
Models for Context-Free

Languages

1/50

Context-Free Grammar (CFG)
 Gist: A grammar is based on a finite set of

grammatical rules, by which it
generates strings of its language.

Illustration:

Grammar G:

Start nonterminal

Terminals: a, b, c, d

Nonterminals: A, B, S

S

Rules: S  AB,
 A  aAb,
 A  ab,
 B  bBa,
 B  ba

2/50

Context-Free Grammar (CFG)
 Gist: A grammar is based on a finite set of

grammatical rules, by which it
generates strings of its language.

Illustration:

Grammar G:

Start nonterminal

Terminals: a, b, c, d

Nonterminals: A, B, S

S

Rules: S  AB,
 A  aAb,
 A  ab,
 B  bBa,
 B  ba

AB

Rule: S  AB

2/50

Context-Free Grammar (CFG)
 Gist: A grammar is based on a finite set of

grammatical rules, by which it
generates strings of its language.

Illustration:

Grammar G:

Start nonterminal

Terminals: a, b, c, d

Nonterminals: A, B, S

S

Rules: S  AB,
 A  aAb,
 A  ab,
 B  bBa,
 B  ba

AB

abB

Rule: S  AB

Rule: A  ab

2/50

Context-Free Grammar (CFG)
 Gist: A grammar is based on a finite set of

grammatical rules, by which it
generates strings of its language.

Illustration:

Grammar G:

Start nonterminal

Terminals: a, b, c, d

Nonterminals: A, B, S

S

Rules: S  AB,
 A  aAb,
 A  ab,
 B  bBa,
 B  ba

AB

abB

abbBa

Rule: S  AB

Rule: A  ab

Rule: B  bBa

2/50

Context-Free Grammar (CFG)
 Gist: A grammar is based on a finite set of

grammatical rules, by which it
generates strings of its language.

Illustration:

Grammar G:

Start nonterminal

Terminals: a, b, c, d

Nonterminals: A, B, S

S

Rules: S  AB,
 A  aAb,
 A  ab,
 B  bBa,
 B  ba

AB

abB

abbBa

abbbaa

Rule: S  AB

Rule: A  ab

Rule: B  bBa

Rule: B  ba

 L(G)

2/50

Context-Free Grammar: Definition
Definition: A context-free grammar (CFG) is a

quadruple G = (N, T, P, S), where

• N is an alphabet of nonterminals

• T is an alphabet of terminals, N  T = 

• P is a finite set of rules of the form A  x,

 where A  N, x  (N  T)*

• S  N is the start nonterminal

• Strictly mathematically, P is a relation from N to (N  T)*

• Instead of (A, x)  P, we write A  x  P

• A  x means that A can be replaced with x

• A   is called -rule

Mathematical Note on Rules:

3/50

Convention
• A, … , F, S : nonterminals

• S : the start nonterminal

• a, … , d : terminals

• U, … , Z : members of (N  T)

• u, … , z : members of (N  T)*

•  : sequence of productions

4/50

A subset of rules of the form:

A  x1, A  x2 , …, A  xn

can be simply written as:

A  x1 | x2 | … | xn

A

Derivation Step

Definition: Let G = (N, T, P, S) be a CFG. Let

u, v  (N  T)* and p = A  x  P. Then, uAv

directly derives uxv according to p in G, written

as uAv  uxv [p] or, simply, uAv  uxv.

Note: If uAv  uxv in G, we also say that G makes a

derivation step from uAv to uxv.

 Gist: A change of a string by a rule.

v u

5/50

A

Derivation Step

Definition: Let G = (N, T, P, S) be a CFG. Let

u, v  (N  T)* and p = A  x  P. Then, uAv

directly derives uxv according to p in G, written

as uAv  uxv [p] or, simply, uAv  uxv.

Note: If uAv  uxv in G, we also say that G makes a

derivation step from uAv to uxv.

 Gist: A change of a string by a rule.

v u

Rule: A  x

x

…

u v

…

5/50

Definition: Let u  (N  T)*. G makes a

zero-step derivation from u to u; in symbols,

u 0 u [] or, simply, u 0 u

Definition: Let u0,…,un  (N  T)*, n  1, and

ui-1  ui [pi], pi  P, for all i = 1,…, n; that is

u0  u1 [p1]  u2 [p2] …  un [pn]

Then, G makes n derivation steps from u0 to un,

u0 
n un [p1... pn] or, simply, u0 

n un

Sequence of Derivation Steps 1/2
 Gist: Several consecutive derivation steps.

6/50

If u0 
n un [] for some n  1, then u0 properly

derives un in G, written as u0 
+ un [].

If u0 
n un [] for some n  0, then u0 derives

un in G, written as u0 
* un [].

Example: Consider

aAb  aaBbb [1: A  aBb], and

aaBbb  aacbb [2: B  c].

Then, aAb 2 aacbb [1 2],

 aAb + aacbb [1 2],

 aAb * aacbb [1 2]

Sequence of Derivation Steps 2/2

7/50

Definition: Let G = (N, T, P, S) be a CFG. The

language generated by G, L(G), is defined as

L(G) = {w: w  T*, S * w}

Generated Language

G = (N, T, P, S), let w = a1a2…an; ai  T for i = 1..n

G generates a terminal string w by a

sequence of derivation steps from S to w

 Gist:

Illustration:

8/50

Definition: Let G = (N, T, P, S) be a CFG. The

language generated by G, L(G), is defined as

L(G) = {w: w  T*, S * w}

Generated Language

G = (N, T, P, S), let w = a1a2…an; ai  T for i = 1..n

S  …  …  a1a2…an

w

G generates a terminal string w by a

sequence of derivation steps from S to w

 Gist:

if then w  L(G);

otherwise, w  L(G)

Illustration:

8/50

Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free

grammar that generates L.

