
Properties of Regular 

Languages 

1/26 



• Let L be a RL. Then, there is k  1 such that 

if z  L and |z|  k, then there exist u,v,w: z = uvw, 

1) v   2) |uv|  k  3) for each m  0, uvmw  L 

Pumping Lemma for RLs 

Example: for RE r = ab*c, L(r) is regular. 

 Gist:  Pumping lemma demonstrates an infinite 
iteration of some substring in RLs. 

There is k = 3 such that 1), 2) and 3) holds. 

2/26 



• Let L be a RL. Then, there is k  1 such that 

if z  L and |z|  k, then there exist u,v,w: z = uvw, 

1) v   2) |uv|  k  3) for each m  0, uvmw  L 

Pumping Lemma for RLs 

Example: for RE r = ab*c, L(r) is regular. 

• for z = abc: z  L(r) & |z|  3:  

u v w 

uv0w = ab0c = ac  L(r) 
uv1w = ab1c = abc  L(r) 
uv2w = ab2c = abbc  L(r) ... v  , |uv| = 2  3  

 Gist:  Pumping lemma demonstrates an infinite 
iteration of some substring in RLs. 

There is k = 3 such that 1), 2) and 3) holds. 

2/26 



• Let L be a RL. Then, there is k  1 such that 

if z  L and |z|  k, then there exist u,v,w: z = uvw, 

1) v   2) |uv|  k  3) for each m  0, uvmw  L 

Pumping Lemma for RLs 

Example: for RE r = ab*c, L(r) is regular. 

• for z = abc: z  L(r) & |z|  3:  

u v w 

uv0w = ab0c = ac  L(r) 
uv1w = ab1c = abc  L(r) 
uv2w = ab2c = abbc  L(r) ... v  , |uv| = 2  3  

• for z = abbc: z  L(r) & |z|  3:  

u v w 

uv0w = ab0bc = abc  L(r) 
uv1w = ab1bc = abbc  L(r) 
uv2w = ab2bc = abbbc  L(r) ... 

... v  , |uv| = 2  3 

 Gist:  Pumping lemma demonstrates an infinite 
iteration of some substring in RLs. 

There is k = 3 such that 1), 2) and 3) holds. 

2/26 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 
k 

z  L nothing interesting 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 

k 

 L z 

k 

z  L nothing interesting 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 

k 

 L z 

k 

z  L nothing interesting 

w u v 

k 

= z 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 

k 

 L z 

k 

z  L nothing interesting 

w u v 

k 

= z 
  

1) 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 

k 

 L z 

k 

z  L nothing interesting 

w u v 

k 

= z 

 k 2) 
  

1) 



Pumping Lemma: Illustration 

3/26 

• L = any regular language: 

k 

 L z 

k 

z  L nothing interesting 

w u v 

k 

= z 

w u  L 3) 

v 

w v u 

w v u 

 L 

 L 
… 

 k 2) 
  

1) 



Proof of Pumping Lemma 1/3 
• Let L be a regular language. Then, there exists 

DFA  M = (Q, , R, s, F), and L = L(M). 

• For z  L(M), M makes |z| moves and M visits  

|z| + 1 states: 

 sa1a2…an |– q1a2…an |– … |– qn-1an |– qn 

|z| 

|z| + 1 states 

q1 s qn 

a1 a2 … qn-1 

an 

• for z = a1a2 ...an: 
an-1 

4/26 



Proof of Pumping Lemma 2/3 
• Let k = card(Q)  (the number of states). 

For each z  L and |z|  k, M visits k + 1 or 

more states. As k + 1 > card(Q), there exists a 

state q that M visits at least twice. 
• For z exist u, v, w such that z = uvw: 

s 

5/26 



Proof of Pumping Lemma 2/3 
• Let k = card(Q)  (the number of states). 

For each z  L and |z|  k, M visits k + 1 or 

more states. As k + 1 > card(Q), there exists a 

state q that M visits at least twice. 
• For z exist u, v, w such that z = uvw: 

s q reads u 

su |–i
 q 

5/26 



Proof of Pumping Lemma 2/3 
• Let k = card(Q)  (the number of states). 

