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Part XI.
Properties of Regular
Language:
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Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite
iteration of some substring in RLs.

e LetL bea RL. Then, there ik> 1 such the
If z[J L and|Z = k, then there exisu,v,w. z= uvw,
Dv£e2) |uv|<k 3)foreachm=0,uv™w [ L

Example: for REr = ab'c, L(r) isregular.
There isk = 3such thatl), 2) and3) holds.
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Gist: Pumping lemma demonstrates an infinite
iteration of some substring in RLs.

e LetL bea RL. Then, there ik> 1 such the
If z[J L and|Z = k, then there exisu,v,w. z= uvw,
Dv£e2) |uv|<k 3)foreachm=0,uv™w [ L

Example: for REr = ab'c, L(r) isregular.
There isk = 3such thatl), 2) and3) holds.

e forz=abc: zOL(r) & |z| = 3:uv®w = abfc = ac O L(r)
GV uviw = ablc = abc O L(r)
uvew = ab?c = abbc O L(r)
VZE, |uv|=2<3 .

e for z= 2bbc: 2O L(r) & |22 3:.uvw = 2bPhc = abe O L(r
2= G ZOLM & A2 38 b = o e e T
uv uvew = absbc = abbbc O L(r)

VZE, |uv| =2<3 :
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Pumping Lemmalllustration

L = any regular language:
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Pumping Lemmalllustration

» | = any regular language:
k

r — | | ‘nothing Interesting
K

— - = ] 0L
k <l

0 , W

1) Y :

2) <k

L u [ w 0L

[u [T v]  w  JOL
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Proof of Pumping Lemma 1/3

e LetL be a regular language. Then, there exists
DFA M=(Q, 2, R, s, F), andL = L(M).

e Forz U L(M), M makes|z| moves anM visits

Iz| + 1 states:
... % it
~.

eforz=a;a,..a,
lz| + 1 state

Ay

2

R e e A N
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Proof of Pumping Lemma 2/3

e Letk = cardQ) (the number of states).
For eaclz L and|zl = k, M visitsk + 1 or
more states. Ak + 1 > carc(Q), there exists

stateq thatM visits at least twice.
e FOrzexistu, v, w such that = uvww:

_.@
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Proof of Pumping Lemma 2/3

e Letk = cardQ) (the number of states).
For eaclz L and|zl = k, M visitsk + 1 or
more states. Ak + 1 > carc(Q), there exists

stateq thatM visits at least twice.
e FOrzexistu, v, w such that = uvww:

Summary:
sz=suww |- gw |- gwl|]-f, TOF
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Proof of Pumping Lemma 3/3

e There exist moves:

@s/ g @avl- g @uwl-f fOF, so
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e There exist moves:
@s/ g @avl- g @uwl-f fOF, so

e fOorm=20, uvMmy = LVOw = Lw,
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e for eachm> 0,
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Proof of Pumping Lemma 3/3

e There exist moves:
@s/ g @avl- g @uwl-f fOF, so

e fOrm=0, uv™y = VO = L,

sw@qw@f f

e for eachm> 0,

S VmW?D qvmng gv™ 153 ? qw
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Proof of Pumping Lemma 3/3

e There exist moves:

@s/ g @avl- g @uwl-f fOF, so

e fOorm=20, uvMmy = LVOw = Lw,

sw@qw@f f

e for eachm> 0,

svmvv?qvmvg) qvmlﬁp ?qvv@f fOF

Summary:
Dav|-'q , therefore|v| =1, sov#¢€
2) SV |- qv|— of ; therefore|uv| <k

3) For eachm=0: suv™v |- f, f O F, thereforesv™w O L
QED
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contradiction to demonstrate that a languageigegular
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* Based on the pumping lemma, we often make a pripof b
contradiction to demonstrate that a languageigegular

. ...................... §| Assum‘ thatL IS regula ‘
= ]
Consider the PL constakiand seleck [ L, whose‘

length depends dnso|z|= k is surely true.
'

For all decompositions cz into uvw, v £ €, |uv| £ k, show:
: | there existen = 0 such thatuv™w [] L

