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Context-Free Grammar (CFG) 
 Gist:  A grammar is based on a finite set of 

grammatical rules, by which it 
generates strings of its language. 

Illustration: 

Grammar G: 

Start nonterminal 

Terminals:       a, b, c, d 

Nonterminals:  A, B,  S 

S  

Rules:      S  AB,   
        A  aAb, 
        A  ab, 
        B  bBa, 
        B  ba 
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Context-Free Grammar: Definition 
Definition: A context-free grammar (CFG) is a 

quadruple G = (N, T, P, S), where 

• N is an alphabet of nonterminals 

• T is an alphabet of terminals, N  T =  

• P is a finite set of rules of the form  A  x, 

   where A  N, x  (N  T)* 

• S  N is the start nonterminal 

• Strictly mathematically, P is a relation from N to (N  T)* 

• Instead of (A, x)  P, we write A  x  P 

• A  x means that A can be replaced with x 

• A   is called -rule 

Mathematical Note on Rules: 
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Convention 
•  A, … , F, S : nonterminals 

•  S   : the start nonterminal 

•  a, … , d : terminals 

•  U, … , Z : members of (N  T)  

•  u, … , z : members of (N  T)* 

•     : sequence of productions 

4/50 

A subset of rules of the form: 

A  x1, A  x2 , …, A  xn  

can be simply written as: 

A  x1 | x2 | … | xn  



A 

Derivation Step 

Definition: Let G = (N, T, P, S) be a CFG. Let  

u, v  (N  T)* and p = A  x  P. Then, uAv 

directly derives uxv according to p in G, written 

as uAv  uxv [p] or, simply, uAv  uxv. 

Note: If uAv  uxv in G, we also say that G makes a 

derivation step from uAv to uxv. 

 Gist: A change of a string by a rule. 

v u 
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Definition: Let u  (N  T)*. G makes a  

zero-step derivation from u to u; in symbols, 

u 0 u [] or, simply, u 0 u  

Definition: Let u0,…,un  (N  T)*, n  1, and 

ui-1  ui [pi], pi  P, for all i = 1,…, n; that is 

u0  u1 [p1]  u2 [p2] …  un [pn] 

Then, G makes n derivation steps from u0 to un, 

u0 
n un [p1... pn] or, simply, u0 

n un  

Sequence of Derivation Steps 1/2 
 Gist: Several consecutive derivation steps. 
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If u0 
n un [] for some n  1, then u0 properly 

derives un in G, written as u0 
+ un []. 

If u0 
n un [] for some n  0, then u0 derives 

un in G, written as  u0 
* un []. 

Example: Consider 

aAb   aaBbb [1: A  aBb], and 

aaBbb  aacbb  [2: B  c]. 

Then,  aAb 2 aacbb [1 2],   

  aAb + aacbb [1 2],   

  aAb * aacbb [1 2] 

Sequence of Derivation Steps 2/2 
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Definition: Let G = (N, T, P, S) be a CFG. The 

language generated by G, L(G), is defined as 

L(G) = {w: w  T*, S * w} 

Generated Language 

G = (N, T, P, S), let w = a1a2…an; ai  T for i = 1..n  

G generates a terminal string w by a 

sequence of derivation steps from S to w 

 Gist:  

Illustration: 
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Definition: Let L be a language. L is a context-

free language (CFL) if there exists a context-free 

grammar that generates L. 

Example:  

Context-Free Language (CFL) 
 Gist: A language  generated by a CFG. 

G = (N, T, P, S), where N = {S}, T = {a, b}, 

P = {1: S  aSb, 2: S  } 
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Rule Tree 
• Rule tree graphically represents a rule 

1) A  : 2) A  X1X2…Xn: 
A 

 

A 

X1  X2  …  Xn 

• Derivation tree corresponding to a derivation 

S  … 

 

    U1U2…Um AV1V2…Vn 

S 

U1 U2…Um         V1  V2 …Vn 

… …
 

…
 

…
 

…
 

…
 

A 
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Derivation Tree: Example 
G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (, )}, 

P = { 1: E  E+T, 2: E  T,    3: T  T*F, 

 4: T  F,  5: F  (E),    6: F  i       } 

Derivation:    Derivation tree: 
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Leftmost Derivation 
During a leftmost derivation step, the 

leftmost nonterminal is rewritten. 