For each z  L and |z|  k, M visits k + 1 or 

more states. As k + 1 > card(Q), there exists a 

state q that M visits at least twice. 
• For z exist u, v, w such that z = uvw: 

s 

reads v 

q reads u 

su |–i
 q 

qv |– 
j q;  j  1,  

     i + j  k  

5/26 



Proof of Pumping Lemma 2/3 
• Let k = card(Q)  (the number of states). 

For each z  L and |z|  k, M visits k + 1 or 

more states. As k + 1 > card(Q), there exists a 

state q that M visits at least twice. 
• For z exist u, v, w such that z = uvw: 

s 

reads v 

q reads u f reads w 

su |–i
 q qw |–

*
 f 

qv |– 
j q;  j  1,  

     i + j  k  

5/26 



Proof of Pumping Lemma 2/3 
• Let k = card(Q)  (the number of states). 

For each z  L and |z|  k, M visits k + 1 or 

more states. As k + 1 > card(Q), there exists a 

state q that M visits at least twice. 

 sz = suvw |–i qvw |– 
j qw |–

*
 f,  f  F 

Summary: 

• For z exist u, v, w such that z = uvw: 

s 

reads v 

q reads u f reads w 

su |–i
 q qw |–

*
 f 

qv |– 
j q;  j  1,  

     i + j  k  

5/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

1. 2. 3. su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw 
1. 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw |–*
 f,  f  F 

1. 3. 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw |–*
 f,  f  F 

1. 3. 

• for each m > 0, 

suvmw 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw |–*
 f,  f  F 

1. 3. 

• for each m > 0, 

suvmw |–i 
 qvmw 

1. 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw |–*
 f,  f  F 

1. 3. 

• for each m > 0, 

suvmw |–i 
 qvmw 

1. 

|– 
j
 qvm-1w 

2. 

|– 
j
 qw |– 

j ... 
2. 2. 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw |–*
 f,  f  F 

1. 3. 

• for each m > 0, 

suvmw |–i 
 qvmw |–*

 f,  f  F 
1. 3. 

|– 
j
 qvm-1w 

2. 

|– 
j
 qw |– 

j ... 
2. 2. 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Proof of Pumping Lemma 3/3 
•  There exist moves: 

• for m = 0, uvmw = uv0w = uw, 

1. 2. 3. 

suw |–i qw |–*
 f,  f  F 

1. 3. 

• for each m > 0, 

suvmw |–i 
 qvmw |–*

 f,  f  F 
1. 3. 

|– 
j
 qvm-1w 

2. 

|– 
j
 qw |– 

j ... 
2. 2. 

Summary: 
1) qv |– j q, j  1; therefore, |v|  1, so v   

2) suv |–i qv |– j q, i + j  k; therefore, |uv|  k 

3) For each m  0: suvmw |–* f,  f  F, therefore uvmw  L 

                                                                                QED 

su |–i
 q;        qv |– 

j q;      qw |–
*
 f, f  F, so 

6/26 



Pumping Lemma: Application I 
• Based on the pumping lemma, we often make a proof by 

contradiction to demonstrate that a language is not regular 

7/26 



Pumping Lemma: Application I 
• Based on the pumping lemma, we often make a proof by 

contradiction to demonstrate that a language is not regular 

Assume that L is regular 

7/26 



Pumping Lemma: Application I 
• Based on the pumping lemma, we often make a proof by 

contradiction to demonstrate that a language is not regular 

Assume that L is regular 

    Consider the PL constant k and select z  L, whose 
length depends on k so |z|  k is surely true. 

7/26 



Pumping Lemma: Application I 
• Based on the pumping lemma, we often make a proof by 

contradiction to demonstrate that a language is not regular 

Assume that L is regular 

    Consider the PL constant k and select z  L, whose 
length depends on k so |z|  k is surely true. 

For all decompositions of z into uvw, v  , |uv|  k , show: 

there exists m  0 such that uvmw  L 
from the pumping lemma,   uvmw  L 

contradiction 

7/26 



Pumping Lemma: Application I 
• Based on the pumping lemma, we often make a proof by 

contradiction to demonstrate that a language is not regular 

Assume that L is regular 

    Consider the PL constant k and select z  L, whose 
length depends on k so |z|  k is surely true. 

For all decompositions of z into uvw, v  , |uv|  k , show: 

there exists m  0 such that uvmw  L 
from the pumping lemma,   uvmw  L 

contradiction 

false assumption  

7/26 



Pumping Lemma: Application I 
• Based on the pumping lemma, we often make a proof by 

contradiction to demonstrate that a language is not regular 

Assume that L is regular 

    Consider the PL constant k and select z  L, whose 
length depends on k so |z|  k is surely true. 

