
Chapter 14

Controlled Pure Grammar Systems

Abstract This chapter introduces pure grammar systems, which have only termi-

nals. They generate their languages in the leftmost way, and in addition, this gen-

erative process is regulated by control languages over rule labels. The chapter con-

centrates its attention on investigating the generative power of these systems. It es-

tablishes three major results. First, without any control languages, these systems do

not even generate some context-free languages. Second, with regular control lan-

guages, these systems characterize the family of recursively enumerable languages,

and this result holds even if these systems have no more than two components.

Finally, this chapter considers control languages as languages that are themselves

generated by regular-controlled context-free grammars; surprisingly enough, with

control languages of this kind, these systems over unary alphabets define nothing

but regular languages. The chapter consists of two sections. First, Section 14.1 de-

fine controlled pure grammar systems and illustrate them by an example. Then, Sec-

tion 14.2 rigorously establishes the results mentioned above and points out several

open problems.

Key words: grammar systems, control languages, pure versions, leftmost deriva-

tions, generative power, language families

To grasp the discussion of the present chapter fully, we should realize that context-

free grammars are quite central to formal language theory as a whole (see [10, 17,

23, 24]). It thus comes as no surprise that this theory has introduced a broad variety

of their modified versions, ranging from simplified and restricted versions up to

fundamentally generalized systems based upon these grammars. Grammar systems

(see [7]), regulated context-free grammars (see Chapters 4 and 5), pure context-

free grammars (see [14–16] and page 242 in [23]), and context-free grammars with

leftmost derivations (see [19] and Section 5.1 in [17]) definitely belong to the key

modifications of this kind. Next, we give an insight into these four modifications.

(I) Grammar systems consist of several context-free grammars, referred to as their

components, which mutually cooperate and, in this way, generate the languages

of the systems.

457

458 14 Controlled Pure Grammar Systems

(II) Regulated context-free grammars prescribe the use of rules during derivations by

some additional regulating mechanisms, such as control languages over the label

of grammatical rules.

(III) Pure context-free grammars simplify ordinary context-free grammars by using

only one type of symbols—terminals. There exist pure sequential versions of

context-free grammars as well as pure parallel versions of context-free gram-

mars, better known as 0L grammars (see Section 3.3).

(IV) Context-free grammars that perform only leftmost derivations fulfill a key role in

a principal application area of these grammars—parsing (see [1, 19]).

Of course, formal language theory has also investigated various combinations

of (I) through (IV). For instance, combining (I) and (III), pure grammar systems

have been studied (see [2, 4, 5]). Similarly, based upon various combinations of (I)

and (II), a number of regulated grammar systems were defined and discussed (see

Chapter 13 and [3, 8, 9, 12, 13, 22]). Following this vivid investigation trend, the

present chapter combines all the four modifications mentioned above.

More specifically, this chapter introduces pure grammar systems that generate

their languages in the leftmost way, and in addition, this generative process is reg-

ulated by control languages over rule labels. The chapter concentrates its attention

on investigating the generative power of these systems. It establishes three major

results. First, without any control languages, these systems are not even able to gen-

erate all context-free languages (Theorem 14.2.4). Second, with regular control lan-

guages, these systems characterize the family of recursively enumerable languages,

and this result holds even if these systems have no more than two components (The-

orems 14.2.7 and 14.2.8). Finally, this chapter considers control languages as lan-

guages that are themselves generated by regular-controlled context-free grammars;

surprisingly enough, with control languages of this kind, these systems over unary

alphabets define nothing but regular languages (Theorem 14.2.9).

The present chapter is organized as follows. First, Section 14.1 define controlled

pure grammar systems and illustrate them by an example. Then, Section 14.2 rigor-

ously establishes the results mentioned above. A formulation of several open prob-

lems closes the chapter.

14.1 Definitions and Examples

In this section, we define controlled pure grammar systems and illustrate them by

an example.

Informally, these systems are composed of n components, where n ≥ 1, and a

single alphabet. Every component contains a set of rewriting rules over the alphabet,

each having a single symbol on its left-hand side, and a start string, from which these

systems start their computation. Every rule is labeled with a unique label. Control

languages for these systems are then defined over the set of all rule labels.

14.1 Definitions and Examples 459

Definition 14.1.1. An n-component pure grammar system (an n-pGS for short), for

some n ≥ 1, is a (2n+2)-tuple

Γ =
(

T,Ψ ,P1,w1,P2,w2, . . . ,Pn,wn

)

where T and Ψ are two disjoint alphabets, wi ∈ T ∗, and Pi ∈ Ψ × T × T ∗ for i =
1,2, . . . ,n are finite relations such that

(1) if (r,a,x),(s,a,x) ∈ Pi, then r = s;

(2) if (r,a,x),(s,b,y) ∈
⋃

1≤ j≤n Pj, where a 6= b or x 6= y, then r 6= s.

