y, and M loops on x i" N[M, x]
loops on y. �us, L(N[M, x]) = Δ* i" x ∈ L(M), and L(N[M, x]) = ∅ i" x ∉ L(M).

 Suppose that ε-TM-MembershipL ∈ TDΦ, so there exists a TD D such that L(D) = ε-TM-MembershipL.
Of course, ε ∈ Δ*. �us, N[M, x] accepts ε i" M halts on x while accepting x, and N[M, x] rejects
ε i" M loops on x ∈ L(M). Consequently, Problem 10.41 TM-Halting would be decidable,
which contradicts �eorem 10.42. �us, ε-TM-MembershipL ∉ TDΦ, so the ε-TM-Membership
problem is undecidable.