For all decompositions of z into uvw, v  , |uv|  k , show: 

there exists m  0 such that uvmw  L 
from the pumping lemma,   uvmw  L 

contradiction 

false assumption  
Therefore, 

L is not regular 

7/26 



Pumping Lemma: Example 
 Prove that L = {anbn : n  0} is not regular: 

 1) Assume that L is regular. Let k  1 be the                  

pumping lemma constant for L.  
 2) Let z = akbk: akbk  L, |z| = |akbk| = 2k  k  

 3) All decompositions of z into uvw, v  , |uv|  k:  

8/26 

u v w 

a a…a abb…bb 

k        k 

|uv|  k 



Pumping Lemma: Example 
 Prove that L = {anbn : n  0} is not regular: 

 1) Assume that L is regular. Let k  1 be the                  

pumping lemma constant for L.  
 2) Let z = akbk: akbk  L, |z| = |akbk| = 2k  k  

 3) All decompositions of z into uvw, v  , |uv|  k:  

8/26 

u v w 

a a…a abb…bb 

k        k 

|uv|  k 

• pumping lemma: uv0w  L 



Pumping Lemma: Example 
 Prove that L = {anbn : n  0} is not regular: 

 1) Assume that L is regular. Let k  1 be the                  

pumping lemma constant for L.  
 2) Let z = akbk: akbk  L, |z| = |akbk| = 2k  k  

 3) All decompositions of z into uvw, v  , |uv|  k:  

8/26 

u v w 

a a…a abb…bb 

k        k 

|uv|  k 

• pumping lemma: uv0w  L 
k - i   <  k 

a abb…bb  L 

u w 

• uv0w = uw = 



Pumping Lemma: Example 
 Prove that L = {anbn : n  0} is not regular: 

 1) Assume that L is regular. Let k  1 be the                  

pumping lemma constant for L.  
 2) Let z = akbk: akbk  L, |z| = |akbk| = 2k  k  

 3) All decompositions of z into uvw, v  , |uv|  k:  

8/26 

u v w 

a a…a abb…bb 

k        k 

|uv|  k 

• pumping lemma: uv0w  L 
k - i   <  k 

a abb…bb  L 

u w 

• uv0w = uw = 

Contradiction! 



Pumping Lemma: Example 
 Prove that L = {anbn : n  0} is not regular: 

 1) Assume that L is regular. Let k  1 be the                  

pumping lemma constant for L.  
 2) Let z = akbk: akbk  L, |z| = |akbk| = 2k  k  

 3) All decompositions of z into uvw, v  , |uv|  k:  

8/26 

u v w 

a a…a abb…bb 

k        k 

|uv|  k 

• pumping lemma: uv0w  L 
k - i   <  k 

a abb…bb  L 

u w 

• uv0w = uw = 

Contradiction! 

4) Therefore, L is not regular 



Note on Use of Pumping Lemma  
• Pumping lemma: 

L is regular if exist k  1 and ... 
then 

Main application of the pumping lemma: 

• proof by contradiction that L is not regular. 

9/26 



Note on Use of Pumping Lemma  
• Pumping lemma: 

L is regular if exist k  1 and ... 
then 

L is regular exist k  1 and ... if 
then 

• However, the next implication is incorrect: 

• We cannot use the pumping lemma to 

prove that L is regular. 

Main application of the pumping lemma: 

• proof by contradiction that L is not regular. 

9/26 



Pumping Lemma: Application II. 1/3 
• We can use the pumping lemma to prove 

   some other theorems. 

Illustration: 
• Let M be a DFA and k be the pumping lemma 

constant (k is the number of states in M). Then, 

L(M) is infinite  there exists z  L(M), k  |z| < 2k 

Proof: 
1) there exists z  L(M), k  |z| < 2k  L(M) is infinite: 

10/26 



Pumping Lemma: Application II. 1/3 
• We can use the pumping lemma to prove 

   some other theorems. 

