
Universal Turing Machines

Martin Čermák, Jiří Koutný and Alexander Meduna
Deparment of Information Systems

Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science

FRVŠ MŠMT FR2581/2010/G1



Part I

Universal Turing Machines

Universal Turing Machines 2 / 1



Universal Turing Machines

There exists a Turing Machine acting as such a universal device,
which simulates all machines in TMΨ.

Universal Turing Machine U ∈TMΨ

Universal Turing Machine U ∈TMΨ simulates every M ∈TMΨ working
on any input w .

• The input of any Turing Machine is always a string.
• How to encode every M ∈TMΨ as a string (denoted as 〈M〉)?

Pinciple
• U has the code of M followed by the code of w as its input

(denoted as 〈M,w〉).
• U decodes M and w to simulate M working on w .
• U accepts 〈M,w〉 iff M accepts w .

Universal Turing Machines 3 / 1



Turing Machine Codes

Encoding Mathematically

The encoding should represent a total function code from TMΨ to ϑ∗

such that code(M) = 〈M〉 for all M ∈TMΨ.
The decoding decode of Turing Machines is defined on an arbitrary
but fixed O ∈TMΨ, so
• for every x ∈ range(code), decode(x) = inverse(code(M)).
• for every y ∈ ϑ∗ − range(code), decode(y) = O so

range(decode) =TMΨ.

• decode is a total surjection (it maps every string in ϑ∗),
• decode may not be an injection (several strings in ϑ∗ may be

decoded to the same machine in TMΨ),
• code and decode are used to encode and decode the pairs

consisting of Turing Machines and input strings.

We just require that the mechanical interpretation of both code and
decode is relatively easily performable.

Universal Turing Machines 4 / 1



A Binary Code for Turing Machines

• Consider any M ∈TMΨ.
• Rename states in Q to q1,q2,q3,q4, . . . ,qm so

q1 =I,q2 = �,q3 = �, where m = card(Q).
• Rename the symbols of {�,�} ∪ Γ to a1,a2, . . . ,an so

a1 = �,a2 = �,a3 = 2, where n = card(Γ).
• Introduce the homomorphism h from Q ∪ Γ to {0,1}∗ as

h(qi ) = 10i , 1 ≤ i ≤ m, and h(aj ) = 110j , 1 ≤ j ≤ n.
• Extend h so it is defined from (Γ ∪Q)∗ to {0,1}∗

• h(ε) = ε,
• h(X1 . . .Xk ) = h(X1) . . . h(Xk ), where k ≥ 1, Xl ∈ Γ ∪Q, 1 ≤ l ≤ k .

• Define the mapping code from R to {0,1}∗ so that for each rule
r : x → y ∈ R, code(r) = h(xy).

• Write the rules of R in an order as r1, r2, . . . , ro with o = card(R)
(for instance, order them lexicographically).

• Set code(R) = code(r1)111code(r2)111code(ro)111.
• From code(R), we obtain code(M) by setting

code(M) = 0m10n1code(R)1.

Universal Turing Machines 5 / 1



A Binary Code for Turing Machines
Let code(M) = 0m10n1code(R)1
• 0m1 states that m = card(Q),
• 0n1 state that n = card(Γ),
• code(R) encodes the rules of R.

Mapping code is total, but inverse(code) is partial.
• Select an arbitrary but fixed O ∈TMΨ,
• Extend inverse(code) to the total mapping decode so that for

every x ∈ {0,1}∗:
• if x is a legal code of K in TM Ψ, decode(x) = K ,
• otherwise, decode(x) = O.

For w ∈ 4∗, code(w) = h(w)
• Select an arbitrary but fixed y ∈ 4∗,
• Define the total surjection decode so for every x ∈ {0,1}∗

• if x ∈ range(code), decode(x) = inverse(code(w)) ,
• otherwise, decode(z) = y .

For every (M,w) ∈TMΨ×4∗, define code(M,w) = code(M)code(w)
• code is a total function,
• Define the total surjection decode so

• decode(xy) = decode(x)decode(y),
• where decode(x) ∈TM Ψ and decode(y) ∈ 4∗.

