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Models for Regular
Languages
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Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that
denote concatenation, union, and

__Iteration, respectively.
Definition: Let X be an alphabet. The regular
expressions over X and the languages they denote
are defined as follows:
* 1S a RE denoting the empty set
¢ IS a RE denoting {c}
* a, Where a € X, IS a RE denoting {a}
 Let r and s be regular expressions denoting the
languages L, and L, respectively; then
 (r.s)isaRE denoting L =L, L,
e (r+s)isaREdenotingL =L, U L,
e (r'YisaRE denotingL =L,"
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
over X ={a, b} ?
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
overX={a, b}?

v ‘ Is a RE over X. ‘

€
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
overX={a, b}?

v y \ Is a RE over X. ‘

(S a
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
overX={a, b}?

{ ¢ v | IsaREoverX. |

g a b
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
over X ={a, b} ?

v ¥

| Is a RE over . ‘

V
g a b
}

(b")
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
over X ={a, b} ?

v ¥

| Is a RE over . ‘

V
g a b
}

(b7) Je—
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over X ={a, b} ?

v ¥
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
over X ={a, b} ?

{ ¢ v | IsaREoverX. |
€ a b
|
(b7) j—
A
(@a.(b’)) Ie
! _/

(e + (a.(b)))
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
over X ={a, b} ?

{ ¢ e | IsaREoverX. |
€ a b |
\ |
(@.(b))
! _/

(e + (a.(b)))
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Regular Expressions: Example

Question: Is (¢ + (a.(b”))) the regular expression
over X ={a, b} ?

{ ¢ e | IsaREoverX. |
g a b |
\ }
(a '(b )) Answer:
| _ (e + (a.(bY)) is

the RE over X.

(e + (a.(b)))
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Simplification

1) Reduction of the number of parentheses by

Precedences: > . > +

2) Expression r.s is simplified to rs

3) Expression rr-or rr is simplified to r*
Example:

((a.(@”)) + ((b").b)) can be writtenasa .a” + b".b,

—

—

and a.a + b".bcan be writtenas a* + b*
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Regular Language (RL)

Gist: Every RE denotes a regular language

r that denotes L.

Definition: Let L be a language. L Is a regular
language (RL) If there exists a regular expression

Denotation: L(r) means the language denoted by r.

Examples:

r,=ab + ba 0
r,=a'b’ 0
r,=ab(a+b)" 0

r,=(a+b)ab(a+b)" d

enotes
enotes
enotes
enotes

_, = {ab, ba}
L, ={a"vm™ n>1 m=>0}
|, = {x: ab is prefix of x}

|, = {x: ab Is substring of x}

‘ L., L,, Ly, L, are regular languages over X ‘




6/29

Finite Automata (FA)

Gist: The simplest model of computation
based on a finite set of states and
computational rules.

© / ®

Finite State Control

y Read head

Input tape:[a; |a, | ... ai‘ o | Q,

——
move of head
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Finite Automata (FA)

Gist: The simplest model of computation
based on a finite set of states and
computational rules.

®© / ®

Start state H/F'inite State Control

y Read head

Input tape:[a; |a, | ... ai‘ o | Q,

——
move of head
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Finite Automata (FA)

Gist: The simplest model of computation
based on a finite set of states and
computational rules.

‘ Final states I~L'

‘ Start state ”/F'Inlte State Control

y Read head

Input tape:[a; |a, | ... ai‘ o | Q,

——
move of head
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Finite Automata (FA)

Gist: The simplest model of computation
based on a finite set of states and

computational rules.