Illustration: 
• Let M be a DFA and k be the pumping lemma 

constant (k is the number of states in M). Then, 

L(M) is infinite  there exists z  L(M), k  |z| < 2k 

Proof: 
1) there exists z  L(M), k  |z| < 2k  L(M) is infinite: 

if z  L(M), k  |z|, then by PL:  

z = uvw, v  , and for each m  0: uvmw  L(M) 

10/26 



Pumping Lemma: Application II. 1/3 
• We can use the pumping lemma to prove 

   some other theorems. 

Illustration: 
• Let M be a DFA and k be the pumping lemma 

constant (k is the number of states in M). Then, 

L(M) is infinite  there exists z  L(M), k  |z| < 2k 

Proof: 
1) there exists z  L(M), k  |z| < 2k  L(M) is infinite: 

if z  L(M), k  |z|, then by PL:  

z = uvw, v  , and for each m  0: uvmw  L(M) 

L(M) is infinite 

10/26 



Pumping Lemma: Application II. 2/3 
2) L(M) is infinite  there exists z  L(M), k  |z| < 2k: 

a) Prove by contradiction that  

• L(M) is infinite  there exists z  L(M), |z|  k 

• We prove by contradiction, that 

L(M) is infinite there exists z  L(M), |z|  k 

there exists z  L(M), k  |z| < 2k 

a) 

b) 

11/26 



Pumping Lemma: Application II. 2/3 
2) L(M) is infinite  there exists z  L(M), k  |z| < 2k: 

 Assume that L(M) is infinite and there exists no z  L(M), |z|  k 

a) Prove by contradiction that  

• L(M) is infinite  there exists z  L(M), |z|  k 

• We prove by contradiction, that 

L(M) is infinite there exists z  L(M), |z|  k 

there exists z  L(M), k  |z| < 2k 

a) 

b) 

11/26 



Pumping Lemma: Application II. 2/3 
2) L(M) is infinite  there exists z  L(M), k  |z| < 2k: 

 Assume that L(M) is infinite and there exists no z  L(M), |z|  k 

a) Prove by contradiction that  

• L(M) is infinite  there exists z  L(M), |z|  k 

• We prove by contradiction, that 

L(M) is infinite there exists z  L(M), |z|  k 

there exists z  L(M), k  |z| < 2k 

a) 

b) 

for all z  L(M) holds  |z| < k 

11/26 



Pumping Lemma: Application II. 2/3 
2) L(M) is infinite  there exists z  L(M), k  |z| < 2k: 

 Assume that L(M) is infinite and there exists no z  L(M), |z|  k 

a) Prove by contradiction that  

• L(M) is infinite  there exists z  L(M), |z|  k 

• We prove by contradiction, that 

L(M) is infinite there exists z  L(M), |z|  k 

there exists z  L(M), k  |z| < 2k 

a) 

b) 

for all z  L(M) holds  |z| < k 

 L(M) is finite 

11/26 



Pumping Lemma: Application II. 2/3 
2) L(M) is infinite  there exists z  L(M), k  |z| < 2k: 

 Assume that L(M) is infinite and there exists no z  L(M), |z|  k 

a) Prove by contradiction that  

• L(M) is infinite  there exists z  L(M), |z|  k 

• We prove by contradiction, that 

L(M) is infinite there exists z  L(M), |z|  k 

there exists z  L(M), k  |z| < 2k 

a) 

b) 

for all z  L(M) holds  |z| < k 

 L(M) is finite 
Contradiction ! 

11/26 



Pumping Lemma: Application II. 3/3 
b) Prove by contradiction 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 
b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 
b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 
and there is no z  L(M), k  |z| < 2k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 
b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 

If z0  L(M) and |z0|  k, the PL implies:  z0 = uvw, 

|uv|  k, and for each m  0, uvmw  L(M) 

b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 

If z0  L(M) and |z0|  k, the PL implies:  z0 = uvw, 

|uv|  k, and for each m  0, uvmw  L(M) 

b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

|uw| = |z0| – |v| 

 2k   k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

 k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 

If z0  L(M) and |z0|  k, the PL implies:  z0 = uvw, 

|uv|  k, and for each m  0, uvmw  L(M) 

b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

|uw| = |z0| – |v| for m = 0: uvmw = uw  L(M) 
 2k   k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

 k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 

If z0  L(M) and |z0|  k, the PL implies:  z0 = uvw, 

|uv|  k, and for each m  0, uvmw  L(M) 

b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

|uw| = |z0| – |v| for m = 0: uvmw = uw  L(M) 
Summary: uw  L(M), |uw|  k and |uw| < |z0|! 

