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Properties of Regular
Languages
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Pumping Lemma for RLS

Gist: Pumping lemma demonstrates an infinite
Iteration of some substring in RLs.

» Let L be a RL. Then, there is k > 1 such that
If z € L and |z| = k, then there exist u,v,w: z = uvw,
1D vze2)|uv|<k 3)foreachm >0, uv™w e L

Example: for RE r = ab™c, L(r) is regular.
There is k = 3 such that 1), 2) and 3) holds.
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Gist: Pumping lemma demonstrates an infinite
Iteration of some substring in RLs.

» Let L be a RL. Then, there is k > 1 such that
If z € L and |z| = k, then there exist u,v,w: z = uvw,
1D vze2)|uv|<k 3)foreachm >0, uv™w e L

Example: for RE r = ab™c, L(r) is regular.
There is k = 3 such that 1), 2) and 3) holds.
e forz=2abc:z e L(r) & |z] = 3:uv®™w = ab% = ac € L(r)
JY Wy uviw = ablc = abc e L(r)
uvew = ab?c = abbc e L(r)
V#eg, |uv|=2<L3 5
e for z = abbc:z € L(r) & |z| > 3:uv°w = ab°bc = abc e L(r
poc:ze LN &lel= 30 IS 0t = ~bbe L(<2>
uv uvew = ab?bc = abbbc e L(r)
V#£Eg, |uv|=2<3 .
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» L = any regular language:
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Pumping Lemma: lllustration

L =any regular language:
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Pumping Lemma: lllustration

L =any regular language:

r | e | ‘nothmg Interesting
K
C E | elL
Tk ~l—
(U v ] W |
1) —
“ ik
2) Xk
3)f u | W le L
| u | v | W le L
l u | v | v | W le L




4/26

Proof of Pumping Lemma 1/3

et L be aregular language. Then, there exists
DFA M=(Q, 2, R,s, F),and L = L(M).

e For z € L(M), M makes |z| moves and M visits
z| + 1 states:

e forz=aa,...a,
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Proof of Pumping Lemma 2/3

 Let k = card(Q) (the number of states).
Foreachz e Land |z| >k, M visits k + 1 or
more states. As k + 1 > card(Q), there exists a

state g that M visits at least twice.
e For z exist u, v, w such that z = uvw:

_.@
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Proof of Pumping Lemma 2/3

 Let k = card(Q) (the number of states).
Foreachz e Land |z| >k, M visits k + 1 or
more states. As k + 1 > card(Q), there exists a

state g that M visits at least twice.
e For z exist u, v, w such that z = uvw:

Summary:
sz=suvw |- quw|-igw|-f, feF
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Proof of Pumping Lemma 3/3

e There exiIst moves:

©sul-g; @avl-'a; @uwl-"f, feF, so
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Proof of Pumping Lemma 3/3

* There exist moves:
©sul-g; @avl-'a; @uwl-"f, feF, so

e form =0, uvm™y = uvOw = Lw,

S W@ qw@*f, feF

e foreachm > 0,

SUV™Ww
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Proof of Pumping Lemma 3/3

e There exiIst moves:

©sul-g; @avl-'a; @uwl-"f, feF, so

e form =0, uvm™y = uvOw = Lw,

sw@qw?f feF

e for eachm > 0,

@

suvmwl-" qvMw
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Proof of Pumping Lemma 3/3

* There exist moves:
©sul-g; @avl-'a; @uwl-"f, feF, so

e form =0, uvm™y = uvOw = Lw,

S W@ qw@*f, feF

e for eachm > 0,

P i qrai . P
suv™wl-" qv™wl-! gvmiw]-) ... - gw
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* There exist moves:
©sul-g; @avl-'a; @uwl-"f, feF, so

e form =0, uvm™y = uvOw = Lw,

S W@ qw@*f, feF

e for eachm > 0,

1,
S vmWQ qvm\/%2 qvm'iv%2 % qw@* f, feF
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Proof of Pumping Lemma 3/3