: [ from trie pumping lemmayuvm™w L] L

Therefore,
‘false assumption| m—)> L is not regular

contradiction
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Pumping Lemma: Example

Prove that. = {a"b": n> 0} is not regular:

1) Assume thatk is regular. Lek = 1 be the

pumping lemma constant fL.
2) Letz=akbk: akb*O L, |7 = [a<b¥| = 2k = k

3) All decompositions of into uvw, v # €, |uv| < k:
K Kk

[ [E

e

U V W

ﬁ—/

luv| < k
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Pumping Lemma: Example

Prove that. = {a"b": n> 0} is not regular:

1) Assume thatk is regular. Lek = 1 be the

pumping lemma constant fL.
2) Letz=akbk: akb*O L, |7 = [a<b¥| = 2k = k

3) All decompositions of into uvw, v # €, |uv| < k:

X < e pumping lemmauvow O L
T i <
ey T e uvdw = uw = bh...bb|O L
a_J \ -~ g

luv| < k ; [ W

Contradiction!

4) ThereforeL is not regular
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Note on Use of Pumping Lemma
 Pumping lemma:

. then
If |Lisregula| =) [exisitk>1and ..

Main application of the pumping lemma:
e proof by contradiction thdt is not regular.
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Note on Use of Pumping Lemma

 Pumping lemma:

then

If [Lisregula| == ‘exis1k21and .

Main application of the pumping lemma:

e proof by contradiction thdt is not regu

al.

 However, the next implication isir

correct.

‘ifl;exis1 = = the requla

* We cannotuse the pumping lemma to

prove that L Is regular.
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Pumping Lemma: Application II. 1*3

« We can use the pumping lemma to prove
some other theorems.

lllustration:

* Let M be a DFA andk be the pumping lemma
constantk is the number of states M). Then
L(M) is infinite < there existz U L(M), k< |z <2K

Proof:

1) there existz [1 L(M), k £ |z| < 2k = L(M) Is Infinite:
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Pumping Lemma: Application II. 1*3

« We can use the pumping lemma to prove
some other theorems.

lllustration:

* Let M be a DFA andk be the pumping lemma
constantk is the number of states M). Then
L(M) is infinite < there existz U L(M), k< |z <2K

Proof:
1) there existz [1 L(M), k £ |z| < 2k = L(M) Is Infinite:

if zOL(M), k< |z, then by PL:
z= uww, v # ¢, and for eacim= 0: uv™w [J L(M)

a—J
L(M) is infinite |

~~—
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Pumping Lemma: Application II. 2}3
2) L(M) Is infinite = there existz 1 L(M), k< |Z] < Zk:
* We prove by contradiction, that

L(M) Is infinite i)> there existz L1 L(M), [z = k

b) ¥
there existz L1 L(M), k< |z <2k

a) Prove by contradiction that
e L(M) Is Infinite = there existszJ L(M), |z| = k
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Pumping Lemma: Application II. 2}3
2) L(M) Is infinite = there existz 1 L(M), k< |Z] < Zk:
* We prove by contradiction, that

L(M) Is infinite i)> there existz L1 L(M), [z = k
b) §

‘there existz L1 L(M), k< |7 <2k

a) Prove by contradiction that

e L(M) Is Infinite = there existszJ L(M), |z| = k
Assume that (M) is infinite and there exists nol1 L(M), |z = k

/ for all z 0 L(M) hold o <k

‘Contradlctlon | ‘/ —— L(M) is finite
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Pumping LemmaApplicationll. 3/3

b) Prove by contradiction
e there existszJL(M), [Z =2k =
thereexistsz[ L(M), k< |z| < 2k
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Pumping LemmaApplicationll. 3/3

b) Prove by contradiction
e there existszJL(M), [Z =2k =
thereexistsz[ L(M), k< |z| < 2k

Assume thathere iszO L(M), |zl =k  k 2k
-—0—0—0—0—0—
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Pumping LemmaApplicationll. 3/3

b) Prove by contradiction

e there existszJL(M), [Z =2k =
there existezJL(M), k< |z| < 2k

Assume thathere iIsz 1 L(M), 7] = k

andthere is nozO L(M), k<7 < X alelelelé.—.—
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If z, 0 L(M) and|z,| = k, the PL implies:z, =
, anc for eachm= 0, uv™w [ L(M)
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luw|="17 |- v 2k form=0: uvw=uw I L(M)