 2k   k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

 k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 

If z0  L(M) and |z0|  k, the PL implies:  z0 = uvw, 

|uv|  k, and for each m  0, uvmw  L(M) 

b) Prove by contradiction 

Assume that there is z  L(M), |z|  k k 2k 

|uw| = |z0| – |v| for m = 0: uvmw = uw  L(M) 
Summary: uw  L(M), |uw|  k and |uw| < |z0|! 
z0 is not the shortest string satisfying z0  L(M), |z0|  k 

 2k   k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

 k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Pumping Lemma: Application II. 3/3 

If z0  L(M) and |z0|  k, the PL implies:  z0 = uvw, 

|uv|  k, and for each m  0, uvmw  L(M) 

b) Prove by contradiction 

Contradiction ! 

Assume that there is z  L(M), |z|  k k 2k 

|uw| = |z0| – |v| for m = 0: uvmw = uw  L(M) 
Summary: uw  L(M), |uw|  k and |uw| < |z0|! 
z0 is not the shortest string satisfying z0  L(M), |z0|  k 

 2k   k 

Let z0 be the shortest string satisfying  z0  L(M), |z0|  k 

Because there exists no z  L(M), k  |z| < 2k, so |z0|  2k 

and there is no z  L(M), k  |z| < 2k 

 k 

there exists z  L(M), k  |z| < 2k 
• there exists z  L(M), |z|  k  

12/26 



Definition: The family of regular languages 

is closed under an operation o if the language 

resulting from the application of o to any 

regular languages is also regular. 

Closure properties 1/2 

13/26 



The family of 

regular languages 

Illustration: 
• The family of regular languages is closed under union. 

It means: 

Definition: The family of regular languages 

is closed under an operation o if the language 

resulting from the application of o to any 

regular languages is also regular. 

Closure properties 1/2 

13/26 



The family of 

regular languages 

Illustration: 
• The family of regular languages is closed under union. 

It means: 

Definition: The family of regular languages 

is closed under an operation o if the language 

resulting from the application of o to any 

regular languages is also regular. 

Closure properties 1/2 

L1 L2 

13/26 



The family of 

regular languages 

Illustration: 
• The family of regular languages is closed under union. 

It means: 

Definition: The family of regular languages 

is closed under an operation o if the language 

resulting from the application of o to any 

regular languages is also regular. 

Closure properties 1/2 

L1 L2  = L3 

13/26 



Proof: 

Theorem: The family of regular languages is 

closed under union, concatenation, iteration. 
 

Closure properties 2/2 

• Let L1, L2 be two regular languages 

• Then, there exist two REs r1, r2: L(r1) = L1, L(r2) = L2; 

• By the definition of regular expressions:  

• r1.r2 is a RE denoting L1 L2 

• r1 + r2 is a RE denoting L1   L2 

• r1
* is a RE denoting L1

* 

• Every RE denotes regular language, so 

 L1 L2,  L1   L2,  L1
* are a regular languages 

14/26 



• Input: Complete FA: M = (Q, , R, s, F) 

• Output: Complete FA: M’ = (Q, , R, s, F’), 

• Method: 

• F’ := Q – F 

Algorithm: FA for Complement 

L(M’) = L(M) 

Example: 

a 

a, b 

q s f 

b 

b 

a M: 

15/26 



• Input: Complete FA: M = (Q, , R, s, F) 

• Output: Complete FA: M’ = (Q, , R, s, F’), 

• Method: 

• F’ := Q – F 

Algorithm: FA for Complement 

L(M’) = L(M) 

Example: 

a 

a, b 

q s f 

b 

b 

a 

Q – F F 

M: 

15/26 



• Input: Complete FA: M = (Q, , R, s, F) 

• Output: Complete FA: M’ = (Q, , R, s, F’), 

• Method: 

• F’ := Q – F 

Algorithm: FA for Complement 

L(M’) = L(M) 

Example: 

a 

a, b 

q s f 

b 

b 

a 

Q – F F 

M: 

F ’ = Q – F 
L(M) = {x: ab is a substring of x};  L(M ’) = {x: ab is no substring of x} 

a 

a, b 

f 

b 

b 

a M’: 

s q 

15/26 



FA for Complement: Problem 
• Previous algorithm requires a complete FA 

• If M is incomplete FA, then M must be converted to 

  a complete FA before we use the previous algorithm 

a 

s f 
b 

c 
Incomplete DFA: 