* There exist moves:
©sul-g; @avl-'a; @uwl-"f, feF, so

e form =0, uvm™y = uvOw = Lw,

S W@ qw@*f, feF

e for eachm > 0,

S vmWQ qvmv% qv™ 1v%> %} qw@ f, feF

Summary:
1) gvl-'g ; therefore, [v[>1,s0v#¢
2) SUV |- qv I-'q, , therefore, |Uv| <k

3) For each m > 0: suv™w |- f, f e F, therefore uv™w e L
QED
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Pumping Lemma: Application |

* Based on the pumping lemma, we often make a proof by
contradiction to demonstrate that a language is not regular
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* Based on the pumping lemma, we often make a proof by
contradiction to demonstrate that a language is not regular
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length depends on k so |z| > k Is surely true.

: |

: | For all decompositions of z into uvw, v = ¢, |uv| < k , show:
- | there exists m > 0 such that uv™w ¢ L
: |[from the pumping lemma, uv™w € L
: |
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* Based on the pumping lemma, we often make a proof by
contradiction to demonstrate that a language is not regular

...................... §| ASSlJme that L iS regular ‘
5 !

Consider the PL constant k and select z € L, whose
length depends on k so |z| > k Is surely true.

!

For all decompositions of z into uvw, v # ¢, [uv| <k, show:
- | there exists m > 0 such that uv™w ¢ L

: [ from the pumping lemma, uv™w e L contradiction

: |
; Therefore,
false assumption ‘ - L is not reqular
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Pumping Lemma: Example

Prove that L = {2"b": n > 0} Is not regular:

1) Assume that L is regular. Let k > 1 be the

pumping lemma constant for L.
2) Let z = akbk: akbk e L, |z] = |akbK| = 2k > k

3) All decompositions of z into uvw, v # ¢, |uv| < k:

K Kk
HEelbb...bJ
a v W

U
%—J
luv| <k
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Pumping Lemma: Example

Prove that L = {2"b": n > 0} Is not regular:

1) Assume that L is regular. Let k > 1 be the

pumping lemma constant for L.
2) Let z = akbk: akbk e L, |z] = |akbK| = 2k > k

3) All decompositions of z into uvw, v # ¢, |uv| < k:

K K : . 10
A * pumping lemma: uv’w € L
(e [ bb....b0) kii <
o v T w . lewPw=uw = bb...bb|e L
Q—J ; ~ J

luv| <k J— U W

Contradiction!

4) Therefore, L Is not regular
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Note on Use of Pumping Lemma

* Pumping lemma:

if [Lis regular] thg lexistk>1and ...]

Main application of the pumping lemma:
e proof by contradiction that L is not regular.
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Note on Use of Pumping Lemma
* Pumping lemma:

if [Lis regular] thg lexistk>1and ...]

Main application of the pumping lemma:
e proof by contradiction that L is not regular.

* However, the next implication is incorrect:

ijﬁexist Iwwﬁlrequlaf R

* We cannot use the pumping lemma to
prove that L is regular.
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Pumping Lemma: Application I1. 1/3

« We can use the pumping lemma to prove
some other theorems.

Illustration:

* Let M be a DFA and k be the pumping lemma

constant (k Is the number of states in M). Then,

L(M) is infinite < there exists z € L(M), k< |z|] < 2K

Proof:
1) there exists z € L(M), k < |z| < 2k = L(M) is infinite:
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Pumping Lemma: Application I1. 1/3

« We can use the pumping lemma to prove
some other theorems.

