
Church-Turing Thesis
and Turing Machine

Martin Čermák, Jiří Koutný and Alexander Meduna
Deparment of Information Systems

Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science

FRVŠ MŠMT FR2581/2010/G1

Part I

Church-Turing Thesis and Turing
Machine

Church-Turing Thesis and Turing Machine 2 / 16

Church-Turing Thesis and Turing Machine

Church-Turing Thesis

The intuitive notion of a procedure is functionally identifiable with the
formal notion of a Turing Machine.

Church-Turing Thesis (Alonzo Church1 in 1936)
• makes Turing Machine exceptionally significant,
• makes effective procedure central to computation as a whole,
• needs formalization of effective procedure to a formal model,
• assures Turing Machine as suitable model.

Turning Machine
• is relatively simple language-defining model,
• obviously constitutes a procedure,
• formalizes every procedure in the intuitive sense.

1(? June 14, 1903 - † August 11, 1995)
Church-Turing Thesis and Turing Machine 3 / 16

Church-Turing Thesis is really a thesis

Church-Turing Thesis

Church-Turing Thesis is not a theorem because it cannot be proved.

Why?
• Proof necessitate rigorous comparsion of a procedure with a

Turing Machine.
• A formalization of the notion of a procedure is necessary.
• Is this newly formalized notion equivalent to the intuitive notion of

a procedure?
• Attempt to prove this thesis ends up with an infinite regression.

The evidence supporting the Church-Turing thesis:
• Formalization of the notion of a procedure in the intuitive sense

by other mathematical models equivalent with Turing Machines.
• Nobody has ever come with a procedure in the intuitive sense

and demonstrated that no Turing Machine can formalize it.

Church-Turing Thesis and Turing Machine 4 / 16

Part II

Turing Machines and Their
Languages

Church-Turing Thesis and Turing Machine 5 / 16

Turing Machines and Their Languages
The Turing Machine generalizes the finite automaton in three ways
• it can read and write on its tape,
• its head can move both to the right and to the left on the tape,
• the tape can be limitlessly extended to the right.

Turing Machine

Turing Machine is a rewriting system M = (Σ,R), where:
• Σ contains subalphabets Q,F , Γ,4, {�,�,2} such that

Σ = Q ∪ Γ ∪ {�,�}, F ⊆ Q, 4 ⊂ Γ, 2 ∈ Γ−4, and {�,�}, Q, Γ
are pairwise disjoint,

• R is a finite set of rules of the form x → y satisfying
• {x , y} ⊆ {�}Q, or
• {x , y} ⊆ ΓQ ∪QΓ, or
• x ∈ {Q}{�} and y ∈ {Q}{2�,�}.

Q, F , Γ and 4 are referred to as the set of states, the set of final
states, the alphabet of tape symbols, and the alphabet of input
symbols, respectively. Q containst the start state denoted by I.

Church-Turing Thesis and Turing Machine 6 / 16

Turing Machines and Their Languages

• Relations⇒,⇒n for n ≥ 0,⇒+, and⇒∗ are defined as usual.
• M accepts w ∈ 4∗ if �Iw�⇒∗ �ufv� in M, where u, v ∈ Γ∗,

f ∈ F .

Language of a Turing Machine

L(M) = {w |w ∈ 4∗,�Iw�⇒∗ �ufv�,u, v ∈ Γ∗, f ∈ F}

Informally, L(M) is defined as the set of all strings that M accepts.
Notation:
• Configuration of M is a string of the form �uqv�,

u, v ∈ Γ∗,q ∈ Q,
• MX denote the set of all configurations of M,
• �,� are referred to as the left and right bounders, respectively.

Church-Turing Thesis and Turing Machine 7 / 16

Turing Machines and Their Languages

How to understand �uqv� in M
• uv is on the tape of M,
• q is the current state of M,
• head of M is over the leftmost symbol of v�.

How to understand β ⇒ χ in M
• β, χ∈MX ,
• M makes a move or a computational step from β to χ.

How to understand β ⇒∗ χ in M
• β, χ∈MX ,
• M makes a computation from β to χ.

How to understand q�→ p2� ∈ R
• p,q ∈ Q ,
• extend the tape by inserting 2, called a blank, in front of �,
• formally, �uq�⇒ �up2�, u ∈ Γ∗.

Church-Turing Thesis and Turing Machine 8 / 16

Turing Machines and Their Languages
Let L = {x |x ∈ {a,b, c}∗,occur(x ,a) = occur(x ,b) = occur(x , c)}.