M: 

Example: 

16/26 



FA for Complement: Problem 
• Previous algorithm requires a complete FA 

• If M is incomplete FA, then M must be converted to 

  a complete FA before we use the previous algorithm 

a 

s f 
b 

c 
Incomplete DFA: 

M: 

Example: 
L(M1’)  L(M)! - c  L(M), c  L(M1’) 

s 

c a 

f 

b 

M1’: 

16/26 



FA for Complement: Problem 
• Previous algorithm requires a complete FA 

• If M is incomplete FA, then M must be converted to 

  a complete FA before we use the previous algorithm 

a 

s f 
b 

c 
Incomplete DFA: 

c 
a,b qfalse 

a,b,c Complete DFA: 

b 

a 

s f 

c 

M: 

Example: 
L(M1’)  L(M)! - c  L(M), c  L(M1’) 

s 

c a 

f 

b 

M1’: 

16/26 



FA for Complement: Problem 
• Previous algorithm requires a complete FA 

• If M is incomplete FA, then M must be converted to 

  a complete FA before we use the previous algorithm 

a 

s f 
b 

c 
Incomplete DFA: 

c 
a,b qfalse 

a,b,c Complete DFA: 

b 

a 

s f 

c 

M: 

Example: 

c 
a,b 

a,b,c a c 

f s b qfalse 

M2’: 

L(M2’) = L(M) 

L(M1’)  L(M)! - c  L(M), c  L(M1’) 

s 

c a 

f 

b 

M1’: 

16/26 



Proof: 

Theorem: The family of regular languages is 

closed under complement. 

Closure properties: Complement 

• Let L be a regular language 

• Then, there exists a complete DFA M: L(M) = L 

• We can construct a complete DFA M’: L(M’) = L 
   by using the previous algorithm 

• Every FA defines a regular language, so     

   L is a regular language 

17/26 



Proof: 

Closure properties: Intersection 

• Let L1, L2 be two regular languages 

• L1, L2 are regular languages 
(the family of regular languages is closed under complement) 

• L1  L2 is a regular language 
(the family of regular languages is closed under union) 

• L1  L2 is a regular language 
(the family of regular languages is closed under complement) 

• L1  L2 = L1  L2 is a regular language (DeMorgan’s law) 

Theorem: The family of regular languages is 

closed under intersection. 

18/26 



Definition: Let a family of languages be 

closed under union, intersection, and 

complement. Then, this family represents a 

Boolean algebra of languages. 

Boolean Algebra of Languages 

Theorem: The family of regular languages is 

a Boolean algebra of languages. 

• The family of regular languages is closed 

under union, intersection, and complement.  

Proof: 

19/26 



Main Decidable Problems 

1. Membership problem:  

• Instance: FA M, w  *; Question: w  L(M)? 

2. Emptiness problem: 

• Instance: FA M;  Question: L(M) = ? 

3. Finiteness problem: 

• Instance: FA M;  Question: Is L(M) finite? 

4. Equivalence problem: 

• Instance: FA M1, M2; Question: L(M1) = L(M2)? 

20/26 



Algorithm: Membership Problem 
• Input: DFA  M = (Q, , R, s, F); w  * 

• Output: YES if w  L(M)    

  NO  if w  L(M) 

• Method: 

• if sw |–* f,  f  F then write (’YES’) 

         else write (’NO’) 

The membership problem for FAs is decidable 

Summary: 

21/26 



Algorithm: Emptiness Problem 
• Input: FA  M = (Q, , R, s, F); 

• Output: YES if L(M) =       

  NO  if L(M)   

• Method: 

• if s is nonterminating then write (’YES’) 

              else write (’NO’) 

The emptiness problem for FAs is decidable 

Summary: 

22/26 



Algorithm: Finiteness Problem 
• Input: DFA  M = (Q, , R, s, F); 

• Output: YES if L(M) is finite      

  NO  if L(M) is infinite 
• Method: 

• Let k = card(Q)  
• if there exist z  L(M), k  |z| < 2k then write (’NO’) 

                else write (’YES’) 

The finiteness problem for FAs is decidable 

Summary: 