The components Ψ , Pi, and wi are called the alphabet of rule labels, the set of rules

of the ith component, and the start string of the ith component, respectively. ⊓⊔

By analogy with context-free grammars, each rule (r,a,x) is written as r : a → x

throughout this chapter.

A configuration of Γ is an n-tuple of strings. It represents an instantaneous de-

scription of Γ . The start configuration is formed by start strings.

Definition 14.1.2. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for

some n ≥ 1. An n-tuple (x1, x2, . . . , xn), where xi ∈ T ∗ for i = 1,2, . . . ,n, is called

a configuration of Γ . The configuration (w1, w2, . . . , wn) is said to be the start

configuration. ⊓⊔

At every computational step, a rule from some component i is selected, and it is

applied to the leftmost symbol of the ith string in the current configuration. Other

strings remain unchanged. Hence, these systems work in a sequential way.

Definition 14.1.3. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for some

n ≥ 1, and let (x1, x2, . . . , xn), (z1, z2, . . . , zn) be two configurations of Γ . The direct

derivation relation over (T ∗)n, symbolically denoted by ⇒Γ , is defined as

(x1,x2, . . . ,xn)⇒Γ (z1,z2, . . . ,zn) [r]

if and only if r : a → y ∈ Pi, xi = av, zi = yv, where v ∈ T ∗, for some i ∈ {1,2, . . . ,n},

and z j = x j for every j 6= i; (x1,x2, . . . ,xn) ⇒Γ (z1,z2, . . . ,zn) [r] is simplified to

(x1,x2, . . . ,xn)⇒Γ (z1,z2, . . . ,zn) if r is immaterial.

Let χ0, χ1, χ2, . . . , χm be m+1 configurations such that

χ0 ⇒Γ χ1 [r1]⇒Γ χ2 [r2]⇒Γ · · · ⇒Γ χm [rm]

by applying rules labeled with r1 through rm, for some m ≥ 1. Then, we write

χ0 ⇒
m
Γ χm [r1 · · ·rm]

Moreover, for every configuration χ , we write χ ⇒0
Γ χ [ε]. For any two configura-

tions χ and χ ′, if χ ⇒m
Γ χ ′ [ρ] for m ≥ 0 and ρ ∈Ψ ∗, then we write

χ ⇒∗
Γ χ ′ [ρ] ⊓⊔

460 14 Controlled Pure Grammar Systems

In the language generated by Γ , we include every string z satisfying the following

two conditions—(1) it appears in the first component in a configuration that can be

computed from the start configuration, and (2) when it appears, all the other strings

are empty.

Definition 14.1.4. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for some

n ≥ 1. The language of Γ is denoted by L(Γ) and defined as

L(Γ) =
{

z ∈ T ∗ | (w1,w2, . . . ,wn)⇒
∗
Γ (z,ε, . . . ,ε)

}

⊓⊔

To control Γ , we define a language, Ξ , over its set of rule labels, and we require

that every successful computation—that is, a computation leading to a string in the

generated language—is made by a sequence of rules from Ξ .

Definition 14.1.5. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for some

n ≥ 1, and let Ξ ⊆Ψ ∗ be a control language. The language generated by Γ with Ξ

is denoted by L(Γ , Ξ) and defined as

L(Γ ,Ξ) =
{

z ∈ T ∗ | (w1,w2, . . . ,wn)⇒
∗
Γ (z,ε, . . . ,ε) [ρ] with ρ ∈ Ξ

}

If Ξ is regular, then the pair (Γ , Ξ) is called a regular-controlled n-pGS. ⊓⊔

Next, we illustrate the previous definitions by an example.

Example 14.1.6. Consider the 4-pGS

Γ =
(

{a,b,c},{ri | 1 ≤ i ≤ 11},P1,c,P2,a,P3,a,P4,a
)

where

P1 = {r1 : c → cc,r2 : c → bc,r3 : b → bb,r4 : b → ab,r5 : a → aa}
P2 = {r6 : a → aa,r7 : a → ε}
P3 = {r8 : a → aa,r9 : a → ε}
P4 = {r10 : a → aa,r11 : a → ε}

Let Ξ = {r6r8r10}
∗{r7r1}

∗{r2}{r9r3}
∗{r4}{r11r5}

∗ be a control language. Observe

that every successful derivation in Γ with Ξ is of the form

(c,a,a,a) ⇒
3(k−1)
Γ (c,ak,ak,ak) [(r6r8r10)

k−1]
⇒2k

Γ (ck+1,ε,ak,ak) [(r7r1)
k]