Definition: Let G = (N, T, P, S) be a CFG, let 

u  T*, v  (N  T)*. Let p = A  x  P be a 

rule. Then, uAv directly derives uxv in the 

leftmost way according to p in G, written as  

uAv lm uxv [p] 

Note: We define lm
+ and  lm

* by analogy with + 

and *, respectively. 

Gist: 
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Rightmost Derivation 

Definition: Let G = (N, T, P, S) be a CFG, let 

u  (N  T)*, v  T*. Let p = A  x  P be a 

rule. Then, uAv directly derives uxv in the 

rightmost way according to p in G, written as  

uAv rm uxv [p] 

Note: We define rm
+ and  rm

* by analogy with + 

and *, respectively. 

During a rightmost derivation step, the 

rightmost nonterminal is rewritten. 

Gist: 
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Derivations: Summary 
• Let A  x  P be a rule. 

1) Derivation:  

 Let u, v  (N  T)*  : uAv     uxv 
 Note: Any nonterminal is rewritten 

2) Leftmost derivation: 

 Let u  T*, v  (N  T)* : uAv lm uxv  
 Note: Leftmost nonterminal is rewritten 

3) Rightmost derivation:  

 Let u  (N  T)*, v  T* : uAv rm uxv 
 Note: Rightmost nonterminal is rewritten 
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Reduction of the Number of Derivations 

Theorem: Let G = (N, T, P, S) be a CFG. 

The next three languages coincide 

(1) {w: w  T*, S lm
* w} 

(2) {w: w  T*, S rm
* w} 

(3) {w: w  T*, S * w} = L(G)  

 Gist:  Without any loss of generality, we can 

consider only leftmost or rightmost 

derivations. 
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Introduction to Ambiguity 

Theory:   Practice:  

Theory:   Practice:  

Gexpr2 = (N, T, P, E), where 

N = {E}, T = {i, +, *, (, )}, 

P = { 1: E  E+E, 2: E  E*E, 

          3: E  (E),   4: E  i       } 

Gexpr1 = (N, T, P, E), where 

N = {E, F, T}, T = {i, +, *, (, )}, 

P = { 1: E  E+T, 2: E  T,    

 3: T  T*F,   4: T  F, 

 5: F  (E),     6: F  i } 

E 

E T 

+ 

T 

F 

* 

F 

T 

i 

F 

i i 

E 

E E 

+ * i i i 

E E 

Improper during compilation 

E 

E E 

+ * i i i 

E E 

Note: L(Gexpr1) = L(Gexpr2) 
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Grammatical Ambiguity 
Definition: Let G = (N, T, P, S) be a CFG. 
If there exists x  L(G) with more than one 
derivation tree, then G is ambiguous; 
otherwise, G is unambiguous. 

Definition: A CFL, L,  is inherently ambiguous 
if L is generated by no unambiguous grammar. 

Example: 
• Gexpr1 is unambiguous, because for every x  L(Gexpr1) 
there exists only one derivation tree 
• Gexpr2 is ambiguous, because for i+i*i  L(Gexpr2) 
there exist two derivation trees 
• Lexpr = L(Gexpr1) = L(Gexpr2) is not inherently ambiguous 
because Gexpr1 is unambiguous 
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Pushdown Automata (PDA) 

Am A1 A2 … ai an … a1 a2 … 

Read-write head 
Read head 

Finite 

State 

Control 

Pushdown: Input tape: 

top 

 Gist:  An FA extended by a pushdown store. 

move of head 
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Pushdown Automata: Definition 
Definition: A pushdown automaton (PDA) is 

a 7-tuple M = (Q, , , R, s, S, F), where 

• Q is a finite set of states 

•  is an input alphabet 

•  is a pushdown alphabet 

• R is a finite set of rules of the form: Apa  wq 

  where A  , p, q  Q, a    {}, w  * 

• s  Q is the start state 

• S   is the start pushdown symbol 

• F  Q is a set of final states 
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Notes on PDA Rules 

•Strictly mathematically, R is a finite relation 

  from   Q  (  {}) to *  Q 

• Instead of (Apa, wq)  R, however, we write 

Apa  wq  R 

Mathematical note on rules: 
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Notes on PDA Rules 

• Interpretation of Apa  wq: if the current state 

is p, current input symbol is a, and the topmost 

symbol on the pushdown is A, then M can read 

a, replace A with w and change state p to q. 