12/26

Pumping LemmaApplicationll. 3/3

b) Prove by contradiction
e there existszJL(M), [Z =2k =
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Assume thathere isz[1L(M), |zl = k
andthere is nozO L(M), k<7 < X al@lelelé.—.—
Let z, bethe shortest stringsatisfying z, L1 L(M), |z,| = k
Because there exists gdl L(M), k< |7 < X, so

If z, 0 L(M) and|z,| = k, the PL implies:z, =

, anc for eachm= 0, uv™w [ L(M)

}

luw| =17 - v 2K form=0: uvw= UwW [J L(M)
Summary: uw [ L(M), luw| = kand|uw| < |zy|!
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b) Prove by contradiction
e there existszJL(M), [Z =2k =
there existezJL(M), k< |z| < 2k
Assume thathere iIsz 1 L(M), 7] = k
andthere is nozO L(M), k<7 < X alelelelé.—.—
Let z, bethe shortest stringsatisfying z, L1 L(M), |z,| = k
Because there exists gdl L(M), k< |7 < X, so

If z, 0 L(M) and|z,| = k, the PL implies:z, =

, anc for eachm= 0, uv™w [ L(M)

}

luw|="17 |- v 2k form=0: uww= uw [ L(M)

Summary: uw U L(M), Juw| = k and|uw| < jz|!
Z, IS not the shortest stringsatisfyingz, L1 L(M), |z,| = k
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b) Prove by contradiction
e there existszJL(M), [Z =2k =
there existezJL(M), k< |z| < 2k
Assume thathere iIsz 1 L(M), 7] = k
andthere is nozO L(M), k<7 < X alelelelé.—'—
Let z, bethe shortest stringsatisfying z, L1 L(M), |z,| = k
Because there exists gdl L(M), k< |7 < X, so

If z, 0 L(M) and|z,| = k, the PL implies:z, =

, anc for eachm= 0, uv™w [ L(M)

}

luw|="17 |- v 2k form=0: uww= uw [ L(M)

Summary: uw U L(M), Juw| = k and|uw| < jz|!
Qnot tk&shortest stringsatisfyingz, 0 L(M), |z,| = k

— Contradiction !
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Closure properties 1/2

Definition: The family of regular languages
IS closed under an operationf the language
resulting from the application o to any
reqular languages is also regular.
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Definition: The family of regular languages
IS closed under an operationf the language
resulting from the application o to any
reqular languages is also regular.

lllustration:

* The family of regular languages is closed undgon.

It means:

.

The family of
regular languag

HEa
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Closure properties 2/2 |

Theorem: The family of regular languages is
closed undeunion, concatenation iteration.

Proof:
e LetL,, L, be tworegular languages

* Then, there exist two REs, r,: L(r,) =L, L(r,) =L,;
* By the definition of regular expressions:
*r,.I,I1s a RE denoting, L,
er,+r,isa RE denotinL, 0 L,
1, is a RE denoting;
* Every RE denotes regular language, so
L,L,, L,0 L, L; are aregular languages
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Algorithm: FA for Complement

* Input: Complete FAM=(Q, 2, R, s, F)
e Qutput: Complete A: M’'=(Q, 2, R, s, F),

L(M’) = L(M)
* Method:
F=Q-F
Example:
M b

8-8:8
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Algorithm: FA for Complement

* Input: Complete FAM=(Q, 2, R, s, F)
e Qutput: Complete A: M’'=(Q, 2, R, s, F),

L(M’) = L(M)
* Method:
F=Q-F
Example
e 8- @ o8

= —Q F
L(M) = {x blsasubstrlngofx} L(M ") = {x: abis nosubstring of x}
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FA for Complement: Problem