⇒Γ (bck+1,ε,ak,ak) [r2]
⇒2k

Γ (bk+1ck+1,ε,ε,ak) [(r9r3)
k]

⇒Γ (abk+1ck+1,ε,ε,ak) [r4]
⇒2k

Γ (ak+1bk+1ck+1,ε,ε,ε) [(r11r5)
k]

for some k ≥ 1. Clearly, L(Γ ,Ξ) = {anbncn | n ≥ 2}. ⊓⊔

From Example 14.1.6, we see that regular-controlled pGSs can generate non-

context-free languages. Moreover, notice that Ξ in Example 14.1.6 is, in fact, a

union-free regular language (see [21]).

14.2 Generative Power 461

For every n ≥ 1, let npGS denote the language family generated by n-pGSs.

Furthermore, set

pGS =
⋃

n≥1

npGS

14.2 Generative Power

In this section, we prove results (I) through (III), given next.

(I) pGSs without control languages characterize only a proper subset of the family

of context-free languages (Theorem 14.2.4).

(II) Every recursively enumerable language can be generated by a regular-controlled

2-pGS (Theorems 14.2.7 and 14.2.8).

(III) pGSs over unary alphabets controlled by languages from rC generate only the

family of regular languages (Theorem 14.2.9).

Power of Pure Grammar Systems

First, we show that the language family generated by pGSs without control lan-

guages is properly included in the family of context-free languages.

Lemma 14.2.1. Let Γ be an n-pGS satisfying L(Γ) 6= /0, for some n ≥ 1. Then, there

is a 1-pGS Ω such that L(Ω) = L(Γ).

Proof. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS satisfying L(Γ) 6= /0,

for some n ≥ 1. Let z ∈ L(Γ). By the definition of L(Γ), there exists

(w1,w2, . . . ,wn)⇒
∗
Γ (z,ε, . . . ,ε)

Since all components are independent of each other, there is also

(w1,w2, . . . ,wn)⇒
∗
Γ (w1,ε, . . . ,ε)⇒

∗
Γ (z,ε, . . . ,ε)

Therefore, the 1-pGS Ω = (T , Ψ , P1, w1) clearly satisfies L(Ω) = L(Γ). Hence, the

lemma holds. ⊓⊔

Lemma 14.2.2. Let Γ be a 1-pGS. Then, L(Γ) is context-free.

Proof. Let Γ = (T , Ψ , P, w) be a 1-pGS. We next construct an extended pushdown

automaton M such that Le f (M) = L(Γ). Construct

M =
(

W,T,Ω ,R,s,#,F
)

as follows. Initially, set W = {s, t, f}, Ω = T ∪{#}, R = /0, and F = { f}. Without

any loss of generality, assume that # /∈ T . Perform (1) through (4), given next.

462 14 Controlled Pure Grammar Systems

(1) Add #s → rev(w)t to R.

(2) For each a → y ∈ P, add at → rev(y)t to R.

(3) Add t → f to R.

(4) For each a ∈ T , add a f a → f to R.

M works in the following way. It starts from #sz, where z ∈ T ∗. By the rule

from (1), it generates the reversed version of the start string of Γ on the pushdown,

ending up in rev(w)tz. Then, by rules from (2), it rewrites rev(w) to a string over T .

During both of these generations, no input symbols are read. To accept z, M has to

end up in rev(z)tz. After that, it moves to f by the rule from (3). Then, by using rules

introduced in (4), it compares the contents of the pushdown with the input string. M

accepts z if and only if the contents of the pushdown match the input string, meaning

that z ∈ L(Γ).
Clearly, Le f (M) = L(Γ), so the lemma holds. ⊓⊔

Lemma 14.2.3. There is no n-pGS that generates {a,aa}, for any n ≥ 1.

Proof. By contradiction. Without any loss of generality, making use of Lemma 14.2.1,

we can only consider 1-pGSs. For the sake of contradiction, assume that there exists

a 1-pGS, Ω = ({a}, P, w), such that L(Ω) = {a,aa}. Observe that either (i) w = a

or (ii) w = aa. These two cases are discussed next.

(i) Assume that w = a. Then, a → aa ∈ P. However, this implies that L(Ω) is

infinite—a contradiction.

(ii) Assume that w = aa. Then, a → ε ∈ P. However, this implies that ε ∈ L(Ω)—a

contradiction.

