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• Let L be a RL. Then, there is k ≥ 1 such that
if z ∈ L and|z| ≥ k, then there existu,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤≤≤≤ k 3) for each m ≥ 0, uvmw ∈ L

Example: for RE r = ab*c, L(r) is regular.
There is k = 3 such that 1), 2) and 3) holds.
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if z ∈ L and|z| ≥ k, then there existu,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤≤≤≤ k 3) for each m ≥ 0, uvmw ∈ L

Example: for RE r = ab*c, L(r) is regular.
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• for z = abbc: z ∈ L(r) & |z| ≥ 3:
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uv0w = ab0bc = abc ∈ L(r)
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• L = any regular language:
k

z ∈∈∈∈ L nothing interesting

k
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wu v
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Proof of Pumping Lemma 1/3
• Let L be a regular language. Then, there exists 
DFA M = (Q, Σ, R, s, F), and L = L(M).
• For z ∈ L(M), M makes |z| moves and M visits 
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• For z ∈ L(M), M makes |z| moves and M visits 
|z| + 1 states:

|z| + 1 states

q1s qn

a1 a2 … qn-1

an

• for z = a1a2 ...an:
an-1

sa1a2…an |–q1a2…an |– … |–qn-1an |– qn

|z|
|z| + 1 states



Proof of Pumping Lemma 2/3
• Let k = card(Q)  (the number of states).
For each z ∈ L and|z| ≥ k, M visits k + 1 or 
more states. As k + 1 > card(Q), there exists a 
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state q that M visits at least twice.
• For z exist u, v, w such that z = uvw:
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more states. As k + 1 > card(Q), there exists a 
state q that M visits at least twice.
• For z exist u, v, w such that z = uvw:

readsv
su |–i q qw |–* f

qv |–j q; j ≥≥≥≥ 1, 
i + j ≤≤≤≤ k

sz = suvw |–i qvw |–j qw |–* f,  f ∈∈∈∈ F
Summary:

s qreadsu freadsw

su |–i q qw |–* f
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• for m = 0, uvmw = uv0w = uw,

suw |–i qw |–* f,  f ∈∈∈∈ F
1. 3.

• for eachm > 0,

suvmw|–i qvmw |–* f,  f ∈∈∈∈ F
1. 3.

|–j qvm-1w
2.

|–j qw|–j ...
2. 2.

Summary:
1) qv |– j q, j ≥≥≥≥ 1; therefore,|v| ≥≥≥≥ 1, so v ≠ ε
2) suv |–i qv |– j q, i + j ≤≤≤≤ k; therefore,|uv| ≤≤≤≤ k
3) For each m ≥ 0: suvmw |–* f,  f ∈∈∈∈ F, thereforeuvmw ∈ L

QED
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length depends on k so |z|≥≥≥≥ k is surely true.
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there exists m ≥ 0 such that uvmw ∉∉∉∉ L
from the pumping lemma,   uvmw ∈∈∈∈ L

contradiction



Pumping Lemma: Application I
• Based on the pumping lemma, we often make a proof by 
contradiction to demonstrate that a language is not regular

Assumethat L is regular

7/26

Assumethat L is regular

Consider the PL constant k and select z ∈∈∈∈ L, whose
length depends on k so |z|≥≥≥≥ k is surely true.

For all decompositions of z into uvw, v ≠ ε, |uv| ≤≤≤≤ k , show:For all decompositions of z into uvw, v ≠ ε, |uv| ≤≤≤≤ k , show:
there exists m ≥ 0 such that uvmw ∉∉∉∉ L
from the pumping lemma,   uvmw ∈∈∈∈ L

contradiction

false assumption



Pumping Lemma: Application I
• Based on the pumping lemma, we often make a proof by 
contradiction to demonstrate that a language is not regular

Assumethat L is regular

7/26

Assumethat L is regular

Consider the PL constant k and select z ∈∈∈∈ L, whose
length depends on k so |z|≥≥≥≥ k is surely true.

For all decompositions of z into uvw, v ≠ ε, |uv| ≤≤≤≤ k , show:For all decompositions of z into uvw, v ≠ ε, |uv| ≤≤≤≤ k , show:
there exists m ≥ 0 such that uvmw ∉∉∉∉ L
from the pumping lemma,   uvmw ∈∈∈∈ L

contradiction

false assumption
Therefore,

L is not regular
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Prove that L = {anbn : n ≥ 0} is not regular:
1) Assume that L is regular. Let k ≥ 1 be the                  
pumping lemma constant for L. 
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pumping lemma constant for L. 
2) Let z= akbk: akbk ∈∈∈∈ L, |z| = |akbk| = 2k ≥≥≥≥ k
3) All decompositions of z into uvw, v ≠ ε, |uv| ≤≤≤≤ k:

a a…a abb…bb
k  k

u v w

|uv| ≤≤≤≤ k
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4) Therefore, L is not regular
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Main application of the pumping lemma:
• proof by contradiction that L is not regular.
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L is regularif existk ≥ 1 and ...

L is regularexistk ≥ 1 and ...if then
• However, the next implication is incorrect:

Main application of the pumping lemma:
• proof by contradiction that L is not regular.

L is regularexistk ≥ 1 and ...if then

• We cannotuse the pumping lemma to 
prove that L is regular.
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Theorem: The family of regular languages is
closed underunion, concatenation, iteration .