Example:

Context-Free Language (CFL)
 Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},

P = {1: S  aSb, 2: S  }

9/50

Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free

grammar that generates L.

Example:

Context-Free Language (CFL)
 Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},

P = {1: S  aSb, 2: S  }

S   [2] L(G)

9/50

Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free

grammar that generates L.

Example:

Context-Free Language (CFL)
 Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},

P = {1: S  aSb, 2: S  }

S   [2]
S  aSb [1]  ab [2]

L(G)

9/50

Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free

grammar that generates L.

Example:

Context-Free Language (CFL)
 Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},

P = {1: S  aSb, 2: S  }

S   [2]
S  aSb [1]  ab [2]
S  aSb [1]  aaSbb [1]  aabb [2]

L(G)

9/50

Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free

grammar that generates L.

Example:

Context-Free Language (CFL)
 Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},

P = {1: S  aSb, 2: S  }

S   [2]
S  aSb [1]  ab [2]
S  aSb [1]  aaSbb [1]  aabb [2] …

L(G) = {anbn: n  0}

9/50

Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free

grammar that generates L.

Example:

L = {anbn: n  0} is a CFL.

Context-Free Language (CFL)
 Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},

P = {1: S  aSb, 2: S  }

S   [2]
S  aSb [1]  ab [2]
S  aSb [1]  aaSbb [1]  aabb [2] …

L(G) = {anbn: n  0}

9/50

Rule Tree
• Rule tree graphically represents a rule

1) A  : 2) A  X1X2…Xn:
A



A

X1 X2 … Xn

• Derivation tree corresponding to a derivation

S  …

  U1U2…Um AV1V2…Vn

S

U1 U2…Um V1 V2 …Vn

… …

…

…

…

…

A

10/50

Rule Tree
• Rule tree graphically represents a rule

1) A  : 2) A  X1X2…Xn:
A



A

X1 X2 … Xn

• Derivation tree corresponding to a derivation

S  …

  U1U2…Um AV1V2…Vn

S

U1 U2…Um V1 V2 …Vn

… …

…

…

…

…

Rule tree

corresponding

to A  x
x

A

10/50

  U1U2…Um x V1V2…Vn

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  E + T * F [3]

T

F

*

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  E + F * F [4]

F

  E + T * F [3]

T

F

*

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  E + F * F [4]

F

  E + i * F [6]

i

  E + T * F [3]

T

F

*

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  T + i * F [2]
T

  E + F * F [4]

F

  E + i * F [6]

i

  E + T * F [3]

T

F

*

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  T + i * F [2]
T

  E + F * F [4]

F

  E + i * F [6]

i

  T + i * i [6]

i

  E + T * F [3]

T

F

*

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  T + i * F [2]
T

  F + i * i [4]

F

  E + F * F [4]

F

  E + i * F [6]

i

  T + i * i [6]

i

  E + T * F [3]

T

F

*

11/50

Derivation Tree: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Derivation: Derivation tree:

E  E + T [1] E

E T

+

  T + i * F [2]
T

  F + i * i [4]

F

  i + i * i [6] i

  E + F * F [4]

F

  E + i * F [6]

i

  T + i * i [6]

i

  E + T * F [3]

T

F

*

11/50

Leftmost Derivation
During a leftmost derivation step, the

leftmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let

u  T*, v  (N  T)*. Let p = A  x  P be a

rule. Then, uAv directly derives uxv in the

leftmost way according to p in G, written as

uAv lm uxv [p]

Note: We define lm
+ and lm

* by analogy with +

and *, respectively.

Gist:

12/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

T

 lm T + T [2]

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

F

 lm F + T [4]

T

 lm T + T [2]

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

F

 lm F + T [4]

T

 lm T + T [2]

i

 lm i + T [6]

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

F

 lm F + T [4]

T

 lm T + T [2]

i

 lm i + T [6] T

F

*

 lm i + T * F [3]

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

F

 lm F + T [4]

T

 lm T + T [2]

i

 lm i + T [6] T

F

*

 lm i + T * F [3]

F lm i + F * F [4]

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

F

 lm F + T [4]

T

 lm T + T [2]

i

 lm i + T [6] T

F

*

 lm i + T * F [3]

F lm i + F * F [4]

i
 lm i + i * F [6]

13/50

Leftmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Leftmost derivation: Derivation tree:

E lm E + T [1] E

E T

+

F

 lm F + T [4]

T

 lm T + T [2]

i

 lm i + T [6] T

F

*

 lm i + T * F [3]

F lm i + F * F [4]

i
 lm i + i * F [6]

i lm i + i * i [6]

13/50

Rightmost Derivation

Definition: Let G = (N, T, P, S) be a CFG, let

u  (N  T)*, v  T*. Let p = A  x  P be a

rule. Then, uAv directly derives uxv in the

rightmost way according to p in G, written as

uAv rm uxv [p]

Note: We define rm
+ and rm

* by analogy with +

and *, respectively.

During a rightmost derivation step, the

rightmost nonterminal is rewritten.