Illustration:

* Let M be a DFA and k be the pumping lemma

constant (k Is the number of states in M). Then,

L(M) is infinite < there exists z € L(M), k< |z|] < 2K

Proof:
1) there exists z € L(M), k < |z| < 2k = L(M) is infinite:

Ifz e L(M), k<|z|, then by PL.:

Z = Uuvw, V # g, and for each m > 0: uv™w < L(M)
. , n )

(M) is infinite |~
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Pumping Lemma: Application Il. 2/3

2) L(M) is infinite = there exists z € L(M), k < |z] < 2k:

 \We prove by contradiction, that

‘ L(M) Is Infinite ‘1)4 there exists z € L(M), |z| > k‘
b) ¥

‘there existsz € L(M), k< |z| < Zk‘

a) Prove by contradiction that
* L(M) is infinite = there exists z € L(M), |z| > k
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Pumping Lemma: Application Il. 2/3

2) L(M) is infinite = there exists z € L(M), k < |z] < 2k:

 \We prove by contradiction, that

‘ L(M) Is Infinite ‘1)4 there exists z € L(M), |z| > k‘
b) ¥

‘there existsz € L(M), k< |z] < Zk‘

a) Prove by contradiction that

* L(M) is infinite = there exists z € L(M), |z| > k
Assume that L(M) is infinite and there exists no z € L(M), |z| = k

forall z € L(M) holdsl | <k

cti |
‘Contradlctlon ! ‘/ T~ L(M) is finite
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Pumping Lemma: Application Il. 3/3

b) Prove by contradiction
*thereexistsz e L(M), |zl 2k =
there exists z € L(M), k< |z| < 2k
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Pumping Lemma: Application Il. 3/3

b) Prove by contradiction
*thereexistsz e L(M), |zl 2k =
there exists z € L(M), k< |z| < 2k

Assume that thereisz € L(M), |z| = k k 2k
- — — — — -
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b) Prove by contradiction
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Let z, be the shortest string satisfying z, € L(M), |z,| = k
Because there exists no z € L(M), k < |z| < 2k, so
If z, € L(M) and |z,| = k, the PL implies: z, = uvw,
, and for each m >0, uv™w € L(M)

luw| =17 - v 2 K form=0: uw"w = UW € L(M)
Summary: uw € L(M), luw| > k and [uw| < |z,|!
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b) Prove by contradiction
*thereexistsz e L(M), |zl 2k =
there existsz e L(M), k< |z] < 2k
Assume that thereisz e L(M), |zl =2k  k 2k
and thereisnoz e L(M), k<|z| <2k  —Jmoscon—e—e—
Let z, be the shortest string satisfying z, € L(M), |z,| = k
Because there exists no z € L(M), k < |z| < 2k, so
If z, € L(M) and |z,| = k, the PL implies: z, = uvw,
, and for each m >0, uv™w € L(M)

luw| =17 - v 2 K form=0: uw"w =UW € L(M)
Summary: uw e L(M), luw| > k and [uw| < |z,|!
Z, 1s not the shortest string satisfying z, € L(M), |z,| > k



12/26

Pumping Lemma: Application Il. 3/3

b) Prove by contradiction
*thereexistsz e L(M), |zl 2k =
there existsz e L(M), k< |z] < 2k

Assume that thereisz € L(M), |z| = k k 2k

and thereisnoz e L(M), k<|z| <2k  —Jmoscon—e—e—

Let z, be the shortest string satisfying z, € L(M), |z,| = k
r Because there exists no z e L(M), k < |z] < 2k, so

If z, € L(M) and |z,| = k, the PL implies: z, = uvw,
, and for each m >0, uv™w € L(M)

luw| =17 - v 2 K form=0: uw"w =UW € L(M)

Summary: uw e L(M), luw| > k and [uw| < |z,|!
Zy IS not tr@hortest string satisfying zT e L(M), |z, = k

j| Contradiction !
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Closure properties 1/2

Definition: The family of regular languages
IS closed under an operation o If the language
resulting from the application of o to any
regular languages is also reqular.
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Definition: The family of regular languages
IS closed under an operation o If the language
resulting from the application of o to any
regular languages is also reqular.