‘ Final states I~L'

*ICurrent state‘

‘ Start state ”/F'Inlte State Control

y Read head

Input tape: | a; | a,

a, |

d

n

——
move of head
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Finite Automata: Definition

Definition: A finite automaton (FA) Is a 5-tuple:
M=(Q, 2%, R,s, F), where
* Q Is a finite set of states

2 IS an Input alphabet
* R Is a finite set of rules of the form: pa — @,
wherep,q € Q,a € X U {&}
* S € Q Is the start state
* F < Qs aset of final states
Mathematical note on rules:

o Strictly mathematically, R is a relation from Q x (£ U {€}) to Q
* Instead of (pa, q), however, we write the rule as pa —

* P2 = ¢ means that with 2, M can move from p to g
o If 2 = &, no symbol is read
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Graphical Representation

(@) denotes astate g € Q
—»@ denotes the start state s € Q

denotes a final state f e F

@®—2—(@) denotespa—>qeR
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Graphical Representation: Example

M — (Q1 21 R1 S1 F)1
where:
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M — (Q1 21 R1 S1 F)1
where:

*Q={s,pqf}

© © O
@
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Graphical Representation: Example

M — (Q1 21 R1 S1 F)1
where:

*Q={s,p 0, T}
« > ={a, b, c};

© © O
@
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Graphical Representation: Example

M — (Q1 21 R1 S1 F)1
where: a

*Q={s,p,q, T} O
IEEE?AZ?,; @ @ @

@
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Graphical Representation: Example

M — (Q1 21 R1 S1 F)1
where: a

*Q={s,p.q, f} O
« > ={a, Db, c};

R oS o0
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Graphical Representation: Example

M — (Q1 21 R1 S1 F)1
where: a b

*Q={s,p,q,f} O '
-Zi{a,b,c};
I =) (O

pb — p,
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Graphical Representation: Example

M — (Q1 21 R1 S1 F)1
where: a b

*Q={s,p.q, f} O
-Zi{a,b,c}; '
RIS O O

pb — p,

pb — f,
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Graphical Representation: Example

M=(Q, X R,s,F),
where:
*Q={s,p,q, };
« > ={a, b, c};
*R={sa—s,

S —Dn,

pb —p,

pb — f,

S —q,
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Graphical Representation: Example

M=(Q, X R,s,F),
where:
*Q={s,p,0q, T}
« > ={a, b, c};
*R={sa—s,

S —Dn,

pb —p,

pb — f,

S —q,

gc — q,
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Graphical Representation: Example

M=(Q, X R,s,F),
where:
*Q={s,pa T}
« > ={a, b, c};
*R={sa—s,
S —P,
pb — p,
pb — T,
S —(,
gc —q,
gc — f,




9/29

Graphical Representation: Example
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Graphical Representation: Example

M=(Q, X R,s,F),
where:
*Q={s,p,0q, T}
« > ={a, b, c};
*R={sa—s,
S —p,
pb —p,
pb — f,
S —q,
gc — q,
gc — f,
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Graphical Representation: Example

M=(Q, X R,s,F),
where:
*Q={s,p,0q, T}
« > ={a, b, c};
*R={sa—s,
S —Dn,
pb —p,
pb — f,
S —q,
gc — q,
gc — f,
fa—> T}
-F={f}
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Tabular Representation

« Columns: Member of £ U {c}
* Rows: States of Q
* First row: he start state

e Underscored: Final states

a €

p tp, @)

‘t(p,a):tl{q: pa—>qeR}‘

- |:
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Tabular Representation: Example

M — (Q1 21 R1 S1 F)1
where:
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Tabular Representation: Example

M — (Q1 21 R1 S1 F)1
where:

*Q={s,pqf}

-h | O | T | »
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Tabular Representation: Example

M=(Q, X R,s,F),
where:

+Q={s,p,0q, T} a | b ¢
« > ={a, b, c};

-h | O | T | »
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Tabular Representation: Example

M — (Q1 21 R1 S1 F)1
where:

+Q={s,p, 0} a | bJc]e
« > ={a, Db, c};

-h | O | T | »
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Tabular Representation: Example

M=(Q, X R,s,F),
where:
*Q={s,p,q T}

« > ={a, b, c};

QI =

QIAQ[(Q] =
QIAIQIQ |
QIA(Q[(Q]

-h | O | T | »
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:

+Q={s,p, 0} a J b lcele

> ={a, b, c} s| {s} | L D D

R ={sa—s, p| @ % % %
q| < %, % %)
fl <& % % %
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:
+Q={s,p, 0} a J b lcele
« > ={a, b, c} s| {sy | @ | @ | {r}
R ={sa—s, p| @ % % %
> =P 9| @ | o | @ | @
fl| O J %) %)
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:

+Q={s,p, 0} a J b lcele

« > ={a, b, c} s| {sy | @ | @ | {r}

R ={sa—s, p| @ | {r} | O %)
Sb — b 9| o | @ | @ | @
PO =P, |l o | 2| 2| o
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:

+Q={s,p, 0} a J b lcele

« > ={a, b, c} s| {sy | @ | @ | {r}

R ={sa—s, p| @ {p,f} O %)
Sb — b 9| o | @ | @ | @
Bb I ]'9 ’ |l o | 2| 2| @




11/29

Tabular Representation: Example

M=(Q, Z,R,s, F),

where:

+Q={s,p, 0} a | b lcele

« > ={a, b, c}; s{{sy| @ | D [{p, a}

R ={sa—s, p| @ {p,f} O %)
Sb — b 9| o | @ | @ | @
Bb I ]'9 ’ |l o | 2| 2| @

S —>(,
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:

+Q={s,p, 0} a | b ¢ | e

« > ={a, b, c}; s|{s} | @ | 9 [{p.a}

R ={sa—s, p| @ {p,f} O %)
Sbj)g’ a| @ | @ | {0} | @
ob _)f” flo | o| o | @
S —>(,

qc — G,
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Tabular Representation: Example

M=(Q, % R,s,F),
where:
+Q={s,p,q,f} a | bl c e
« > ={a, b, c}; s|{s} | @ | 9 [{p.a}
R ={sa—s, p| @ {p,f} O %)
Sb:g’ gl @ | @ ot} @
pb—)f,’ f % % %) %)
s —0,
gc — (g,
gc — T,
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:
+Q={s,p,q,f} a | bl c e
« > ={a, b, c}; s|{s} | @ | 9 [{p.a}
R ={sa—s, p| @ {p,f} O %)
Sb_)g’ gl @ | @ ot} @
%1
s —0,
gc — (g,
gc — T,

fa—> T}
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Tabular Representation: Example

M=(Q, Z,R,s, F),

where:
Q={sp,qf} G S R
> ={a, b, c}k s{{sy| @ | D [{p, a}
R={sa—>s p| @ {p,f} O %)
Sb_)g’ gl @ | @ [{o,f} @
%1
ob—s f flty| o | @ | @
S =0
gC — ¢
gc — T,
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Tabular Representation: Example

M — (Q1 21 R1 S1 F)1
where:

a b C €

s| {sk| @ | © [{pa}
p| D |{p,T} 9 %)
q| 9 g {q, T} 9
_f_ {f} | O %) %
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Configuration

Gist: Instance description of FA

Definition: Let M = (Q, X,

R, s, F) be a FA.

A configuration of M is a string y € QX~

@.,, —
@¥" @
© ./ @

—I Current state ‘

Finite State Control

Input tape:

y Read head

d; | &

al ... |a,
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Configuration

Gist: Instance description of FA

Definition: Let M = (Q, X, R, s, F) be a FA.
A configuration of M is a string y € QX~

.. /—I Current state ‘
@®-

Finite State Control

Input tape: v Read head
al a2 cee a‘i oo an
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Configuration

Gist: Instance description of FA

Definition: Let M = (Q, X, R, s, F) be a FA.
A configuration of M is a string y € QX~

.. /—I Current state ‘
@®-

Finite State Control

Input tape: v Read head
d; | d d; cos d,

N
z ] Y
Configuration
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Move

Gist: Computational step of FA

Definition: Let p x and gx be two configurations
of M, wherep,0 e Q, eXu{e} andx e X’
Let =p — g e Rbearule. Then M makes a
move from p x to gx according to , written as

D X|—-agx[ ]or simply, p X |- 0x

Note: If & = g, no Input symbol is read

Configuration: @\ | x, |
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Move

Gist: Computational step of FA

Definition: Let p x and gx be two configurations
of M, wherep,0 e Q, eXu{e} andx e X’
Let =p — g e Rbearule. Then M makes a
move from p x to gx according to , written as