Hence, no 1-pGS generates {a,aa}, so the lemma holds. ⊓⊔

Theorem 14.2.4. pGS ⊂ CF

Proof. Let Γ be an n-pGS, for some n≥ 1. If L(Γ) = /0, then L(Γ) is clearly context-

free. Therefore, assume that L(Γ) 6= /0. Then, by Lemma 14.2.1, there is a 1-pGS Ω
such that L(Ω)= L(Γ). By Lemma 14.2.2, L(Ω) is context-free. Hence, pGS⊆CF.

By Lemma 14.2.3, CF−pGS 6= /0, so the theorem holds. ⊓⊔

Power of Controlled Pure Grammar Systems

In this section, we prove that every recursively enumerable language can be gener-

ated by a regular-controlled 2-pGS.

To do this, we need the following normal form of left-extended queue grammars

(see Definition 3.3.18).

Lemma 14.2.5 (see [18]). For every recursively enumerable language K, there ex-

ists a left-extended queue grammar, Q = (V , T , W, F, R, g), such that L(Q) = K,

T = alph(K), F = { f}, W = X ∪Y ∪{§}, where X ,Y,{§} are pairwise disjoint, and

14.2 Generative Power 463

every (a, p,y,q) ∈ R satisfies either a ∈V −T , p ∈ X, y ∈ (V −T)∗, q ∈ X ∪{§} or

a ∈V −T , p ∈ Y ∪{§}, y ∈ T ∗, q ∈ Y .

Furthermore, Q generates every h ∈ L(Q) in this way

#a0 p0

⇒Q a0#x0 p1 [(a0, p0,z0, p1)]
⇒Q a0a1#x1 p2 [(a1, p1,z1, p2)]

...

⇒Q a0a1 · · ·ak#xk pk+1 [(ak, pk,zk, pk+1)]
⇒Q a0a1 · · ·akak+1#xk+1y1 pk+2 [(ak+1, pk+1,y1, pk+2)]

...

⇒Q a0a1 · · ·akak+1 · · ·ak+m−1#xk+m−1y1 · · ·ym−1 pk+m [(ak+m−1, pk+m−1,
ym−1, pk+m)]

⇒Q a0a1 · · ·akak+1 · · ·ak+m#y1 · · ·ym pk+m+1 [(ak+m, pk+m,ym,
pk+m+1)]

where k,m ≥ 1, ai ∈V −T for i = 0, . . . , k+m, x j ∈ (V −T)∗ for j = 1, . . . , k+m,

g = a0 p0, a jx j = x j−1z j for j = 1, . . . , k, a1 · · ·akxk+1 = z0 · · ·zk, ak+1 · · ·ak+m = xk,

p0, p1, . . . , pk+m ∈ W −F and pk+m+1 = f , zi ∈ (V −T)∗ for i = 1, . . . ,k, y j ∈ T ∗

for j = 1, . . . ,m, and h = y1y2 · · ·ym−1ym. ⊓⊔

Informally, the queue grammar Q in Lemma 14.2.5 generates every string in L(Q)
so that it passes through state §. Before it enters §, it generates only strings over V −
T ; after entering §, it generates only strings over T .

Lemma 14.2.6. Let Q be a left-extended queue grammar satisfying

card
(

alph
(

L(Q)
)

)

≥ 2

and the properties given in Lemma 14.2.5. Then, there is a 2-pGS Γ and a regular

language Ξ such that L(Γ ,Ξ) = K.

Proof. Let Q = (V , T , W , F , R, g) be a left-extended queue grammar satisfying

card
(

alph
(

L(Q)
)

)

≥ 2

and the properties given in Lemma 14.2.5. Let g = a0 p0, W = X ∪Y ∪ {§}, and

F = { f}. Assume that

{0,1} ⊆ alph
(

L(Q)
)

Observe that there exist a positive integer n and an injection ι from VW to {0,1}n−
{1n} so that ι remains an injection when its domain is extended to (VW)∗ in the

standard way (after this extension, ι thus represents an injective homomorphism

from (VW)∗ to ({0,1}n −{1n})∗); a proof of this observation is simple and left to

the reader. Based on ι , define the substitution ν from V to ({0,1}n −{1n}) as

464 14 Controlled Pure Grammar Systems

ν(a) =
{

ι(aq) | q ∈W
}

for every a ∈ V . Extend the domain of ν to V ∗. Furthermore, define the substitu-

tion µ from W to ({0,1}n −{1n}) as

µ(q) =
{

ι(aq) | a ∈V
}

for every q ∈W . Extend the domain of µ to W ∗.