Gist:

14/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

 rm E + T * i [6]

i

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

 rm E + F * i [4]

F

 rm E + T * i [6]

i

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

 rm E + F * i [4]

F

 rm E + i * i [6]

i

 rm E + T * i [6]

i

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

 rm E + F * i [4]

F

T

 rm T + i * i [2]

 rm E + i * i [6]

i

 rm E + T * i [6]

i

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

 rm E + F * i [4]

F

T

 rm T + i * i [2]

 rm E + i * i [6]

i

F
 rm F + i * i [4]

 rm E + T * i [6]

i

15/50

Rightmost Derivation: Example
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T, 3: T  T*F,

 4: T  F, 5: F  (E), 6: F  i }

Rightmost derivation: Derivation tree:

E rm E + T [1] E

E T

+

 rm E + T * F [3]

T

F

*

 rm E + F * i [4]

F

T

 rm T + i * i [2]

 rm E + i * i [6]

i

F
 rm F + i * i [4]

 rm E + T * i [6]

i i rm i + i * i [6]

15/50

Derivations: Summary
• Let A  x  P be a rule.

1) Derivation:

 Let u, v  (N  T)* : uAv  uxv
 Note: Any nonterminal is rewritten

2) Leftmost derivation:

 Let u  T*, v  (N  T)* : uAv lm uxv
 Note: Leftmost nonterminal is rewritten

3) Rightmost derivation:

 Let u  (N  T)*, v  T* : uAv rm uxv
 Note: Rightmost nonterminal is rewritten

16/50

Reduction of the Number of Derivations

Theorem: Let G = (N, T, P, S) be a CFG.

The next three languages coincide

(1) {w: w  T*, S lm
* w}

(2) {w: w  T*, S rm
* w}

(3) {w: w  T*, S * w} = L(G)

 Gist: Without any loss of generality, we can

consider only leftmost or rightmost

derivations.

17/50

Introduction to Ambiguity

Theory:   Practice: 

Theory:   Practice: 

Gexpr2 = (N, T, P, E), where

N = {E}, T = {i, +, *, (,)},

P = { 1: E  E+E, 2: E  E*E,

 3: E  (E), 4: E  i }

Gexpr1 = (N, T, P, E), where

N = {E, F, T}, T = {i, +, *, (,)},

P = { 1: E  E+T, 2: E  T,

 3: T  T*F, 4: T  F,

 5: F  (E), 6: F  i }

E

E T

+

T

F

*

F

T

i

F

i i

E

E E

+ * i i i

E E

Improper during compilation

E

E E

+ * i i i

E E

Note: L(Gexpr1) = L(Gexpr2)

18/50

Grammatical Ambiguity
Definition: Let G = (N, T, P, S) be a CFG.
If there exists x  L(G) with more than one
derivation tree, then G is ambiguous;
otherwise, G is unambiguous.

Definition: A CFL, L, is inherently ambiguous
if L is generated by no unambiguous grammar.

Example:
• Gexpr1 is unambiguous, because for every x  L(Gexpr1)
there exists only one derivation tree
• Gexpr2 is ambiguous, because for i+i*i  L(Gexpr2)
there exist two derivation trees
• Lexpr = L(Gexpr1) = L(Gexpr2) is not inherently ambiguous
because Gexpr1 is unambiguous

19/50

Pushdown Automata (PDA)

Am A1 A2 … ai an … a1 a2 …

Read-write head
Read head

Finite

State

Control

Pushdown: Input tape:

top

 Gist: An FA extended by a pushdown store.

move of head

20/50

Pushdown Automata: Definition
Definition: A pushdown automaton (PDA) is

a 7-tuple M = (Q, , , R, s, S, F), where

• Q is a finite set of states

•  is an input alphabet

•  is a pushdown alphabet

• R is a finite set of rules of the form: Apa  wq

 where A  , p, q  Q, a    {}, w  *

• s  Q is the start state

• S   is the start pushdown symbol

• F  Q is a set of final states

21/50

Notes on PDA Rules

•Strictly mathematically, R is a finite relation

 from   Q  (  {}) to *  Q

• Instead of (Apa, wq)  R, however, we write

Apa  wq  R

Mathematical note on rules:

22/50

Notes on PDA Rules

• Interpretation of Apa  wq: if the current state

is p, current input symbol is a, and the topmost

symbol on the pushdown is A, then M can read

a, replace A with w and change state p to q.

• Note: if a = , no symbol is read

•Strictly mathematically, R is a finite relation

 from   Q  (  {}) to *  Q

• Instead of (Apa, wq)  R, however, we write

Apa  wq  R

Mathematical note on rules:

22/50

represents q  Q

represents the initial state s  Q

represents a final state f  F

denotes Apa  wq  R

q

s

f

p q A/w, a

Graphical Representation

23/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

where:

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

where:

p

q

s
• Q = {s, p, q, f};

f

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

p

q

s
• Q = {s, p, q, f};

f

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S}; p

q

s
• Q = {s, p, q, f};

f

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S}; p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

apb  q,

a/, b

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

apb  q,

a/, b

aqb  q,
a/, b

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

apb  q,

a/, b

Sq  f} S/, 
aqb  q,

a/, b

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

apb  q,

a/, b

Sq  f} S/, 
aqb  q,

a/, b

24/50

Graphical Representation: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa  Sap,

S/Sa, a

apb  q,

a/, b

Sq  f} S/, 

• F = {f}

aqb  q,
a/, b

24/50

PDA Configuration

Definition: Let M = (Q, , , R, s, S, F) be a PDA.