D X|—-agx[ ]or simply, p X |- 0x

Note: If & = g, no Input symbol is read

Configuration: @\ | x, |
Rule: pa — ¢
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Move

Gist: Computational step of FA

Definition: Let p x and gx be two configurations
of M, wherep,0 e Q, eXu{e} andx e X’
Let =p — g e Rbearule. Then M makes a
move from p x to gx according to , written as

D X|—-agx[ ]or simply, p X |- 0x

Note: If & = g, no Input symbol IS read

Configuration:

Rule: pa — g J/ )i//

New configuration: @\
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Sequence of Moves 1/2
Gist: Several consecutive computational steps

Definition: Let y be a configuration. M makes
zero moves from y to y; in symbols,

% |- ° x [€] or, simply,  |-° x
Definition: Let y,, %1, ---» X, D€ @ Sequence of
configurations,n> 1, and y;; |-x;[r:], r; € R,
forall1=1, ..., n; that Is,

%o I=xa [rad =22 [ra] - =2 [
Then M makes n moves from y, to y,:
Yo I=" %n [F1-. rul Or, simply, %o |=" %,
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Sequence of Moves 2/2

1T %o |-" %, [p] fOr some n > 1, then

Yo =" xnlPl
If %o |-" %, [p] fOr some n > 0, then
Xo |- %alpl

Example: Consider

pabc |-qgbc [1: pa — q], and gbc |- rc [2: gb — 1].
Then, nabe |-2 re [1 2],
pabe |- re [1 2],
nabe |- re [1 2]
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Accepted Language

Gist: M accepts w If It can completely read w
by a sequence of moves from s to a
final state

Definition: Let M = (Q, 2, R, s, F) be a FA.
The language accepted by M, L(M), is defined
as:

LIM)={w:we X, sw|-f, feF}

M=(Q, =, R, s, F):
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Accepted Language

Gist: M accepts w If It can completely read w
by a sequence of moves from s to a
final state

Definition: Let M = (Q, 2, R, s, F) be a FA.
The language accepted by M, L(M), is defined
as:

LIM)={w:we X, sw|-f, feF}

M=(Q, =, R, s, F):
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Accepted Language

Gist: M accepts w If It can completely read w
by a sequence of moves from s to a
final state

Definition: Let M = (Q, 2, R, s, F) be a FA.
The language accepted by M, L(M), is defined
as:

LIM)={w:we X, sw|-f, feF}

M=(Q, =, R, s, F):

Sa,Qy...a,, [-08...a, |- ... |- 0n48, |- 0,
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Accepted Language

Gist: M accepts w If It can completely read w
by a sequence of moves from s to a
final state

Definition: Let M = (Q, 2, R, s, F) be a FA.
The language accepted by M, L(M), is defined
as:

LIM)={w:we X, sw|-f, feF}

M=(Q,3,R,s, F):

Sa18...a, |=0;8p...a, |—-.. |-
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Accepted Language

Gist: M accepts w If It can completely read w
by a sequence of moves from s to a
final state

Definition: Let M = (Q, 2, R, s, F) be a FA.
The language accepted by M, L(M), is defined
as:

LIM)={w:we X, sw|-f, feF}

M=QZ R P [ifa e e L)

otherwise, ¢ L(M)

sa,ay...a, |-0,3,...a, |- ... |- 9,48, |- 0,
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FA: Example 1/3

M=(Q, Z, R, s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb — s}, F={s}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

[

™~

‘_¢ Read head
alb sab

Input tape:
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FA: Example 2/3

M=(Q, Z, R, s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb — s}, F={s}
Question: ab € L(M) ?

Finite Automaton M
Finite State Control:

)h Current Configuration:
[ @ ]

Inputtape: | a | b sab |_qb
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FA: Example 3/3

M=(Q, Z, R, s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb — s}, F={s}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

L |

|
; Read head

Inputtape: fa | b sab |- qb S
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FA: Example 3/3

M=(Q, Z, R, s, F), where:
Q={s,q},>2={a,b},R={sa—>q,gb — s}, F={s}
Question: ab € L(M) ?