•  Note: if a = , no symbol is read 

•Strictly mathematically, R is a finite relation 
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represents q  Q  

represents the initial state s  Q  

represents a final state f  F  

denotes Apa  wq  R  

q 

s 

f 

p q A/w, a 

Graphical Representation 
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Graphical Representation: Example 
M = (Q, , , R, s, S, F) 

where: 
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• R = {Ssa  Sap, 

S/Sa, a  

apb  q, 

a/, b  

Sq    f} S/,   

• F = {f} 

aqb  q, 
a/, b  
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PDA Configuration 

Definition: Let M = (Q, , , R, s, S, F) be a PDA. 

A configuration of M is a string   *Q* 

 Gist: Instantaneous description of PDA 

Am A1 A2 … ai an … a1 a2 … 

Read-write head 

Read head 

Finite State 

Control 

Pushdown: Input tape: 

p = current state 
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A configuration of M is a string   *Q* 

 Gist: Instantaneous description of PDA 

Configuration 

Am A1 A2 … ai an … a1 a2 … 

Read-write head 

Read head 

Finite State 

Control 

Pushdown: Input tape: 

p = current state 
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Move 

Definition: Let xApay and xwqy be two configurations 

of a PDA, M, where 

x, w  *, A  , p, q  Q, a    {}, and y  *. 

Let r = Apa  wq  R be a rule. Then,  M makes  

a move from xApay to xwqy according to r, written as 

xApay |– xwqy [r] or, simply,  xApay |– xwqy. 

Note: if a = , no input symbol is read 

 Gist: A computational step made by a PDA 

Configuration: a 
p A y x 
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Note: if a = , no input symbol is read 

Rule: Apa  wq  

 Gist: A computational step made by a PDA 

Configuration: a 
p A y x 

New configuration: q 

… 

w 

… 

y x 
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Definition: Let  be a configuration. M makes 

zero moves from  to ; in symbols, 

  |–0  [] or, simply,  |–0   

Definition: Let 0, 1, ..., n be a sequence of 

configurations, n  1, and i-1  |– i [ri], ri  R, 

for all i = 1, ..., n; that is, 

0  |– 1 [r1] |– 2 [r2] …  |– n [rn] 

Then M makes n moves from 0 to n, 
0  |–

n n [r1... rn] or, simply, 0  |–
n n  

Sequence of Moves 1/2 
 Gist: Several consecutive computational steps 

27/50 



If 0  |–
n n [] for some n  1, then 

  0  |–
+ n [] or, simply,  0  |–

+ n  

If 0  |–
n n [] for some n  0, then 

  0  |–
* n [] or, simply, 0  |–

* n 

Example: Consider  

AApabc  |– ABqbc  [1: Apa  Bq], and 

  ABqbc  |– ABCrc [2: Bqb  BCr]. 

Then,  AApabc |–2 ABCrc [1 2],   

  AApabc |–+ ABCrc [1 2],   

  AApabc |–* ABCrc [1 2] 

Sequence of Moves 2/2 
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Definition: Let M = (Q, , , R, s, S, F) be a PDA.  

1) The language that M accepts by final state,  

 denoted by L(M)f , is defined as 

 L(M)f  = {w: w  *, Ssw |–* zf, z  *, f  F} 

2) The language that M accepts by empty pushdown, 

denoted by L(M), is defined as 

 L(M) = {w: w  *, Ssw |–* zf, z = , f  Q} 

3) The language that M accepts by final state and 

empty pushdown, denoted by L(M)f, is defined as 

L(M)f = {w: w  *, Ssw |–* zf, z = , f  F} 

Accepted Language: Three Types 
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PDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, S}; 

apa  aap, 

• Q = {s, p, q, f}; 

• R = {Ssa  Sap, 

apb  q, 

Sq    f} 

• F = {f} 

aqb  q, 

Question: aabb  L(M)f? 

Ssaabb 

S s b a a b 
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PDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, S}; 

apa  aap, 

• Q = {s, p, q, f}; 

• R = {Ssa  Sap, 

apb  q, 

Sq    f} 

• F = {f} 

aqb  q, 

Question: aabb  L(M)f? 

