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Part I

Theory of Computation
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Applications of Turing Machines

Recapitulation
• Usage of Turing Machines to demonstrate theoretical limits of

computation.
• By the Turing-Church thesis, every procedure can be realized as

a Turing Machine.
• The notion of a Turing Machine is exactly the right model of

computation.

Basic idea
Some relatively simple functions and problems are beyond the limits
of computation.
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Computability

Definition
Let M ∈TMΨ. The function computed by M, symbolically denoted by
M−f , is defined over 4∗ as
M−f = {(x , y)|x , y ∈ 4∗,�Ix�⇒∗ ��yu� in M, u ∈ {2}∗}.

• Consider M−f , where M ∈TMΨ, and an argument x ∈ 4∗.
• In a general, M−f is partial, so M−f (x) may or may not be defined.
• If M−f (x) = y is defined, M computes �Ix�⇒∗ ��yu�, where

u ∈ {2}∗.
• If M−f (x) is undefined, M, starting from �Ix�, never reaches a

configuration of the form ��vu�, where v ∈ 4∗ and u ∈ {2}∗,
so it either rejects x or loops on x .

Definition
A function f is a computable function if there exists M ∈TMΨ such that
f = M−f ; otherwise, f is an incomputable function.
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Integer Functions
• For every M ∈TMΨ, M−f is defined over 4∗, where 4 is an

alphabet.
• We usually study numeric functions defined over sets of infinitely

many numbers (such as N).
• For Turing Machines, we need to represent numbers by strings

over 4.
• We represent i in unary as unary(i) = ai for all i ≥ 0.
• We automatically assume that 4 = {a} (because a is the only

input symbol we need).

Definition
• Let g be a function over 0N and M ∈TMΨ. M computes g iff

unary(g) = M−f .
• A function h over 0N is a computable function if there is M ∈TMΨ

such that M computes h; otherwise, h is an incomputable
function.

• M computes an integer function g over 0N if this equivalence
holds: g(x) = y iff (unary(x),unary(y)) ∈ M−f , for all x , y ∈0N.
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Integer Functions

Convention
Whenever M ∈TMΨ works on an integer x ∈0N, x is expressed as
unary(x). Instead of stating that M works on x represented as
unary(x), we just state that M works on x .

Example

Let g be the successor function defined as g(i) = i + 1 for all i ≥ 0.
Construct a Turing Machine M that computes �Iai�⇒∗ ��ai+1� so
it moves across ai to the right bounder �, replaces it with a�, and
returns to the left to finish its computation in ��ai+1�. As a result, M
increases the number of as. Thus, M computes g.

• Function in the example is total.
• Suppose g is a function over 0N, which is undefined for some

arguments and let M ∈TMΨ compute g.
• For any x ∈0N, g(x) is undefined iff (unary(x),unary(y)) /∈ M−f

for all y ∈0N.

Theory of Computatio 6 / 1



Integer Functions

Example

Let g over N be a partial function as
• g(x) = 2x if x = 2n, for some n ∈ N,
• otherwise, g(x) is undefined.

Construct M ∈TMΨ that computes g as follows.
INPUT: �Iai� for some i ∈ N
change �Iai� to �IaiA�
while current configuration �IaiAj� satisfies j ≤ i do

if i = j then
ACCEPT by computing �IaiAj�⇒∗ ��aiai� (because
i = j = 2m for some m ∈ N)

else
compute �IaiAj�⇒∗ �IaiA2j� by changing each A to AA

end if
end while
REJECT by computing �IaiAj�⇒∗ ��ai2j� (because j > i , so
i 6= 2m for any m ∈ N).
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Incomputable Functions

• The set of all rewriting systems is countable because each
definition of a rewriting system is finite, so this set can be put into
a bijection with N.

• The set of all Turing Machines, which are defined as rewriting
systems, is countable.

• The set of all functions is uncountable.
• Thus, there are more functions than Turing Machines.
• Some functions are incomputable.
• Even some simple total well-defined functions over N are

incomputable.
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Incomputable Functions

Example

For every k ∈ N, set
k X = {M ∈TMΨ|card(MQ) = k + 1,L(M) ⊆ {a}∗}

Informally
• k X denotes the set of all Turing Machines in TMΨ with k + 1

states such that their languages are over {a}.
• Suppose that MQ = {q0,q1, . . . ,qk} with I= q0 and � = qk .
• Let g be the function over N defined for every i ∈ N so g(i)

equals the greatest integer j ∈ N satisfying �q0a�⇒∗ �qiaju�
in M with M ∈jX where u ∈ {2}∗.

• For every i ∈ N, iX is finite.
• iX always contains M ∈TMΨ such that �q0a�⇒∗ qiaju� in M

with j ∈ N, so g is total.
• g(i) is defined quite rigorously because each Turing Machine in

iX is deterministic.
• But, g is incomputable.
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Incomputable Functions

Proof idea (based upon diagonalization)
• Assume that g is computable.
• Thus, TMΨ contains a Turing Machine M that computes g.
• Convert M to a Turing Machine N, which we subsequently

transform to a Turing Machine O.
• Demonstrate that O performs a computation that contradicts the

definition of g.
• So our assumption that g is computable is incorrect.
• Thus, g is incomputable.

Theory of Computatio 10 / 1



Incomputable Functions

Convention
In the sequel, ζ denotes some fixed enumeration of all possible Turing
Machines,

ζ =1M, 2M,. . .

Regarding ζ, we just require the existence of two algorithms
• Translation of every i ∈ N to iM,
• Translation of every M ∈TMΨ to i so M =i M, where i ∈ (N).

Let

ξ =_1M−f ,2M−f , . . .

That is, ξ corresponds to ζ so ξ denotes the enumeration of the
functions computed by the machines listed in ζ. The positive integer i
of iM−f is referred to as the index of iM−f ; in terms of ζ, i is referred to
as the index of iM.
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Thank you for your attention!
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