Illustration:
* The family of regular languages is closed under union.

It means:

The family of
regular languages
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Closure properties 2/2

Theorem: The family of regular languages Is
closed under union, concatenation, iteration.

Proof:
« Let L,, L, be two regular languages

e Then, there exist two REs r, r,: L(r,) = L,, L(r,) = L,;
By the definition of regular expressions:
*r.I,1sa RE denoting L, L,
*r,+r,isaRE denoting L, U L,
*r,”isa RE denoting L,
* Every RE denotes regular language, so
L, L, Lyu L, L, area regular languages
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Algorithm: FA for Complement

* Input: Complete FA: M =(Q, %, R, s, F)
» Output: Complete FA: M’ =(Q, X, R, s, F’),

L(M) = L(M)
 Method:
‘F=0Q-F
Example:
M b
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Algorithm: FA for Complement

* Input: Complete FA: M =(Q, %, R, s, F)
» Output: Complete FA: M’ =(Q, X, R, s, F’),

L(M*) = L(M)

 Method:
F=0Q-F

Example:

. b
M: I !
ololNe
OmOmO)

ﬁ—l

Q-F F
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Algorithm: FA for Complement
 Input: Complete FA: M =(Q, %, R, s, F)
» Output: Complete FA: M’ =(Q, X, R, s, F’),

L(M*) = L(M)
 Method:
F=0Q-F
Example
e _s @ -8

Fo= Q F
L(M) = {x bisa substrlng of x}; L(M ) = {x: ab is no substring of x}
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FA for Complement: Problem

* Previous algorithm requires a complete FA
* If M Is Incomplete FA, then M must be converted to

a complete FA before we use the previous algorithm

Example:
Incomplete DFA:
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FA for Complement: Problem

* Previous algorithm requires a complete FA
* If M Is Incomplete FA, then M must be converted to

a complete FA before we use the previous algorithm

Example:
Incomplete DFA: L(|\/| ) = L(l\/l)I -c ¢ L(M), c ¢ L(M,") ‘

88686
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FA for Complement: Problem

* Previous algorithm requires a complete FA

* If M Is Incomplete FA, then M must be converted to
a complete FA before we use the previous algorithm

Example: —

Incomplete DFA: ‘ L(M,;*) #L(M)! -c ¢ L(M), c & L(M,") ‘
C_2 Y A
0 X -0'e

Complete DFA: b.c
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FA for Complement: Problem
* Previous algorithm requires a complete FA
* If M Is Incomplete FA, then M must be converted to

a complete FA before we use the previous algorithm

Example: —
Incomplete DFA: ‘ L(M;*) #L(M)! - c ¢ L(M), c ¢ L(M,") ‘

M:
o, asﬁufe
@ @ O L(Mz)—L(M)\

Complete DFA:

R=i=p =y
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Closure properties: Complement

Theorem: The family of regular languages Is
closed under complement.

Proof:

 Let L be a regular language
» Then, there exists a complete DFAM: L(M) =L
« We can construct a complete DFAM’: L(M’) = L
by using the previous algorithm
» Every FA defines a regular language, so
L Is a regular language
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Closure properties: Intersection

Theorem: The family of regular languages Is
closed under intersection.

Proof:
et L, L, be two regular languages

_., L, are regular languages

(the family of regular languages Is closed under complement)

_, UL, Isaregular language

(the family of regular languages is closed under union)

_, UL, Isaregular language

(the family of regular languages is closed under complement)

., nL,=C Ul isaregular language (DeMorgan’s law)
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Boolean Algebra of Languages

Definition: Let a family of languages be
closed under union, intersection, and
complement. Then, this family represents a
Boolean algebra of languages.

Theorem: The family of regular languages is
a Boolean algebra of languages.

Proof:

 The family of regular languages is closed
under union, intersection, and complement.