Construct the 2-pGS

Γ =
(

T,Ψ ,P1,w1,P2,w2

)

where
Ψ = { 11

1y | (a, p,y,q) ∈ R}

∪ { 11
1w | w ∈ ν(y),(a, p,y,q) ∈ R}

∪ { 12
1z | z ∈ µ(q),(a, p,y,q) ∈ R}

∪ { 0iε , 1iε | i = 1,2}
∪ { 11

1n+1 }

P1 = { 11
1y : 1 → 1y | (a, p,y,q) ∈ R}

∪ { 11
1w : 1 → 1w | w ∈ ν(y),(a, p,y,q) ∈ R}

∪ { 01
ε : 0 → ε, 11

ε : 1 → ε}
∪ { 11

1n+1 : 1 → 1n+1}
w1 = 1

P2 = { 12
1z : 1 → 1z | z ∈ µ(q),(a, p,y,q) ∈ R}

∪ { 02
ε : 0 → ε, 12

ε : 1 → ε}
w2 = 1n+1

Intuitively, aiy means that a is rewritten to y in the ith component. Construct the

right-linear grammar

G =
(

N,Ψ ,P,〈 f ,2〉
)

as follows. Initially, set P = /0 and N = {$}∪{〈p, i〉 | p ∈W, i = 1,2}, where $ is a

new symbol. Perform (1) through (5), given next.

(1) If (a, p,y,q) ∈ R, where a ∈V −T , p ∈W −F , q ∈W , and y ∈ T ∗,

add 〈q,2〉 → 11
1y 11

1z 〈p,2〉 to P for each z ∈ µ(p).

(2) Add 〈§,2〉 → 11
1n+1 〈§,1〉 to P.

(3) If (a, p,y,q) ∈ R, where a ∈V −T , p ∈W −F , q ∈W , and y ∈ (V −T)∗,

add 〈q,1〉 → 11
1w 11

1z 〈p,1〉 to P for each w ∈ ν(y) and z ∈ µ(p).

(4) Add 〈p0,1〉 → 11
1w $ to P for each w ∈ ν(a0).

(5) Add $ → 01
ε 02

ε $, $ → 11
ε 12

ε $, and $ → ε to P.

Let G = (Γ ,L(G)). Before we establish the identity L(G) = L(Q), we explain

how G works. In what follows, (x,y) p means that the current configuration of Γ

is (x,y) and that p is the nonterminal in the current sentential form of G. Consider

the form of the derivations of Q in Lemma 14.2.5. The regular-controlled 2-pGS G

simulates these derivations in reverse as follows. The start configuration of G is

(

1,1n+1
)

〈 f ,2〉

14.2 Generative Power 465

Rules from (1) generate h ∈ L(Q) in the first component and encoded states pk+m,

pk+m−1, . . . , pk in the second component

(

1h,1z1n
)

〈§,2〉

where z ∈ µ(pk pk+1 · · · pk+m). Rules from (2) appends 1n (a delimiter) to the first

component
(

1n+1h,1z1n
)

〈§,1〉

Rules from (3) generate encoded symbols ak+m, ak+m−1, . . . , a1 in the first compo-

nent and encoded states pk−1, pk−2, . . . , p0 in the second component

(

1w1nh,1z′z1n
)

〈p0,1〉

where w ∈ ν(a1a2 · · ·ak+m) and z′ ∈ µ(p0 p1 · · · pk−1). A rule from (4) generates

(

1w′w1nh,1z′z1n
)

$

where w′ ∈ ν(a0) and a0 is the start symbol of Q. Notice that

w′w ∈ ν(a0a1a2 · · ·ak+m)

and

z′z ∈ µ(p0 p1 p2 · · · pk+m)

Finally, rules from (5) checks that 1w′w1n = 1z′z1n by erasing these two strings in

a symbol-by-symbol way, resulting in (h,ε).
For brevity, the following proof omits some obvious details, which the reader

can easily fill in. The next claim proves the above explanation rigorously—that is, it

shows how G generates each string of L(G).

Claim 1. The regular-controlled 2-pGS G generates every h ∈ L(G) in this way

(1,1n+1)
⇒Γ (1ym,1gk+m1n)
⇒Γ (1ym−1ym,1gk+m−1gk+m1n)

...

⇒Γ (1y1 · · ·ym−1ym,1gk · · ·gk+m−1gk+m1n)
⇒Γ (1n+1h,1gk · · ·gk+m−1gk+m1n)
⇒Γ (1tk+m1nh,1gk−1gk · · ·gk+m−1gk+m1n)
⇒Γ (1tk+m−1tk+m1nh,1gk−2gk−1gk · · ·gk+m−1gk+m1n)

...

⇒Γ (1t1 · · · tk+m−1tk+m1nh,1g0 · · ·gk−2gk−1gk · · ·gk+m−1gk+m1n)
⇒Γ (1t0t1 · · · tk+m−1tk+m1nh,1g0 · · ·gk−2gk−1gk · · ·gk+m−1gk+m1n)
⇒Γ (v1h,v1)

466 14 Controlled Pure Grammar Systems

⇒Γ (v2h,v2)
...

