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Church-Turing Thesis and Turing Machine

Church-Turing Thesis

The intuitive notion of a procedure is functionally identifiable with the
formal notion of a Turing Machine.

Church-Turing Thesis (Alonzo Church1 in 1936)
• makes Turing Machine exceptionally significant,
• makes effective procedure central to computation as a whole,
• needs formalization of effective procedure to a formal model,
• assures Turing Machine as suitable model.

Turning Machine
• is relatively simple language-defining model,
• obviously constitutes a procedure,
• formalizes every procedure in the intuitive sense.

1(? June 14, 1903 - † August 11, 1995)
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Church-Turing Thesis is really a thesis

Church-Turing Thesis

Church-Turing Thesis is not a theorem because it cannot be proved.

Why?
• Proof necessitate rigorous comparsion of a procedure with a

Turing Machine.
• A formalization of the notion of a procedure is necessary.
• Is this newly formalized notion equivalent to the intuitive notion of

a procedure?
• Attempt to prove this thesis ends up with an infinite regression.

The evidence supporting the Church-Turing thesis:
• Formalization of the notion of a procedure in the intuitive sense

by other mathematical models equivalent with Turing Machines.
• Nobody has ever come with a procedure in the intuitive sense

and demonstrated that no Turing Machine can formalize it.
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Turing Machines and Their Languages
The Turing Machine generalizes the finite automaton in three ways
• it can read and write on its tape,
• its head can move both to the right and to the left on the tape,
• the tape can be limitlessly extended to the right.

Turing Machine

Turing Machine is a rewriting system M = (Σ,R), where:
• Σ contains subalphabets Q,F , Γ,4, {�,�,2} such that

Σ = Q ∪ Γ ∪ {�,�}, F ⊆ Q, 4 ⊂ Γ, 2 ∈ Γ−4, and {�,�}, Q, Γ
are pairwise disjoint,

• R is a finite set of rules of the form x → y satisfying
• {x , y} ⊆ {�}Q, or
• {x , y} ⊆ ΓQ ∪QΓ, or
• x ∈ {Q}{�} and y ∈ {Q}{2�,�}.

Q, F , Γ and 4 are referred to as the set of states, the set of final
states, the alphabet of tape symbols, and the alphabet of input
symbols, respectively. Q containst the start state denoted by I.
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Turing Machines and Their Languages

• Relations⇒,⇒n for n ≥ 0,⇒+, and⇒∗ are defined as usual.
• M accepts w ∈ 4∗ if �Iw�⇒∗ �ufv� in M, where u, v ∈ Γ∗,

f ∈ F .

Language of a Turing Machine

L(M) = {w |w ∈ 4∗,�Iw�⇒∗ �ufv�,u, v ∈ Γ∗, f ∈ F}

Informally, L(M) is defined as the set of all strings that M accepts.
Notation:
• Configuration of M is a string of the form �uqv�,

u, v ∈ Γ∗,q ∈ Q,
• MX denote the set of all configurations of M,
• �,� are referred to as the left and right bounders, respectively.
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Turing Machines and Their Languages

How to understand �uqv� in M
• uv is on the tape of M,
• q is the current state of M,
• head of M is over the leftmost symbol of v�.

How to understand β ⇒ χ in M
• β, χ∈MX ,
• M makes a move or a computational step from β to χ.

How to understand β ⇒∗ χ in M
• β, χ∈MX ,
• M makes a computation from β to χ.

How to understand q�→ p2� ∈ R
• p,q ∈ Q ,
• extend the tape by inserting 2, called a blank, in front of �,
• formally, �uq�⇒ �up2�, u ∈ Γ∗.
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Turing Machines and Their Languages
Let L = {x |x ∈ {a,b, c}∗,occur(x ,a) = occur(x ,b) = occur(x , c)}.