Closure properties 2/2
14/26

Proof:
• Let L1, L2 be two regular languages
• Then, there exist two REs r1, r2: L(r1) = L1, L(r2) = L2;
• By the definition of regular expressions: 

• r1.r2 is a RE denoting L1 L2
• r + r is a RE denoting L ∪∪∪∪ L• r1 + r2 is a RE denoting L1 ∪∪∪∪ L2
• r1

* is a RE denoting L1
*

• Every RE denotes regular language, so
L1 L2, L1 ∪∪∪∪ L2, L1

* are a regular languages
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• Method:
• F’ := Q – F

L(M’ ) = L(M)

Example:
a, bb aM: a, bb aM’ :

a
qs f

b
b

a

Q – F F

M:

F ’ = Q – F
L(M) = {x: ab is a substring of x};  L(M ’) = { x: ab is no substring of x}

a fb
M’ :

s q



FA for Complement: Problem
• Previous algorithm requires acompleteFA
• If M is incomplete FA, then M must be converted to
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a complete FA before weuse theprevious algorithm

a

s fb

c
Incomplete DFA:

M:

Example:

L(M ’ ) = L(M)

L(M1’) ≠≠≠≠ L(M)! - c ∉ L(M), c ∉ L(M1’)

s

ca

fb

M1’:

c
a,b qfalse

a,b,cComplete DFA:

b
a

s f

c

c
a,b

a,b,ca c

fs b qfalse

M2’:

L(M2’ ) = L(M)



Theorem: The family of regular languages is 
closed under complement.

Closure properties: Complement
17/26

Proof:
• Let L be a regular language
• Then, there exists a complete DFA M: L(M) = L
• We can construct a complete DFA M’ : L(M’) = L

by using the previous algorithmby using the previous algorithm
• Every FA defines a regular language, so    

L is a regular language



Closure properties: Intersection
Theorem: The family of regular languages is 
closed under intersection.

18/26

Proof:
• Let L1, L2 be two regular languages
• L1, L2 are regular languages
(the family of regular languages is closed under complement)
• L1 ∪∪∪∪ L2 is a regular language
(the family of regular languages isclosed under union)

1 2
(the family of regular languages isclosed under union)
• L1 ∪∪∪∪ L2 is a regular language
(the family of regular languages is closed under complement)
• L1 ∩∩∩∩ L2 = L1 ∪∪∪∪ L2 is a regular language(DeMorgan’s law)



Definition: Let a family of languages be 
closed under union, intersection, and 
complement. Then, this family represents a 

Boolean Algebra of Languages
19/26

complement. Then, this family represents a 
Boolean algebra of languages.

Theorem: The family of regular languages is 
a Boolean algebra of languages.

Proof:
• The family of regular languages is closed 
under union, intersection, and complement. 

Proof:



Main Decidable Problems
1. Membership problem:
• Instance:FA M, w ∈ Σ*; Question: w ∈ L(M)?
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• Instance:FA M, w ∈ Σ ; Question: w ∈ L(M)?

2. Emptiness problem:
• Instance:FA M; Question: L(M) = ∅?

3. Finiteness problem:
• Instance:FA M; Question: Is L(M) finite?• Instance:FA M; Question: Is L(M) finite?

4. Equivalence problem:
• Instance:FA M1, M2; Question:L(M1) = L(M2)?



Algorithm: Membership Problem
• Input: DFA  M = (Q, Σ, R, s, F); w ∈ Σ*

• Output: YES if w ∈ L(M)   
NO if w ∉ L(M)
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NO if w ∉ L(M)

• Method:
• if sw |–* f, f ∈ F then write (’YES’)

elsewrite (’NO’)

Summary:

The membership problem for FAs is decidable

Summary:



Algorithm: Emptiness Problem
• Input: FA  M = (Q, Σ, R, s, F);
• Output: YES if L(M) = ∅

NO if L(M) ≠≠≠≠ ∅

22/26

NO if L(M) ≠≠≠≠ ∅
• Method:
• if s is nonterminating then write (’YES’)

elsewrite (’NO’)

Summary:

The emptiness problem for FAs is decidable

Summary:



Algorithm: Finiteness Problem
• Input: DFA  M = (Q, Σ, R, s, F);
• Output: YES if L(M) is finite    

NO if L(M) is infinite

23/26

NO if L(M) is infinite
• Method:
• Let k = card(Q) 
• if there exist z ∈ L(M), k ≤ |z| < 2k then write (’NO’)

elsewrite (’YES’)

Note: This algorithm is based on 

The finiteness problem for FAs is decidable
Summary:

Note: This algorithm is based on 
L(M) is infinite ⇔ there exists z: z ∈∈∈∈ L(M), k ≤≤≤≤ |z| < 2k
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Algorithm: Equivalence Problem
• Input: Two minimum state FA, M1and M2

• Output: YES if L(M1) = L(M2)   
NO if L(M ) ≠≠≠≠ L(M )

25/26

NO if L(M1) ≠≠≠≠ L(M2)
• Method:
• if M1 coincides with M2 except for the name of states

then write (’YES’)
elsewrite (’NO’)

The equivalence problem for FA is decidable

Summary:
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as bM1: pbM2:
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a
f

s

q

b

a
ab

a qb
aas b
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a b
{f}

a
{s,q}

Mmin1:

a
b

{p,q}
a

{s}

Mmin2:

A minimum state FA

a b {f}{s,q} a b {p,q}{s}

Answer: YES because Mmin1 coincides with Mmin2