⇒Γ (vℓh,vℓ)
⇒Γ (h,ε)

where k,m ≥ 1; h = y1 · · ·ym−1ym, where yi ∈ T ∗ for i = 1,2, . . . ,m; ti ∈ ν(ai) for i =
0,1, . . . ,k+m, where ai ∈V −T ; gi ∈ µ(pi) for i = 0,1, . . . ,k+m, where pi ∈W −
F; vi ∈ {0,1}∗ for i = 1,2, . . . , ℓ, where ℓ = |t0t1 · · · tk+m−1tk+m1n|; |vi+1| = |vi|−1

for i = 0,1, . . . , ℓ−1.

Proof. Examine the construction of G . Notice that in every successful computation,

G uses rules from step (i) before it uses rules from step (i+1), for i = 1,2,3,4. Thus,

in a greater detail, every successful computation

(1,1n+1)⇒∗
Γ (h,ε) [ρ]

where ρ ∈ L(G), can be expressed as

(1,1n+1)
⇒Γ (1ym,1gk+m1n)
⇒Γ (1ym−1ym,1gk+m−1gk+m1n)

...

⇒Γ (1y1 · · ·ym−1ym,1gk · · ·gk+m−1gk+m1n)
⇒Γ (1n+1h,1gk · · ·gk+m−1gk+m1n)
⇒Γ (1tk+m1nh,1gk−1gk · · ·gk+m−1gk+m1n)
⇒Γ (1tk+m−1tk+m1nh,1gk−2gk−1gk · · ·gk+m−1gk+m1n)

...

⇒Γ (1t1 · · · tk+m−1tk+m1nh,1g0 · · ·gk−2gk−1gk · · ·gk+m−1gk+m1n)
⇒Γ (1t0t1 · · · tk+m−1tk+m1nh,1g0 · · ·gk−2gk−1gk · · ·gk+m−1gk+m1n)
⇒∗

Γ (h,ε)

where k,m ≥ 1; h = y1 · · ·ym−1ym, where yi ∈ T ∗ for i = 1,2, . . . ,m; ti ∈ ν(ai) for i =
0,1, . . . ,k+m, where ai ∈V −T ; gi ∈ µ(pi) for i= 0,1, . . . ,k+m, where pi ∈W −F .

Furthermore, during

(1t0t1 · · · tk+m−1tk+m1nh,1g0 · · ·gk−2gk−1gk · · ·gk+m−1gk+m1n)⇒∗
Γ (h,ε)

only rules from (5) are used. Therefore,

1t0t1 · · · tk+m−1tk+m1nh = 1g0 · · ·gk−2gk−1gk · · ·gk+m−1gk+m1n

Let v = 1t0t1 · · · tk+m−1tk+m1nh. By rules from (5), G makes |v| steps to erase v.

Consequently, (vh,v)⇒∗
Γ (h,ε) can be expressed as

14.2 Generative Power 467

(vh,v)
⇒Γ (v1h,v1)
⇒Γ (v2h,v2)

...

⇒Γ (vℓh,vℓ)
⇒Γ (h,ε)

where vi ∈ {0,1}∗ for i = 1,2, . . . , ℓ, where ℓ = |v|−1, and |vi+1| = |vi|−1 for i =
0,1, . . . , ℓ−1. As a result, the claim holds. ⊓⊔

Let G generate h ∈ L(G) in the way described in Claim 1. Examine the con-

struction of G to see that at this point, R contains (a0, p0, z0, p1), . . . , (ak, pk, zk,

pk+1), (ak+1, pk+1, y1, pk+2), . . . , (ak+m−1, pk+m−1, ym−1, pk+m), (ak+m, pk+m, ym,

pk+m+1), where pk+m+1 = f and zi ∈ (V −T)∗ for i= 1,2, . . . ,k, so Q makes the gen-

eration of h in the way described in Lemma 14.2.5. Thus, h ∈ L(Q). Consequently,

L(G)⊆ L(Q).
Let Q generate g ∈ L(Q) in the way described in Lemma 14.2.5. Then, G gen-

erates h in the way described in Claim 1, so L(Q) ⊆ L(G); a detailed proof of this

inclusion is left to the reader.

As L(G)⊆ L(Q) and L(Q)⊆ L(G), L(G) = L(Q). Hence, the lemma holds. ⊓⊔

Theorem 14.2.7. Let K be a recursively enumerable language satisfying

card
(

alph(K)
)

≥ 2

Then, there is a 2-pGS Γ and a regular language Ξ such that L(Γ ,Ξ) = K.