Example (Turing Machine M such that L(M) = L)

M = (Σ,R), where
• Σ= Q ∪ Γ ∪ {�,�}, with Γ= 4∪ {2}
• 4= {a,b, c}
• Q= {I,

�

,�} ∪W , with W = {〈O〉|O ⊆ {a,b, c}}
• F= {�}

Construct R by performing
1 add �I→ �〈{}〉 to R,
2 for every 〈O〉 ∈W and every d ∈ 4 ∪ {2}, add 〈O〉d → d〈O〉

and d〈O〉 → 〈O〉d to R,
3 for every 〈O〉 ∈W such that O ⊂ {a,b, c} and every d ∈ 4−O,

add 〈O〉d → 〈O ∪ {d}2 to R,
4 add 〈{a,b, c}〉d → 〈{}〉d to R, where d ∈ 4 ∪ {2,�},
5 add 〈{}〉�→

�

�,2

�

→

�

2, and �

�

→ �� to R.
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Turing Machines and Their Languages
Principle of computation
• M starts every computation by (1),
• M moves on its tape by (2),
• M adds the input symbol into its current state from power(4)

and changes the symbol to 2 on the tape by (3),
• M empties {a,b, c} so it changes this state to the state equal to

the empty set by (4),
• M makes a final scan of the tape from � to �, if the tape is

completely blank, M accepts by (5).

Example (M accepts babcca)

�Ibabcca�⇒�〈{}〉babcca�⇒∗ �babc〈{}〉ca�⇒
�babc〈{c}〉2a�⇒∗ �ba〈{c}bc2a�⇒�ba〈{b, c}〉2c2a�⇒∗

�ba2c2〈{b, c}〉a�⇒�ba2c2〈{a,b, c}〉2�⇒∗

�b〈{a,b, c}〉a2c22�⇒�b〈{}〉a2c22�⇒∗ �222222〈{}〉�⇒∗

�222222

�

�⇒�22222

�

2�⇒∗�

�

222222�⇒∗��222222�

M accepts the same string in many other ways, thus M is
non-deterministic rewriting system.
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Turing Machines and Their Languages
Strictly formal definition of a Turing Machine
• the most detailed and rigorous description,
• tends to be lenghty and tedious,
• difficult and time consuming to figure out the way the Turing

Machine accepts its language.
Informal description of a Turing Machine
• describes Turing Machines as procedures,
• omites various details concerning their components.

Formal vs. informal description of Turing Machines

Turing-Church thesis makes both ways of description perfectly
legitimate because it assures us every procedure is identifiable with a
Turing Machine defined in a strictly mathematical way.

The translation from informal description to the corresponding strictly
formal description
• is a straightforward task,
• is usually lengthy and tedious.
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Turing Machines and Their Languages
Turing Machine as a Pascal-like procedure (explain the changes,omit
the states and rules).

Example (Turing Machine M, L(M) = {ai |i is a prime number})

INPUT: ai with i ∈ N
if i ≤ 1 then

REJECT
end if
change ai to AAai−2

while Ak ah occurs with k ≤ h and i = k + h do
change Ak ah to the unique string y with i = |y | and
y ∈ Ak{ak Ak}∗z with z ∈ prefix(ak Ak−1);
if |z| = 0 or |z| = k then

REJECT
else

change y to Ak+1ah−1

end if
end while
ACCEPT.
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Turing Machines and Their Languages

Idea of computation
• i is not prime iff y = Ak ak Ak . . . ak Ak (i is divisible by k , so M

rejects ai ),
• if y = Ak ak Ak . . . ak Ak z such that z ∈ prefix(ak Ak−1)− {ε,ak},

then i is a prime and M accepts.
Notes
• The test Ak ah with k ≤ h and i = k + h can be reformulated to its

strictly formal description, but it is a tedious task.
• A strictly mathematical definition of the other parts of M is

lengthy as well.
• We just use English prose to describe procedures representing

Turing Machines.
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Thank you for your attention!
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