Universal Turing Machines 6 / 1



A Binary Code for Turing Machines

Example

Consider Turing Machine M = (Σ,R) ∈TMΨ, where
Σ = Q ∪ Γ∪ {�,�}, Q = {I,�,�,A,B,C,D}, Γ = 4∪ {2},4 = {b},
and R contains these rules

I�→ ��, Ib → bA,
Ab → bB, Bb → bA,

A�→ C�, B�→ D�,
bD → D2, bC → C2,
�C → ��, �D → ��

L(M) = {bi |i ≥ 0, i is even}

Homomorphism h from Q ∈ {�,�} ∪ Γ to {0,1}∗:
• h(qi ) = 10i ,1 ≤ i ≤ 7, where q1,q2,q3,q4,q5,q6, and q7 coincide

with I,�,�,A,B,C,D, respectively,
• h(ai ) = 110j ,1 ≤ j ≤ 4, where a1,a2,a3, and a4 coincide with
�,�,2, and b, respectively.

Extend h so it is defined from (Q ∪ {�,�} ∪ Γ)∗ to {0,1}∗.
Universal Turing Machines 7 / 1



A Binary Code for Turing Machines

Example

Based on h, define the mapping code from R to {0,1}∗ so for each
rule x → y ∈ R, code(x → y) = h(xy) (for example,
code(Ib → bA) = 1011000011000010000).

Take the above order of the rules from R, and set

code(R) = code(I�→ ��)111 . . . code(�D → ��)111

Finally, code(M) = 071021code(R)1.
For instance, take w = bb, and set code(bb) = 110000110000.
Thus, code(M,w) = 071021code(R)1111110000110000 = . . .

Convention
• We suppose there exist a fixed encoding and a fixed decoding of

all Turing Machines in TMΨ.
• Both code and decode have to be uniquely and mechanically

interpretable (not necessarily binary).

Universal Turing Machines 8 / 1



Construction of Universal Turing Machines
Universal Turing Machine AcceptU simulates every M ∈TMΨ on w ∈ 4∗

so AcceptU accepts 〈M,w〉 iff M accepts w .

Universal Turing Machine AcceptU

L(AcceptM) = {〈M,w〉|M ∈TMΨ,w ∈ 4∗,w ∈ L(M)}

Universal Turing Machine HaltU simulates every M ∈TMΨ on w ∈ 4∗

so HaltU accepts 〈M,w〉 iff M halts on w .

Universal Turing Machine HaltU

L(HaltM) = {〈M,w〉|M ∈TMΨ,w ∈ 4∗,M halts on w}

Convention

AcceptU works on 〈M,w〉 so it first interprets 〈M,w〉 as M and w ; then,
it simulates the moves of M on w

is simplified to

AcceptU runs M on w .

Universal Turing Machines 9 / 1



Construction of Universal Turing Machines

Theorem

There exists AcceptU ∈TMΨ such that L(AcceptU) =AcceptL.

Proof. On every input 〈M,w〉, AcceptU works so it runs M on w .
AcceptU accepts 〈M,w〉 if and when it finds out that M accepts w ;
otherwise, AcceptU keeps simulating the moves of M in this way.

Theorem

There exists HaltU ∈TMΨ such that L(HaltU) =HaltL.

Proof. On every input 〈M,w〉, HaltU works so it runs M on w . HaltU
accepts 〈M,w〉 M if M halt w ; which means that M either accepts or
rejects w . Thus, HaltU loops on 〈M,w〉 iff M loops on w . Observe that
L(HaltU) =Halt L.

No Turing Machine can halt on every input and, simultaneously, act
as a universal Turing Machine.

Universal Turing Machines 10 / 1



References

Wayne Goddard.
Introducing the Theory of Computation.
Jones Bartlett Publishers, 2008.

Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani.
Introduction to Automata Theory, Languages, and Computation.
Addison Wesley, 2006.

Dexter C. Kozen.
Automata and Computability.
Springer, 2007.

Dexter C. Kozen.
Theory of Computation.
Springer, 2010.

John C. Martin.
Introduction to Languages and the Theory of Computation.
McGraw-Hill Science/Engineering/Math, 2002.

Universal Turing Machines 11 / 1



Thank you for your attention!



End


	Universal Turing Machines
	Universal Turing Machines
	References