Proof. This theorem follows from Lemmas 14.2.5 and 14.2.6. ⊓⊔

Theorem 14.2.8. Let K be a unary recursively enumerable language, and let c /∈
alph(K) be a new symbol. Then, there is a 2-pGS Γ and a regular language Ξ such

that L(Γ ,Ξ) = K.

Proof. This theorem can be proved by analogy with the proof of Theorem 14.2.7

(we use c as the second symbol in the proof of Lemma 14.2.6). ⊓⊔

Power of Controlled Pure Grammar Systems Over Unary Alphabets

In this section, we prove that pGSs over unary alphabets controlled by languages

from rC generate only regular languages.

Theorem 14.2.9. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS satisfying

card(T) = 1, for some n ≥ 1, and let Ξ ∈ rC. Then, L(Γ , Ξ) is regular.

468 14 Controlled Pure Grammar Systems

Proof. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS satisfying card(T) =
1, for some n ≥ 1, and let Ξ ∈ rC. We show how to convert Γ and Ξ into an equiv-

alent regular-controlled grammar (G, Π). Then, since card(T) = 1, Theorem 5.1.6

implies that L(Γ , Ξ) is regular.

Let Ḡ = (N̄, Ψ , Φ̄ , P̄, S̄) be a context-free grammar and M̄ be a finite automaton

such that L(Ḡ,L(M̄)) = Ξ . Let T = {c}. To distinguish between the components

of Γ in G, we encode c for each component. Set

N# =
{

ci | 1 ≤ i ≤ n
}

For each i ∈ {1, . . . ,n}, define the homomorphism τi from T ∗ to N∗
as τi(c) = ci.

For each i ∈ {1, . . . ,n}, set

Ri =
{

r : τi(c)→ τi(y) | r : c → y ∈ Pi

}

Define G as

G =
(

N,{c},Φ ,R,S
)

where
N = {S}∪ N̄ ∪Ψ ∪N# ∪

⋃

1≤i≤n Ri,
Φ = Φ̄ ∪{s,c1}∪{rε | r ∈ Φ̄}
R = P̄∪{s : S → S̄τ1(w1)τ2(w2) · · ·τn(wn)}

∪ {c1 : c1 → c}
∪ {rε : r → ε | r ∈ Φ̄}

Λ = {rε r | r : a → y ∈
⋃

1≤i≤n Ri}
∗

Π = {s}L(M̄)Λ{c1}
∗ (the control language of G)

Without any loss of generality, we assume that {S}, N̄, Ψ , N#, and
⋃

1≤i≤n Ri are

pairwise disjoint. We also assume that Φ̄ , {s,c1}, and {rε | r ∈ Φ̄} are pairwise

disjoint.

In every successful derivation of every z ∈ L(G, Π) in G, s is applied to S. It

generates the start symbol of Ḡ and encoded start strings of each component of Γ .

Indeed, instead of c, we generate ci, where 1 ≤ i ≤ n. Then, rules from P̄ are used

to rewrite S̄ to a control string from L(Ḡ, L(M̄)). By using pairs of rules rε r ∈ Λ , G

erases an occurrence of r in the current sentential form and applies r to a symbol in

a proper substring of the current sentential corresponding to the component which

would use r. This process is repeated until the control string is completely erased.

Since card(T) = 1, the order of used rules and the occurrence of the rewritten cs are

not important. Finally, G uses c1 : c1 → c to decode each occurrence of c1 back to c,

thus obtaining z. If G applies its rules in an improper way—that is, if there remain

some symbols from
⋃

1≤i≤n Ri or from {ci | 2 ≤ i ≤ n} after the last pair from Λ is

applied—the derivation is blocked.

Based on these observations, we see that every successful derivation of every z ∈
L(G, Π) in G with Π is of the form

References 469

S ⇒G S̄τ1(w1)τ2(w2) · · ·τn(wn) [s]
⇒∗

G ρτ1(w1)τ2(w2) · · ·τn(wn) [υ]
⇒∗

G τ1(z) [λ]
⇒∗

G z [γ]

where ρ ∈ L(Ḡ, L(M̄)), υ ∈ L(M̄), λ ∈ Λ , and γ ∈ {c1}
∗. In Γ , there is

(w1,w2, . . . ,wn)⇒
∗
Γ (z,ε, . . . ,ε) [ρ]

Hence, L(G, Π) ⊆ L(Γ). Conversely, for every z ∈ L(Γ), there is a derivation

of z in G with Π of the above form, so L(Γ) ⊆ L(G, Π). Therefore, L(Γ) = L(G,

Π), and the theorem holds. A rigorous proof of the identity L(Γ) = L(G, Π) is left

to the reader. ⊓⊔

From Theorem 14.2.9, we obtain the following corollary.