Finite Automaton M

Finite State Control:
b Current Configuration:

]

Answer:
YES, ab € L(M),
y Read head because s € F

Inputtape: fa | b sab |- qb S
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Equivalent Models

Definition: Two models for languages, such
as FAs, are equivalent if they both specify the
same language.

Question: Is M, equivalent to M,, ?



20/29

Equivalent Models

Definition: Two models for languages, such
as FAs, are equivalent if they both specify the
same language.

Question: Is M, equivalent to M,, ?

Answer: M, and M, are equivalent because
L(M;) = L(M,) ={a": n >0}
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Conversion of RE to FA: Basics 1/5

Gist: Algorithm that converts any RE to an
equivalent FA (lex in UNIX).

* For a RE r =, there Is an equivalent FA M.

Proof: My —&)

* For a RE r = g, there Is an equivalent FA M.

Proof: M.,: —'@ -

ForaRETr=2a,a e X, there is an equivalent FAM. .

Proof: M. : —»@
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RE to FA: Concatenation 2/5

*LetrbeaREoverZ and M, = (Q,, X, R, S,, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: Let Q,n Q, = @.
Construction:
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RE to FA: Concatenation 2/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: LetQ,n Q,= &.

Construction:
M. =(Q,u QX RUR,

M. : M.:
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RE to FA: Concatenation 2/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: LetQ,n Q,= &.

Construction:
M. =(Q,u QX RUR,

@0 | &0
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RE to FA: Concatenation 2/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: LetQ,n Q,= &.

Construction:
M., =(Q,uQ,Z RUR, U{f— s},

OO RO
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RE to FA: Concatenation 2/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: LetQ,n Q,= &.

Construction:
M= (Qru Qu 2, RrU R LT, —> 5}, 5,

L& W@ @
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RE to FA: Concatenation 2/5

*LetrbeaREoverZ and M, = (Q,, X, R, S,, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: LetQ,n Q,= &.

Construction:
M =(Q,u Qp X, RRUR, U{f,— s}, s, {fi})

INOSE OO0
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RE to FA: Concatenation 2/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lettbea RE over Z and M, = (Q,, Z, R, s;, {f;}) be
an FA such that L(M,) = L(t).

* Then, for the RE r.t, there exists an equivalent FA M,

Proof: LetQ,n Q,= &.

Construction:
M =(Q,u Qp X, RRUR, U{f,— s}, s, {fi})

[ed ol ler0
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RE to FA: Union 3/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lett be RE over X and M, = (Q,, X, R,, S, {f;}) be
an FA such that L(M,) = L(t).

« For a RE r +t, there exists an equivalent FA M.,

Proof: LetQ,nQ,=d,s,f ¢ Q, U Q.
Construction
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RE to FA: Union 3/5

e LetrbeaREover Zand M. =(Q,, Z, R, s, {f.}) be
an FA such that L(M,) = L(r).

* Lett be RE over X and M, = (Q,, X, R,, S, {f;}) be
an FA such that L(M,) = L(t).
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RE to FA: Completion 5/5

* Input: RE rover X
» OQutput: FA M such that L(r) = L(M)

* Method:
* From “inside” of r, repeatedly use the next
rules to construct M:
» for RE &, construct FA M,
- for RE &, construct FA M — (see 1/5)
« for RE a € X, construct FA M,
e let for REs r and t, there already exist FAs M. and
M,, respectively; then,
o for RE r.t, construct FAM,,  (see 2/5)
« for REr +t, construct FA M, ., (see 3/5)
« for RE r” construct FA M.. (see 4/5)
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RE to FA: Example 3/3

For RE
b + cd:

M b+ coys-

For a final RE (2b + cd)™: '
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Models for Regular Languages

Theorem: For every RE r, there isan FAM
such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FAM, thereisan RE r
such that L(M) = L(r).

Proof: See page 210 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for

regular languages are
1) Regular expressions 2) Finite Automata