20/26

Main Decidable Problems

1. Membership problem:
* Instance: FAM, w € X7; Question: w € L(M)?

2. Emptiness problem:
* Instance: FA M; Question: L(M) = &7

3. Finiteness problem:
* Instance: FA M; Question: Is L(M) finite?

4. Equivalence problem:
* Instance: FA M, M,; Question: L(M,) =L(M,)?
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Algorithm: Membership Problem

 Input: DFA M=(Q, %, R,s,F);we X°
e Output: YES If w € L(M)
NO ifw ¢ L(M)

 Method:
eif sw|-"f, f € Fthen write CYES”)
else write CNQO”)

Summary:

The membership problem for FAs is decidable
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Algorithm: Emptiness Problem

e Input: FA M=(Q, I, R, s, F);
* Output: YESIf L(M) = &
NO if L(M) # &

« Method:
o If s IS nonterminating then write (CYES’)
else write CNQO”)

Summary:

The emptiness problem for FAs is decidable
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Algorithm: Finiteness Problem

* Input: DFA M =(Q, X, R, s, F);
« Qutput: YES if L(M) Is finite
NO 1f L(M) is infinite
« Method:
o Let k = card(Q)
o If there exist z € L(M), k < |z| < 2k then write "NO”)
else write CYES”)

Note: This algorithm is based on
L(M) is infinite < there exists z: z e L(M), k< |z| < 2k

summary:
The finiteness problem for FAs is decidable
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Decidable Problems: Example

" 0O@O

Question: ab € L(M) ?
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Decidable Problems: Example

" 0O@O

Question: ab € L(M) ?
sab|-sh|-f,fe F
Answer: YES because sab |-" f, f € F

Question: L(M) =0 ?
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Decidable Problems: Example

" 0O@O

Question: ab € L(M) ?
sab|-sh|-f,fe F
Answer: YES because sab |-" f, f € F

Questlon L(M) =02 ?
={f}
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Decidable Problems: Example

" 0O@O

Question: ab € L(M) ?
sab|-sh|-f,fe F
Answer: YES because sab |-" f, f € F

Que?t}!on L(M)=© ?

.I:

l.ga’—>fgeQ;a’eX sho>ffa>f
= {ru {s, f} = {f, s} ... sis terminating
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Decidable Problems: Example

" 0O@O

Question: ab € L(M) ?
sab|-sh|-f,fe F
Answer: YES because sab |-" f, f € F

Questlon L(M) =02 ?
={f}
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= {f} U {s, f} = {f, s} ... s Is terminating
Answer: NO because s is terminating
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Decidable Problems: Example

" 0O@O

Question: ab € L(M) ?
sab|-sh|-f,fe F
Answer: YES because sab |-" f, f € F
Questlon L(M) =02 ?
={}

1 ga’ > f,geQ;a’ e sho>f,fa—>f

= {f} U {s, f} = {f, s} ... s Is terminating
Answer: NO because s is terminating
Question: Is L(M) finite? k = card(
All stringsz € % 2 < |z| < 4: 24, bbb e L(M), ...
Answer: NO because there exist z € L(M), k < |z| < 2k
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Algorithm: Equivalence Problem

* Input: Two minimum state FA, M,and M,
» Output: YES iIf L(M,) =L(M,)
NO if L(M,) # L(M,)

 Method:

* If M, coincides with M, except for the name of states
then write CYES’)
else write CNO”)

Summary:

The equivalence problem for FA is decidable
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Equivalence Problem: Example

Question: L(M,) =L(M,)?
M;: M,:
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Equivalence Problem: Example

Question L(I\/I) L(M,)?
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Equivalence Problem: Example

Question L(I\/I) L(M,)?

o@o e ¢ @C

A minimum state FA
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Equivalence Problem: Example
Question' L(I\/Il) =L(M,)?

o@o e ¢ @C

) e

A minimum state FA

Answer: YES because M., coincides with M. .,