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq |– f 

Rule: Ssa  Sap 
S s b a a b 

p a S a b b 

q S a b 

p S a a b b 

Rule: apa  aap 

Rule: apb  q 

Rule: aqb  q 

Rule: Sq    f 
S q 

f 
Answer: YES 

Empty 

pushdown 

Final state 

Note: L(M)f = L(M) = L(M)f  = {anbn: n  1} 
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Three Types of Acceptance: Equivalence 

Theorem:  
• L = L(Mf)f  for a PDA Mf  L = L(Mf)f for a PDA Mf 

• L = L(M) for a PDA M  L = L(Mf)f for a PDA Mf 

• L = L(Mf)f  for a PDA Mf  L = L(M) for a PDA M 

Note: There exist these conversions: 

PDA Mf that accept L  

by final state and 

empty pushdown  

PDA Mf that accept L  

by final state  

PDA M that accept L  

by empty pushdown  

31/50 



Deterministic PDA (DPDA) 
 Gist:  Deterministic PDA makes no more than 

one move from any configuration. 

Definition: Let M = (Q, , , R, s, S, F) be a 

PDA. M is a deterministic PDA if for each rule 

Apa  wq  R, it holds that R – {Apa  wq} 

contains no rule with the left-hand side equal 

to Apa or Ap. 

Illustration: Configuration: 

a 
p A y x 
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 Gist:  Deterministic PDA makes no more than 

one move from any configuration. 

Definition: Let M = (Q, , , R, s, S, F) be a 

PDA. M is a deterministic PDA if for each rule 

Apa  wq  R, it holds that R – {Apa  wq} 

contains no rule with the left-hand side equal 

to Apa or Ap. 

Illustration: Configuration: 

a 
p A y x 

Ap   w1q1 

Apa   w2q2 

No more that one rule of the forms 
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PDAs are Stronger than DPDAs 
Theorem: There exists no DPDA Mf that accepts 

L = {xy: x, y  *, y = reversal(x)} 

Illustration: 

Proof: See page 431 in [Meduna: Automata and Languages] 
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Extended PDA (EPDA) 
 Gist:  The pushdown top of an EPDA represents a 

string rather than a single symbol. 

Definition: An Extended Pushdown automaton 

(EPDA) is a 7-tuple M = (Q, , , R, s, S, F), 

where Q, , , s, S, F are defined as in an PDA and 

R is a finite set of rules of the form: vpa  wq, 

where v, w  *, p, q  Q, a    {} 

Illustration: 
Pushdown of PDA: Pushdown of EPDA: 

A x x v 

PDA has a single symbols as the 

pushdown top  

EPDA has a string as the 

pushdown top  
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Move in EPDA 
Definition: Let xvpay and xwqy be two configurations 

of an EPDA, M, where x, v, w  *, p, q  Q, a   

 {}, and y  *. Let r = vpa  wq  R be a rule. 

Then, M makes a move from xvpay to xwqy according 

to r, written as xvpay |– xwqy [r] or xvpay |– xwqy. 

Configuration: a 
p y x v 
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Move in EPDA 
Definition: Let xvpay and xwqy be two configurations 

of an EPDA, M, where x, v, w  *, p, q  Q, a   

 {}, and y  *. Let r = vpa  wq  R be a rule. 

Then, M makes a move from xvpay to xwqy according 

to r, written as xvpay |– xwqy [r] or xvpay |– xwqy. 

Rule: vpa  wq  

Configuration: 

New configuration: q 

… 

w 

… 

y x 

Note: |–n, |–+, |–*, L(M)f , L(M) , and L(M)f are defined 

analogically to the corresponding definitions for PDA. 

a 
p y x v 

35/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

where: 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

where: 
s 

• Q = {s, f}; 

f 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 
s 

• Q = {s, f}; 

f 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f • R = {     sa  as, 

/a, a  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f • R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

     s    Cs, 

/C,   

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

     s    Cs, 

/C,   

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

     s    Cs, 

/C,   

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba 

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba 

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba |– Sabsba 

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba |– Sabsba 
|– SabCsba 

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba |– Sabsba 
|– SabCsba |– SaCsa 

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba |– Sabsba 
|– SabCsba |– SaCsa 
|– SCs 

Question: abba  Lf(M)? 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba |– Sabsba 
|– SabCsba |– SaCsa 

|– f |– SCs 

Question: abba  Lf(M)? 