* Previous algorithm requirescamplete FA
e If M Is Incomplete FAthenM must be converted to

acomplete FA before v usethe previous algorithr

Example:
Incomplete DFA:
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* Previous algorithm requirescamplete FA
e If M Is Incomplete FAthenM must be converted to
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Example: —
Incomplete DFA: ‘ L(M;) ZL(M)! -cOLM), cOLM,) \
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FA for Complement: Problem

* Previous algorithm requirescamplete FA
e If M Is Incomplete FAthenM must be converted to
acomplete FA before v usethe previous algorithr

Example: —
|ncomp|ete DFA: ‘ L(I\/I ’) % L(I\/I)I c O L(M), cOL(M,) \

$8X 8

Complete DFA:

() %
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FA for Complement: Problem
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Closure properties: Complement

Theorem: The family of regular languages is
closed undecomplement

Proof:

e Let L be aregular language
* Then, there exists a complete DMAL(M) =L
* \We can construct a complete DFA: L(M’) = L
by using the previous algoritt
 Every FA defines a regular language, so
L Is aregular language
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Closure properties: Intersect@n

Theorem: The family of regular languages is
closed undemtersection.

Proof:

* Let Ll, L, be tworegular languages

e[, L, areregular languages

(tﬁfam_lly of regular languages is closed under complement)
L, 0L, Is aregular language

(the family of regular languages closed under unio

L, OL,is aregular language

(the family of regular languages Is closed under complement)
L, nL,=LC, 0L is aregular language(DeMorgan’s law)
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Boolean Algebra of Languagels

Definition: Let a family of languages be
closed under union, intersection, and
complement. Then, this family represen
Boolean algebra of languages

Theorem: The family of regular languages |s
a Boolean algebra of languages.

Proof:

* The family of regular languages is closed
under union, intersection, and complement.
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Main Decidable Problems

1. Membership problem:
* Instance: FAM, w [0 2°; Question: w [ L(M)?

2. Emptiness problem:
* Instance: FA M; Question: L(M) =17

3. Finiteness problem:
 Instance: FA M, Question: Is L(M) finite?

4. Equivalence problem:
e Instance:FA M, M,; Question:L(M,) =L(M,)?
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Algorithm: Membership Proble

e Input: DFA M=(Q,2,R s, F);wl %"
e OQutput: YESIf w L(M)
NO if wl L(M)
e Method:
oif sw|— f, fOF thenwrite (YES’)
elsewrite 'NO’)

Summary:

The membership problem for BAs decidable
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Algorithm: Emptiness Proble

e Input: FA M=(Q, %, R s, F);
» Qutput: YESIf L(M) =
NO if L(M) #

e Method:
o If sis nonterminatinghen write CYES’)
elsewrite 'NO’)

Summary:

The emptiness problem for BAs decidable
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Algorithm: Finiteness Proble

e Input: DFA M=(Q, 2, R, s, F);
e Output: YESIf L(M) Is finite
NO 1f L(M) is Infinite
* Method:
e Letk = cardQ)
o if there exisz 1 L(M), k< |72 <2k then write (NO’)
elsewrite (YES')

Note: This algorithm is based ¢
L(M) is infinite = there existz: z L(M), k< |z <2k

sSummary:
The finiteness problem for FAs decidable
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Decidable Problems: Examplé
- b
"

Questior: ab L L(M) ?
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Answer: YES becauses=b |- f,fOF
Question L(M) =0 ?
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Answer: NO becauseis terminating
Question Is L(M) finite? k= cardQ) = 2
All stringsz 02" 2< |4 < 4 22, bb|ab OLM), ...
Answer: NO because there existl L(M), k< |7 <2k
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Algorithm: Equivalence Proble

* [nput: Two minimum state FAM,andM,
» Output: YESIf L(M,) =L(M,)

NO if L(M,) # L(M,)
* Method:

* if M, coincides withM, except for the name of states
then write (YES’)
elsewrite 'NO’)

Summary:
The equivalence problem for FA Is decidalble
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Equivalence Problem: Example

Question: L(M,) = L(M,)?
M;: M.
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Equivalence Problem: Example

Question: L(M,) = L(M,)?
M;:

) - 4

A minimum state FA

Answer: YES becausdV .., coincides withM . ,