Corollary 14.2.10. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS satis-

fying card(T) = 1, for some n ≥ 1, and let Ξ ∈ Ψ ∗ be regular. Then, L(Γ , Ξ) is

regular. ⊓⊔

Notice that this result is surprising in the light of Theorems 14.2.7 and 14.2.8,

which say that 2-pGSs having at least two symbols are computationally complete.

The next four open problem areas are related to the achieved results.

Open Problem 14.2.11. Let Γ be an n-pGS, for some n ≥ 1. By Lemma 14.2.2,

L(Γ) is context-free. Is L(Γ), in fact, regular? ⊓⊔

Open Problem 14.2.12. Consider proper subfamilies of the family of regular lan-

guages (see [6, 11, 21, 23]). Can we obtain Theorems 14.2.7 and 14.2.8 when the

control languages are from these subfamilies? ⊓⊔

Open Problem 14.2.13. By Theorems 14.2.7 and 14.2.8, two components suffice

to generate any recursively enumerable language by regular-controlled pGSs. What

is the power of controlled pGSs with a single component? ⊓⊔

Open Problem 14.2.14. Let Γ be an n-pGS, for some n≥ 1. If no rule of Γ has ε on

its right-hand side, then Γ is said to be propagating. What is the power of controlled

propagating pGSs? ⊓⊔

For some preliminary solutions to the above four open problems, see [20].

References

[1] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Tech-

niques, and Tools, 2nd edn. Addison-Wesley, Boston (2006)

470 14 Controlled Pure Grammar Systems

[2] Aydin, S., Bordihn, H.: Sequential versus parallel grammar formalisms with

respect to measures of descriptional complexity. Fundamenta Informaticae

55(3-4), 243–254 (2003)

[3] Beek, M., Kleijn, J.: Petri net control for grammar systems. In: Formal and

natural computing, pp. 220–243. Springer-Verlag, New York, NY (2002)

[4] Bensch, S., Bordihn, H.: Active symbols in pure systems. Fundamenta Infor-

maticae 76(3), 239–254 (2007)

[5] Bordihn, H., Csuhaj-Varjú, E., Dassow, J.: CD grammar systems versus L sys-

tems. In: Grammatical Models of Multi-Agent Systems, Topics in Computer

Mathematics, vol. 8, pp. 18–32. Gordon and Breach Science Publishers, Ams-

terdam, NL (1999)

[6] Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accept-

ing subregular languages. Theoretical Computer Science 410(35), 3209–3222

(2009)

[7] Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A

Grammatical Approach to Distribution and Cooperation. Gordon and Breach,

Yverdon (1994)

[8] Csuhaj-Varjú, E., Dassow, J., Păun, G.: Dynamically controlled cooperat-

ing/distributed grammar systems. Information Sciences 69(1-2), 1–25 (1993)

[9] Csuhaj-Varjú, E., Vaszil, G.: On context-free parallel communicating gram-

mar systems: synchronization, communication, and normal forms. Theoretical

Computer Science 255(1-2), 511–538 (2001)

[10] Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory.

Springer, New York (1989)

[11] Dassow, J., Truthe, B.: Subregularly tree controlled grammars and languages.

In: Automata and Formal Languages, pp. 158–169. Computer and Automation

Research Institute, Hungarian Academy of Sciences, Balatonfured, HU (2008)

[12] Fernau, H., Holzer, M.: Graph-controlled cooperating distributed grammar

systems with singleton components. Journal of Automata, Languages and

Combinatorics 7(4), 487–503 (2002)

[13] Goldefus, F.: Cooperating distributed grammar systems and graph controlled

grammar systems with infinite number of components. In: Proceedings of the

15th Conference STUDENT EEICT 2009, vol. 4, pp. 400–404. Brno Univer-

sity of Technology, Brno, CZ (2009)

[14] Mäkinen, E.: A note on pure grammars. Information Processing Letters 23(5),

271–274 (1986)

[15] Martinek, P.: Limits of pure grammars with monotone productions. Funda-

menta Informaticae 33(3), 265–280 (1998)

[16] Maurer, H.A., Salomaa, A., Wood, D.: Pure grammars. Information and Con-

trol 44(1), 47–72 (1980)

[17] Meduna, A.: Automata and Languages: Theory and Applications. Springer,

London (2000)

[18] Meduna, A.: Two-way metalinear PC grammar systems and their descriptional

complexity. Acta Cybernetica 2004(16), 385–397 (2004)