A configuration of M is a string   *Q*

 Gist: Instantaneous description of PDA

Am A1 A2 … ai an … a1 a2 …

Read-write head

Read head

Finite State

Control

Pushdown: Input tape:

p = current state

25/50

PDA Configuration

Definition: Let M = (Q, , , R, s, S, F) be a PDA.

A configuration of M is a string   *Q*

 Gist: Instantaneous description of PDA

Configuration

Am A1 A2 … ai an … a1 a2 …

Read-write head

Read head

Finite State

Control

Pushdown: Input tape:

p = current state

p

25/50

Move

Definition: Let xApay and xwqy be two configurations

of a PDA, M, where

x, w  *, A  , p, q  Q, a    {}, and y  *.

Let r = Apa  wq  R be a rule. Then, M makes

a move from xApay to xwqy according to r, written as

xApay |– xwqy [r] or, simply, xApay |– xwqy.

Note: if a = , no input symbol is read

 Gist: A computational step made by a PDA

Configuration: a
p A y x

26/50

Move

Definition: Let xApay and xwqy be two configurations

of a PDA, M, where

x, w  *, A  , p, q  Q, a    {}, and y  *.

Let r = Apa  wq  R be a rule. Then, M makes

a move from xApay to xwqy according to r, written as

xApay |– xwqy [r] or, simply, xApay |– xwqy.

Note: if a = , no input symbol is read

Rule: Apa  wq

 Gist: A computational step made by a PDA

Configuration: a
p A y x

26/50

Move

Definition: Let xApay and xwqy be two configurations

of a PDA, M, where

x, w  *, A  , p, q  Q, a    {}, and y  *.

Let r = Apa  wq  R be a rule. Then, M makes

a move from xApay to xwqy according to r, written as

xApay |– xwqy [r] or, simply, xApay |– xwqy.

Note: if a = , no input symbol is read

Rule: Apa  wq

 Gist: A computational step made by a PDA

Configuration: a
p A y x

New configuration: q

…

w

…

y x

26/50

Definition: Let  be a configuration. M makes

zero moves from  to ; in symbols,

  |–0  [] or, simply,  |–0 

Definition: Let 0, 1, ..., n be a sequence of

configurations, n  1, and i-1 |– i [ri], ri  R,

for all i = 1, ..., n; that is,

0 |– 1 [r1] |– 2 [r2] … |– n [rn]

Then M makes n moves from 0 to n,
0 |–

n n [r1... rn] or, simply, 0 |–
n n

Sequence of Moves 1/2
 Gist: Several consecutive computational steps

27/50

If 0 |–
n n [] for some n  1, then

 0 |–
+ n [] or, simply, 0 |–

+ n

If 0 |–
n n [] for some n  0, then

 0 |–
* n [] or, simply, 0 |–

* n

Example: Consider

AApabc |– ABqbc [1: Apa  Bq], and

 ABqbc |– ABCrc [2: Bqb  BCr].

Then, AApabc |–2 ABCrc [1 2],

 AApabc |–+ ABCrc [1 2],

 AApabc |–* ABCrc [1 2]

Sequence of Moves 2/2

28/50

Definition: Let M = (Q, , , R, s, S, F) be a PDA.

1) The language that M accepts by final state,

 denoted by L(M)f , is defined as

 L(M)f = {w: w  *, Ssw |–* zf, z  *, f  F}

2) The language that M accepts by empty pushdown,

denoted by L(M), is defined as

 L(M) = {w: w  *, Ssw |–* zf, z = , f  Q}

3) The language that M accepts by final state and

empty pushdown, denoted by L(M)f, is defined as

L(M)f = {w: w  *, Ssw |–* zf, z = , f  F}

Accepted Language: Three Types

29/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb

S s b a a b

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb

Rule: Ssa  Sap
S s b a a b

p a S a b b

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb

Rule: Ssa  Sap
S s b a a b

p a S a b b

p S a a b b

Rule: apa  aap

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb |– Saqb

Rule: Ssa  Sap
S s b a a b

p a S a b b

q S a b

p S a a b b

Rule: apa  aap

Rule: apb  q

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq

Rule: Ssa  Sap
S s b a a b

p a S a b b

q S a b

p S a a b b

Rule: apa  aap

Rule: apb  q

Rule: aqb  q

S q

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq |– f

Rule: Ssa  Sap
S s b a a b

p a S a b b

q S a b

p S a a b b

Rule: apa  aap

Rule: apb  q

Rule: aqb  q

Rule: Sq  f
S q

f

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq |– f

Rule: Ssa  Sap
S s b a a b

p a S a b b

q S a b

p S a a b b

Rule: apa  aap

Rule: apb  q

Rule: aqb  q

Rule: Sq  f
S q

f
Empty

pushdown

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq |– f

Rule: Ssa  Sap
S s b a a b

p a S a b b

q S a b

p S a a b b

Rule: apa  aap

Rule: apb  q

Rule: aqb  q

Rule: Sq  f
S q

f
Answer: YES

Empty

pushdown

Final state

30/50

PDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, S};

apa  aap,

• Q = {s, p, q, f};

• R = {Ssa  Sap,

apb  q,

Sq  f}

• F = {f}

aqb  q,

Question: aabb  L(M)f?