Answer: YES 

36/50 



EPDA: Example 
M = (Q, , , R, s, S, F) 

•  = {a, b}; 

where: 

•  = {a, b, S, C}; 

s 
• Q = {s, f}; 

f 

• F = {f} 

     s    Cs, 

/C,   

SC/,   

SCs      f  } 

aCsa  Cs, 

aC/C, a  

• R = {     sa  as, 

/a, a  

     sb  bs, 

/b, b  

bCsb  Cs, 

bC/C, b  

Ssabba |– Sasbba |– Sabsba 
|– SabCsba |– SaCsa 

|– f |– SCs 

Question: abba  Lf(M)? 

Answer: YES 

Note: L(M)f = L(M) = L(M)f  = {xy: x, y  *, y = reversal(x)} 

36/50 



Three Types of Acceptance: Equivalence 

Theorem:  
• L = L(Mf)f  for an EPDA Mf  L = L(Mf)f for an EPDA Mf 
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EPDAs and PDAs are Equivalent 
Theorem: For every EPDA M, there is a PDA M’, 

                  and L(M)f = L(M’)f. 

Illustration: 

Proof: See page 419 in [Meduna: Automata and Languages] 
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EPDAs and PDAs as Parsing Models for CFGs 

 Gist:  An EPDA or a PDA can simulate the 

construction of a derivation tree for a CFG  

• Two basic approaches: 
1) Top-Down Parsing 2) Bottom-Up Parsing 

From S towards 

the input string 

From the input 

string towards S 

S 

Input string 

S 

Input string 
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EPDAs as Models of Bottom-Up Parsers 1/2 

 Gist: An EPDA M underlies a bottom-up parser  
1) M contains shift rules that copy the input symbols 
    onto the pushdown:  

a 
s y x 
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a 
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2) M contains reduction rules that simulate the 
    application of a grammatical rule in reverse:  

s y x 

A 
s y 

3) M also contains the rule #Ss  f that takes M to a 
    final state  f 
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• Input: CFG G = (N, T, P, S) 

• Output: EPDA M = (Q, , , R, s, #, F); L(G) = L(M)f 

• Method: 

• Q := {s, f};  

•  := T; 

•  := N  T  {#}; 

• Construction of R: 

• for every a  , add sa  as to R; 

• for every A  x  P, add xs  As to R; 

• add #Ss  f  to R; 

• F := {f}; 

Algorithm: From CFG to EPDA 
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From CFG to EPDA: Example 1/2 
• G = (N, T, P, S), where: 

  N = {S}, T = {(, )}, P = {S  (S), S  ( )} 

M  = (Q, , , R, s, #, F) where: 

Objective: An EPDA  M such that L(G) = L(M)f 
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From CFG to EPDA: Example 2/2 
M  = (Q, , , R, s, #, F), where: 

Q = {s, f},  = T = {(, )},  = {(, ), S, #}, F = {f} 

R = {s(  (s, s)  )s, (S)s  Ss, ( )s  Ss, #Ss  f } 

Question: (( ))  L(M)f? 

# s ) ( ( ) 
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PDAs as Models of Top-Down Parsers 1/2 

1) M contains popping rules that pops the top symbol from the 
    pushdown and reads the input symbol if both coincide: 

a 
s y x a 

 Gist: An PDA M underlies a top-down parser  
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add asa  s to R; 
x y 

s 

2) M contains expansion rules that simulate the 
    application of a grammatical rule: 

A 
s y 

s y an  …  a1 

a 
s y x a 

for every A  a1 …an  P in G, 

add As  an …a1s to R; 

= reversal(a1 …an) 

 Gist: An PDA M underlies a top-down parser  
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Derivation tree: 

PDAs as Models of Top-Down Parsers 2/2 

Top-down construction of a derivation tree: 
start pushdown symbol 

S s a1 … ak b1 … bl c1 … cm 
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• Input: CFG G = (N, T, P, S) 

• Output: PDA M = (Q, , , R, s, S, F); L(G) = L(M) 
• Method: 

• Q := {s};  

•  := T; 

•  := N  T; 

• Construction of R: 

• for every a  , add asa  s to R; 

• for every A  x  P, add As  ys to R, 

   where y = reversal(x); 

• F := ; 

Algorithm: From CFG to PDA 
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Models for Context-free Languages 

Proof: See the previous algorithm. 

Theorem: For every CFG G, there is an PDA 

  M such that L(G) = L(M).  

Proof: See page 486 in [Meduna: Automata and Languages] 

Theorem: For every PDA M, there is a CFG 

  G such that L(M) = L(G).  

Conclusion: The fundamental models for 

      context-free languages are 
1) Context-free grammars 2) Pushdown automata 
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