Note: This algorithm is based on  

L(M) is infinite  there exists z: z  L(M), k  |z| < 2k 

23/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab |– sb |– f, f  F 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Answer: YES because sab |–* f, f  F  
|– sb |– f, f  F 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: YES because sab |–* f, f  F  
|– sb |– f, f  F 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

|– sb |– f, f  F 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

1. qa’  f; q  Q; a’  :  sb  f, fa  f  
Q1 = {f}  {s, f} = {f, s} … s is terminating 

|– sb |– f, f  F 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: NO because s is terminating 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

1. qa’  f; q  Q; a’  :  sb  f, fa  f  
Q1 = {f}  {s, f} = {f, s} … s is terminating 

|– sb |– f, f  F 

Decidable Problems: Example 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: NO because s is terminating 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

1. qa’  f; q  Q; a’  :  sb  f, fa  f  
Q1 = {f}  {s, f} = {f, s} … s is terminating 

|– sb |– f, f  F 

Decidable Problems: Example 

Question: Is L(M) finite? 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: NO because s is terminating 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

1. qa’  f; q  Q; a’  :  sb  f, fa  f  
Q1 = {f}  {s, f} = {f, s} … s is terminating 

|– sb |– f, f  F 

, ... 

Decidable Problems: Example 

Question: Is L(M) finite?  k = card(Q) = 2  
All strings z  *: 2  |z| < 4: aa, bb, ab 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: NO because s is terminating 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

1. qa’  f; q  Q; a’  :  sb  f, fa  f  
Q1 = {f}  {s, f} = {f, s} … s is terminating 

|– sb |– f, f  F 

, ... 

Decidable Problems: Example 

Question: Is L(M) finite? 
 L(M) , ... 

 k = card(Q) = 2  
All strings z  *: 2  |z| < 4: aa, bb, ab 

24/26 



M: 
a 

b 
b f a s 

Question: ab  L(M) ? 
sab 

Question: L(M) =  ? 

Answer: NO because s is terminating 

Answer: YES because sab |–* f, f  F  

Q0 = {f} 

1. qa’  f; q  Q; a’  :  sb  f, fa  f  
Q1 = {f}  {s, f} = {f, s} … s is terminating 

|– sb |– f, f  F 

, ... 

Decidable Problems: Example 

Question: Is L(M) finite? 

Answer: NO because there exist z  L(M), k  |z| < 2k 

 L(M) , ... 
 k = card(Q) = 2  

All strings z  *: 2  |z| < 4: aa, bb, ab 

24/26 



Algorithm: Equivalence Problem 
• Input: Two minimum state FA, M1and M2 

• Output: YES if L(M1) = L(M2)     

  NO  if L(M1)  L(M2) 

• Method: 

• if M1 coincides with M2 except for the name of states 

   then write (’YES’) 

   else write (’NO’) 

 

The equivalence problem for FA is decidable 

Summary: 

25/26 



Equivalence Problem: Example 
Question: L(M1) = L(M2)? 

a 
f 

s 

q 

b 

a 
a b 

M1: 

a q b 

a 
a 

p 

s 

b 

b 

M2: 

b 

26/26 



Equivalence Problem: Example 
Question: L(M1) = L(M2)? 

a 
f 

s 

q 

b 

a 
a b 

M1: 

a q b 

a 
a 

p 

s 

b 

b 

M2: 

b 

a 
b 

b {f} 

a 
{s,q} 

Mmin1: 

26/26 



Equivalence Problem: Example 
Question: L(M1) = L(M2)? 

a 
f 

s 

q 

b 

a 
a b 

M1: 

a q b 

a 
a 

p 

s 

b 

b 

M2: 

A minimum state FA 

b 

a 
b 

b {f} 

a 
{s,q} 

Mmin1: 

a 
b 

b {p,q} 

a 
{s} 

Mmin2: 

26/26 



Equivalence Problem: Example 
Question: L(M1) = L(M2)? 

a 
f 

s 

q 

b 

a 
a b 

M1: 

a q b 

a 
a 

p 

s 

b 

b 

M2: 

A minimum state FA 

b 

a 
b 

b {f} 

a 
{s,q} 

Mmin1: 

a 
b 

b {p,q} 

a 
{s} 

Mmin2: 

Answer: YES because Mmin1 coincides with Mmin2 

26/26 