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq |– f

Rule: Ssa  Sap
S s b a a b

p a S a b b

q S a b

p S a a b b

Rule: apa  aap

Rule: apb  q

Rule: aqb  q

Rule: Sq  f
S q

f
Answer: YES

Empty

pushdown

Final state

Note: L(M)f = L(M) = L(M)f = {anbn: n  1}

30/50

Three Types of Acceptance: Equivalence

Theorem:
• L = L(Mf)f for a PDA Mf  L = L(Mf)f for a PDA Mf

• L = L(M) for a PDA M  L = L(Mf)f for a PDA Mf

• L = L(Mf)f for a PDA Mf  L = L(M) for a PDA M

Note: There exist these conversions:

PDA Mf that accept L

by final state and

empty pushdown

PDA Mf that accept L

by final state

PDA M that accept L

by empty pushdown

31/50

Deterministic PDA (DPDA)
 Gist: Deterministic PDA makes no more than

one move from any configuration.

Definition: Let M = (Q, , , R, s, S, F) be a

PDA. M is a deterministic PDA if for each rule

Apa  wq  R, it holds that R – {Apa  wq}

contains no rule with the left-hand side equal

to Apa or Ap.

Illustration: Configuration:

a
p A y x

32/50

Deterministic PDA (DPDA)
 Gist: Deterministic PDA makes no more than

one move from any configuration.

Definition: Let M = (Q, , , R, s, S, F) be a

PDA. M is a deterministic PDA if for each rule

Apa  wq  R, it holds that R – {Apa  wq}

contains no rule with the left-hand side equal

to Apa or Ap.

Illustration: Configuration:

a
p A y x

Ap  w1q1

32/50

Deterministic PDA (DPDA)
 Gist: Deterministic PDA makes no more than

one move from any configuration.

Definition: Let M = (Q, , , R, s, S, F) be a

PDA. M is a deterministic PDA if for each rule

Apa  wq  R, it holds that R – {Apa  wq}

contains no rule with the left-hand side equal

to Apa or Ap.

Illustration: Configuration:

a
p A y x

Ap  w1q1

Apa  w2q2

No more that one rule of the forms

32/50

PDAs are Stronger than DPDAs
Theorem: There exists no DPDA Mf that accepts

L = {xy: x, y  *, y = reversal(x)}

Illustration:

Proof: See page 431 in [Meduna: Automata and Languages]

33/50

PDAs are Stronger than DPDAs
Theorem: There exists no DPDA Mf that accepts

L = {xy: x, y  *, y = reversal(x)}

Illustration:

Proof: See page 431 in [Meduna: Automata and Languages]

33/50

The family of deterministic

CFLsthe languages

accepted by DPDAs

PDAs are Stronger than DPDAs
Theorem: There exists no DPDA Mf that accepts

L = {xy: x, y  *, y = reversal(x)}

Illustration:

Proof: See page 431 in [Meduna: Automata and Languages]

33/50

The family of

languages accepted

by PDAs

The family of deterministic

CFLsthe languages

accepted by DPDAs

PDAs are Stronger than DPDAs
Theorem: There exists no DPDA Mf that accepts

L = {xy: x, y  *, y = reversal(x)}

Illustration:

Proof: See page 431 in [Meduna: Automata and Languages]

33/50

The family of

languages accepted

by PDAs

The family of deterministic

CFLsthe languages

accepted by DPDAs


L = {xy: x, y  *, y = reversal(x)}

Extended PDA (EPDA)
 Gist: The pushdown top of an EPDA represents a

string rather than a single symbol.

Definition: An Extended Pushdown automaton

(EPDA) is a 7-tuple M = (Q, , , R, s, S, F),

where Q, , , s, S, F are defined as in an PDA and

R is a finite set of rules of the form: vpa  wq,

where v, w  *, p, q  Q, a    {}

Illustration:
Pushdown of PDA: Pushdown of EPDA:

A x x v

PDA has a single symbols as the

pushdown top

EPDA has a string as the

pushdown top

34/50

Move in EPDA
Definition: Let xvpay and xwqy be two configurations

of an EPDA, M, where x, v, w  *, p, q  Q, a  

 {}, and y  *. Let r = vpa  wq  R be a rule.

Then, M makes a move from xvpay to xwqy according

to r, written as xvpay |– xwqy [r] or xvpay |– xwqy.

Configuration: a
p y x v

35/50

Move in EPDA
Definition: Let xvpay and xwqy be two configurations

of an EPDA, M, where x, v, w  *, p, q  Q, a  

 {}, and y  *. Let r = vpa  wq  R be a rule.

Then, M makes a move from xvpay to xwqy according

to r, written as xvpay |– xwqy [r] or xvpay |– xwqy.

Rule: vpa  wq

Configuration: a
p y x v

35/50

Move in EPDA
Definition: Let xvpay and xwqy be two configurations

of an EPDA, M, where x, v, w  *, p, q  Q, a  

 {}, and y  *. Let r = vpa  wq  R be a rule.

Then, M makes a move from xvpay to xwqy according

to r, written as xvpay |– xwqy [r] or xvpay |– xwqy.

Rule: vpa  wq

Configuration:

New configuration: q

…

w

…

y x

a
p y x v

35/50

Move in EPDA
Definition: Let xvpay and xwqy be two configurations

of an EPDA, M, where x, v, w  *, p, q  Q, a  

 {}, and y  *. Let r = vpa  wq  R be a rule.

Then, M makes a move from xvpay to xwqy according

to r, written as xvpay |– xwqy [r] or xvpay |– xwqy.