Example (Turing Machine M such that L(M) = L)

M = (Σ,R), where
• Σ= Q ∪ Γ ∪ {�,�}, with Γ= 4∪ {2}
• 4= {a,b, c}
• Q= {I,

�

,�} ∪W , with W = {〈O〉|O ⊆ {a,b, c}}
• F= {�}

Construct R by performing
1 add �I→ �〈{}〉 to R,
2 for every 〈O〉 ∈W and every d ∈ 4 ∪ {2}, add 〈O〉d → d〈O〉

and d〈O〉 → 〈O〉d to R,
3 for every 〈O〉 ∈W such that O ⊂ {a,b, c} and every d ∈ 4−O,

add 〈O〉d → 〈O ∪ {d}2 to R,
4 add 〈{a,b, c}〉d → 〈{}〉d to R, where d ∈ 4 ∪ {2,�},
5 add 〈{}〉�→

�

�,2

�

→

�

2, and �

�

→ �� to R.

Church-Turing Thesis and Turing Machine 9 / 16

Turing Machines and Their Languages
Principle of computation
• M starts every computation by (1),
• M moves on its tape by (2),
• M adds the input symbol into its current state from power(4)

and changes the symbol to 2 on the tape by (3),
• M empties {a,b, c} so it changes this state to the state equal to

the empty set by (4),
• M makes a final scan of the tape from � to �, if the tape is

completely blank, M accepts by (5).

Example (M accepts babcca)

�Ibabcca�⇒�〈{}〉babcca�⇒∗ �babc〈{}〉ca�⇒
�babc〈{c}〉2a�⇒∗ �ba〈{c}bc2a�⇒�ba〈{b, c}〉2c2a�⇒∗

�ba2c2〈{b, c}〉a�⇒�ba2c2〈{a,b, c}〉2�⇒∗

�b〈{a,b, c}〉a2c22�⇒�b〈{}〉a2c22�⇒∗ �222222〈{}〉�⇒∗

�222222

�

�⇒�22222

�

2�⇒∗�

�

222222�⇒∗��222222�

M accepts the same string in many other ways, thus M is
non-deterministic rewriting system.

Church-Turing Thesis and Turing Machine 10 / 16

Turing Machines and Their Languages
Strictly formal definition of a Turing Machine
• the most detailed and rigorous description,
• tends to be lenghty and tedious,
• difficult and time consuming to figure out the way the Turing

Machine accepts its language.
Informal description of a Turing Machine
• describes Turing Machines as procedures,
• omites various details concerning their components.

Formal vs. informal description of Turing Machines

Turing-Church thesis makes both ways of description perfectly
legitimate because it assures us every procedure is identifiable with a
Turing Machine defined in a strictly mathematical way.

The translation from informal description to the corresponding strictly
formal description
• is a straightforward task,
• is usually lengthy and tedious.

Church-Turing Thesis and Turing Machine 11 / 16

Turing Machines and Their Languages
Turing Machine as a Pascal-like procedure (explain the changes,omit
the states and rules).

Example (Turing Machine M, L(M) = {ai |i is a prime number})

INPUT: ai with i ∈ N
if i ≤ 1 then

REJECT
end if
change ai to AAai−2

while Ak ah occurs with k ≤ h and i = k + h do
change Ak ah to the unique string y with i = |y | and
y ∈ Ak{ak Ak}∗z with z ∈ prefix(ak Ak−1);
if |z| = 0 or |z| = k then

REJECT
else

change y to Ak+1ah−1

end if
end while
ACCEPT.

Church-Turing Thesis and Turing Machine 12 / 16

Turing Machines and Their Languages

Idea of computation
• i is not prime iff y = Ak ak Ak . . . ak Ak (i is divisible by k , so M

rejects ai),
• if y = Ak ak Ak . . . ak Ak z such that z ∈ prefix(ak Ak−1)− {ε,ak},

then i is a prime and M accepts.
Notes
• The test Ak ah with k ≤ h and i = k + h can be reformulated to its

strictly formal description, but it is a tedious task.
• A strictly mathematical definition of the other parts of M is

lengthy as well.
• We just use English prose to describe procedures representing

Turing Machines.

Church-Turing Thesis and Turing Machine 13 / 16

References

Wayne Goddard.
Introducing the Theory of Computation.
Jones Bartlett Publishers, 2008.

Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani.
Introduction to Automata Theory, Languages, and Computation.
Addison Wesley, 2006.

Dexter C. Kozen.
Automata and Computability.
Springer, 2007.

Dexter C. Kozen.
Theory of Computation.
Springer, 2010.

John C. Martin.
Introduction to Languages and the Theory of Computation.
McGraw-Hill Science/Engineering/Math, 2002.

Church-Turing Thesis and Turing Machine 14 / 16

Thank you for your attention!

End

	Church-Turing Thesis and Turing Machine
	Church-Turing Thesis and Turing Machine

	Turing Machines and Their Languages
	Turing Machines and Their Languages
	References