Rule: vpa  wq

Configuration:

New configuration: q

…

w

…

y x

Note: |–n, |–+, |–*, L(M)f , L(M) , and L(M)f are defined

analogically to the corresponding definitions for PDA.

a
p y x v

35/50

EPDA: Example
M = (Q, , , R, s, S, F)

where:

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

where:
s

• Q = {s, f};

f

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:
s

• Q = {s, f};

f

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f • R = { sa  as,

/a, a

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f • R = { sa  as,

/a, a

 sb  bs,

/b, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

 s  Cs,

/C, 

• R = { sa  as,

/a, a

 sb  bs,

/b, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

 s  Cs,

/C, 

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

 s  Cs,

/C, 

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba
|– SabCsba

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba
|– SabCsba |– SaCsa

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba
|– SabCsba |– SaCsa
|– SCs

Question: abba  Lf(M)?

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba
|– SabCsba |– SaCsa

|– f |– SCs

Question: abba  Lf(M)?

Answer: YES

36/50

EPDA: Example
M = (Q, , , R, s, S, F)

•  = {a, b};

where:

•  = {a, b, S, C};

s
• Q = {s, f};

f

• F = {f}

 s  Cs,

/C, 

SC/, 

SCs  f }

aCsa  Cs,

aC/C, a

• R = { sa  as,

/a, a

 sb  bs,

/b, b

bCsb  Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba
|– SabCsba |– SaCsa

|– f |– SCs

Question: abba  Lf(M)?

Answer: YES

Note: L(M)f = L(M) = L(M)f = {xy: x, y  *, y = reversal(x)}

36/50

Three Types of Acceptance: Equivalence

Theorem:
• L = L(Mf)f for an EPDA Mf  L = L(Mf)f for an EPDA Mf

• L = L(M) for an EPDA M  L = L(Mf)f for an EPDA Mf

• L = L(Mf)f for an EPDA Mf  L = L(M) for an EPDA M

Note: There exist these conversion:

EPDA Mf that accept L

by final state and

empty pushdown

EPDA Mf that accept L

by final state

EPDA M that accept L

by empty pushdown

37/50

EPDAs and PDAs are Equivalent
Theorem: For every EPDA M, there is a PDA M’,

 and L(M)f = L(M’)f.

Illustration:

Proof: See page 419 in [Meduna: Automata and Languages]

38/50

EPDAs and PDAs are Equivalent
Theorem: For every EPDA M, there is a PDA M’,

 and L(M)f = L(M’)f.

Illustration:

The family of

languages accepted

by EPDAs

Proof: See page 419 in [Meduna: Automata and Languages]

38/50

EPDAs and PDAs are Equivalent
Theorem: For every EPDA M, there is a PDA M’,

 and L(M)f = L(M’)f.

Illustration:

=
The family of

languages accepted

by EPDAs

The family of

languages accepted

by PDAs

Proof: See page 419 in [Meduna: Automata and Languages]

38/50

EPDAs and PDAs as Parsing Models for CFGs

 Gist: An EPDA or a PDA can simulate the

construction of a derivation tree for a CFG

• Two basic approaches:
1) Top-Down Parsing 2) Bottom-Up Parsing

From S towards

the input string

From the input

string towards S

S

Input string

S

Input string

39/50

EPDAs as Models of Bottom-Up Parsers 1/2

 Gist: An EPDA M underlies a bottom-up parser
1) M contains shift rules that copy the input symbols
 onto the pushdown:

a
s y x

40/50

EPDAs as Models of Bottom-Up Parsers 1/2

 Gist: An EPDA M underlies a bottom-up parser
1) M contains shift rules that copy the input symbols
 onto the pushdown:

a
s y x for every a  :

add sa  as to R;
a

s y x

40/50

EPDAs as Models of Bottom-Up Parsers 1/2

 Gist: An EPDA M underlies a bottom-up parser
1) M contains shift rules that copy the input symbols
 onto the pushdown:

a
s y x for every a  :

add sa  as to R;
a

s y x

2) M contains reduction rules that simulate the
 application of a grammatical rule in reverse:

s y x

40/50

EPDAs as Models of Bottom-Up Parsers 1/2

 Gist: An EPDA M underlies a bottom-up parser
1) M contains shift rules that copy the input symbols
 onto the pushdown:

a
s y x for every a  :

add sa  as to R;

for every A  x  P in G:

add xs  As to R;

a
s y x

2) M contains reduction rules that simulate the
 application of a grammatical rule in reverse:

s y x

A
s y

40/50

EPDAs as Models of Bottom-Up Parsers 1/2

 Gist: An EPDA M underlies a bottom-up parser
1) M contains shift rules that copy the input symbols
 onto the pushdown:

a
s y x for every a  :

add sa  as to R;

for every A  x  P in G:

add xs  As to R;

a
s y x

2) M contains reduction rules that simulate the
 application of a grammatical rule in reverse:

s y x

A
s y

3) M also contains the rule #Ss  f that takes M to a
 final state f

40/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

start pushdown symbol
s x y z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x

start pushdown symbol
s x y z

s x y z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y

start pushdown symbol
s x y z

s x y z

s x y z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y

start pushdown symbol
s x y z

s x y z

s x y z
Rule: B  y

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y

start pushdown symbol

B

s x y z

s x y z

s x y z

B # s x z
Rule: B  y

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y z

start pushdown symbol

B

s x y z

s x y z

s x y z

B # s x z
Rule: B  y

B # s x z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y z

start pushdown symbol

B

s x y z

s x y z

s x y z

B # s x z
Rule: B  y

Rule: C  z

B # s x z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y z

start pushdown symbol

B C

s x y z

s x y z

s x y z

B # s x z
Rule: B  y

Rule: C  z

C B # s x

B # s x z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

EPDAs as Models of Bottom-Up Parsers 2/2

x y z

start pushdown symbol

B C

s x y z

s x y z

s x y z

B # s x z
Rule: B  y

Rule: C  z

Rule: S xBC

C B # s x

B # s x z

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

S

EPDAs as Models of Bottom-Up Parsers 2/2

x y z

start pushdown symbol

B C

s x y z

s x y z

s x y z

B # s x z
Rule: B  y

Rule: C  z

Rule: S xBC

C B # s x

B # s x z

S # s

Bottom-up construction of a derivation tree:

41/50

Derivation tree:

S

EPDAs as Models of Bottom-Up Parsers 2/2

#Ss  f  R

x y z

start pushdown symbol

B C

s x y z

s x y z

s x y z

B # s x z

f

Rule: B  y

Rule: C  z

Rule: S xBC

C B # s x

B # s x z

S # s

Bottom-up construction of a derivation tree:

41/50

• Input: CFG G = (N, T, P, S)

• Output: EPDA M = (Q, , , R, s, #, F); L(G) = L(M)f

• Method:

• Q := {s, f};

•  := T;

•  := N  T  {#};

• Construction of R:

• for every a  , add sa  as to R;

• for every A  x  P, add xs  As to R;

• add #Ss  f to R;

• F := {f};

Algorithm: From CFG to EPDA

42/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

Q = {s, f};

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

Q = {s, f};  = T = {(,)};

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

R = {

“(”  T

s( (s,

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

R = {

“(”  T

s( (s, s) )s,

“)”  T

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

S  (S)  P

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

R = {

“(”  T

s( (s, s) )s, (S)s  Ss,

“)”  T

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

S  (S)  P

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

R = {

“(”  T

s( (s, s) )s, (S)s  Ss, ()s  Ss,

S  ()  P “)”  T

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

S  (S)  P

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

R = {

“(”  T

s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

S  ()  P “)”  T

shift rules reduction rules

43/50

From CFG to EPDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, #, F) where:

Objective: An EPDA M such that L(G) = L(M)f

S  (S)  P

Q = {s, f};  = T = {(,)};  = N  T  {#} = {S, (,), #}

R = {

“(”  T

s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

S  ()  P “)”  T

shift rules reduction rules

F = {f}

43/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

s) (()

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

s) (() (

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

s) (()

s) (()

Rule: s( (s

((

(

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

s) (()

s) (()

Rule: s( (s

Rule: s) )s

s) (() (()

((

(

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

s) (()

s) (()

Rule: s( (s

Rule: s) )s

s) (()

s) (S

Rule: ()s  S

(()

S

(()

((

(

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

s) (()

s) (()

Rule: s( (s

Rule: s) )s

s) (()

Rule: s) )s

s) (S

Rule: ()s  S

s) (S (())

S

(()

S

(()

((

(

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

(())

S

S

s) (()

s) (()

Rule: s( (s

Rule: s) )s

s) (()

Rule: s) )s

s) (S

Rule: (S)  S

Rule: ()s  S

s) (S

s S

(())

S

(()

S

(()

((

(

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

f

(())

S

S

s) (()

s) (()

Rule: s( (s

Rule: s) )s

s) (()

Rule: s) )s

s) (S

Rule: (S)  S

Rule: #Ss  f

Rule: ()s  S

s) (S

s S

(())

S

(()

S

(()

((

(

44/50

From CFG to EPDA: Example 2/2
M = (Q, , , R, s, #, F), where:

Q = {s, f},  = T = {(,)},  = {(,), S, #}, F = {f}

R = {s( (s, s) )s, (S)s  Ss, ()s  Ss, #Ss  f }

Question: (())  L(M)f?

Rule: s( (s

s) (()

f

Answer: YES

(())

S

S

s) (()

s) (()

Rule: s( (s

Rule: s) )s

s) (()

Rule: s) )s

s) (S

Rule: (S)  S

Rule: #Ss  f

Rule: ()s  S

s) (S

s S

(())

S

(()

S

(()

((

(

Final state

44/50

PDAs as Models of Top-Down Parsers 1/2

1) M contains popping rules that pops the top symbol from the
 pushdown and reads the input symbol if both coincide:

a
s y x a

 Gist: An PDA M underlies a top-down parser

45/50

PDAs as Models of Top-Down Parsers 1/2

1) M contains popping rules that pops the top symbol from the
 pushdown and reads the input symbol if both coincide:

for every a  :

add asa  s to R;
x y

s

a
s y x a

 Gist: An PDA M underlies a top-down parser

45/50

PDAs as Models of Top-Down Parsers 1/2

1) M contains popping rules that pops the top symbol from the
 pushdown and reads the input symbol if both coincide:

for every a  :

add asa  s to R;
x y

s

2) M contains expansion rules that simulate the
 application of a grammatical rule:

A
s y

a
s y x a

 Gist: An PDA M underlies a top-down parser

45/50

PDAs as Models of Top-Down Parsers 1/2

1) M contains popping rules that pops the top symbol from the
 pushdown and reads the input symbol if both coincide:

for every a  :

add asa  s to R;
x y

s

2) M contains expansion rules that simulate the
 application of a grammatical rule:

A
s y

s y an … a1

a
s y x a

 Gist: An PDA M underlies a top-down parser

45/50

PDAs as Models of Top-Down Parsers 1/2

1) M contains popping rules that pops the top symbol from the
 pushdown and reads the input symbol if both coincide:

for every a  :

add asa  s to R;
x y

s

2) M contains expansion rules that simulate the
 application of a grammatical rule:

A
s y

s y an … a1

a
s y x a

for every A  a1 …an  P in G,

add As  an …a1s to R;

= reversal(a1 …an)

 Gist: An PDA M underlies a top-down parser

45/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S s a1 … ak b1 … bl c1 … cm

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S s a1 … ak b1 … bl c1 … cm

S  a1..akBC

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

S  a1..akBC

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

OK

S  a1..akBC

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

OK

S  a1..akBC

B  b1..bl

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

b1..bl

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

C s b1 … bl c1 … cm bl … b1

OK

S  a1..akBC

B  b1..bl

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

b1..bl

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

C s b1 … bl c1 … cm bl … b1

C s c1 … cm

OK OK

S  a1..akBC

B  b1..bl

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

b1..bl

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

C s b1 … bl c1 … cm bl … b1

C s c1 … cm

OK OK

S  a1..akBC

B  b1..bl

C  c1..cm

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

b1..bl c1..cm

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

C s b1 … bl c1 … cm bl … b1

C s c1 … cm

s c1 … cm cm … c1

OK OK

S  a1..akBC

B  b1..bl

C  c1..cm

46/50

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

S

a1..ak

B C

b1..bl c1..cm

S s a1 … ak b1 … bl c1 … cm

C B s ak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

C s b1 … bl c1 … cm bl … b1

C s c1 … cm

s c1 … cm cm … c1

s
OK OK OK

S  a1..akBC

B  b1..bl

C  c1..cm

Empty

pushdown

46/50

• Input: CFG G = (N, T, P, S)

• Output: PDA M = (Q, , , R, s, S, F); L(G) = L(M)
• Method:

• Q := {s};

•  := T;

•  := N  T;

• Construction of R:

• for every a  , add asa  s to R;

• for every A  x  P, add As  ys to R,

 where y = reversal(x);

• F := ;

Algorithm: From CFG to PDA

47/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

Q = {s};

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

Q = {s};  = T = {(,)};

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

R = {

“(”  T

(s( s,

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

R = {

“(”  T

(s( s,)s)  s,

“)”  T

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

S  (S)  P

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

R = {

“(”  T

(s( s,)s)  s, Ss )S(s,

“)”  T

rev

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

S  (S)  P

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

R = {

“(”  T

(s( s,)s)  s, Ss )S(s, Ss )(s }

S  ()  P “)”  T

rev rev

48/50

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

S  (S)  P

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

R = {

“(”  T

(s( s,)s)  s, Ss )S(s, Ss )(s }

S  ()  P “)”  T

rev rev

48/50

popping rules expansion rules

From CFG to PDA: Example 1/2
• G = (N, T, P, S), where:

 N = {S}, T = {(,)}, P = {S  (S), S  ()}

M = (Q, , , R, s, S, F) where:

Objective: An PDA M such that L(G) = L(M)

S  (S)  P

Q = {s};  = T = {(,)};  = N  T = {S, (,)}

R = {

“(”  T

(s( s,)s)  s, Ss )S(s, Ss )(s }

S  ()  P “)”  T

F = 

rev rev

48/50

popping rules expansion rules

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

S S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s

S s) (()) (() S

S

S S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s

Rule: (s( s

S s) (()) (

S s) ())

() S

S

S

() S

S

S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s

Rule: (s( s

Rule: Ss )(s

S s) (()) (

S s) ())

s) ())) (

() S

S

S

() S

S

(())

S

S

S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s
(())

S

S

Rule: (s( s

Rule: Ss )(s

Rule: (s( s

S s) (()) (

S s) ())

s) ())) (

s))))

() S

S

S

() S

S

(())

S

S

S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s
(())

S

S

Rule: (s( s

Rule: Ss )(s

Rule:)s)  s

Rule: (s( s

S s) (()) (

S s) ())

s) ())) (

s))))

s)) () S

S

S

() S

S (())

S

S

(())

S

S

S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s
(())

S

S

Rule: (s( s

Rule: Ss )(s

Rule:)s)  s

Rule:)s)  s

Rule: (s( s

S s) (()) (

S s) ())

s) ())) (

s))))

s))

s

() S

S

S

() S

S (())

S

S

(())

S

S

(())

S

S

S s) (()

49/50

From CFG to PDA: Example 2/2
M = (Q, , , R, s, S, F), where:

Q = {s},  = T = {(,)},  = {(,), S}, F = 

P = {(s( s,)s)  s, Ss )S(s, Ss )(s }

Question: (())  L(M)?

Rule: Ss )S(s

Answer: YES

(())

S

S

Rule: (s( s

Rule: Ss )(s

Rule:)s)  s

Rule:)s)  s

Rule: (s( s

Empty

pushdown

S s) (()) (

S s) ())

s) ())) (

s))))

s))

s

() S

S

S

() S

S (())

S

S

(())

S

S

(())

S

S

S s) (()

49/50

Models for Context-free Languages

Proof: See the previous algorithm.

Theorem: For every CFG G, there is an PDA

 M such that L(G) = L(M).

Proof: See page 486 in [Meduna: Automata and Languages]

Theorem: For every PDA M, there is a CFG

 G such that L(M) = L(G).

Conclusion: The fundamental models for

 context-free languages are
1) Context-free grammars 2) Pushdown automata

50/50

