
Theory of Computatio

Martin Čermák, Jiří Koutný and Alexander Meduna
Deparment of Information Systems

Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science

FRVŠ MŠMT FR2581/2010/G1



Part I

Theory of Computation

Theory of Computatio 2 / 1



Applications of Turing Machines

Recapitulation
• Usage of Turing Machines to demonstrate theoretical limits of

computation.
• By the Turing-Church thesis, every procedure can be realized as

a Turing Machine.
• The notion of a Turing Machine is exactly the right model of

computation.

Basic idea
Some relatively simple functions and problems are beyond the limits
of computation.

Theory of Computatio 3 / 1



Computability

Definition
Let M ∈TMΨ. The function computed by M, symbolically denoted by
M−f , is defined over 4∗ as
M−f = {(x , y)|x , y ∈ 4∗,�Ix�⇒∗ ��yu� in M, u ∈ {2}∗}.

• Consider M−f , where M ∈TMΨ, and an argument x ∈ 4∗.
• In a general, M−f is partial, so M−f (x) may or may not be defined.
• If M−f (x) = y is defined, M computes �Ix�⇒∗ ��yu�, where

u ∈ {2}∗.
• If M−f (x) is undefined, M, starting from �Ix�, never reaches a

configuration of the form ��vu�, where v ∈ 4∗ and u ∈ {2}∗,
so it either rejects x or loops on x .

Definition
A function f is a computable function if there exists M ∈TMΨ such that
f = M−f ; otherwise, f is an incomputable function.

Theory of Computatio 4 / 1



Integer Functions
• For every M ∈TMΨ, M−f is defined over 4∗, where 4 is an

alphabet.
• We usually study numeric functions defined over sets of infinitely

many numbers (such as N).
• For Turing Machines, we need to represent numbers by strings

over 4.
• We represent i in unary as unary(i) = ai for all i ≥ 0.
• We automatically assume that 4 = {a} (because a is the only

input symbol we need).

Definition
• Let g be a function over 0N and M ∈TMΨ. M computes g iff

unary(g) = M−f .
• A function h over 0N is a computable function if there is M ∈TMΨ

such that M computes h; otherwise, h is an incomputable
function.

• M computes an integer function g over 0N if this equivalence
holds: g(x) = y iff (unary(x),unary(y)) ∈ M−f , for all x , y ∈0N.

Theory of Computatio 5 / 1



Integer Functions

Convention
Whenever M ∈TMΨ works on an integer x ∈0N, x is expressed as
unary(x). Instead of stating that M works on x represented as
unary(x), we just state that M works on x .

Example

Let g be the successor function defined as g(i) = i + 1 for all i ≥ 0.
Construct a Turing Machine M that computes �Iai�⇒∗ ��ai+1� so
it moves across ai to the right bounder �, replaces it with a�, and
returns to the left to finish its computation in ��ai+1�. As a result, M
increases the number of as. Thus, M computes g.

• Function in the example is total.
• Suppose g is a function over 0N, which is undefined for some

arguments and let M ∈TMΨ compute g.
• For any x ∈0N, g(x) is undefined iff (unary(x),unary(y)) /∈ M−f

for all y ∈0N.

Theory of Computatio 6 / 1



Integer Functions

Example

Let g over N be a partial function as
• g(x) = 2x if x = 2n, for some n ∈ N,
• otherwise, g(x) is undefined.

Construct M ∈TMΨ that computes g as follows.
INPUT: �Iai� for some i ∈ N
change �Iai� to �IaiA�
while current configuration �IaiAj� satisfies j ≤ i do

if i = j then
ACCEPT by computing �IaiAj�⇒∗ ��aiai� (because
i = j = 2m for some m ∈ N)

else
compute �IaiAj�⇒∗ �IaiA2j� by changing each A to AA

end if
end while
REJECT by computing �IaiAj�⇒∗ ��ai2j� (because j > i , so
i 6= 2m for any m ∈ N).

Theory of Computatio 7 / 1



Incomputable Functions

• The set of all rewriting systems is countable because each
definition of a rewriting system is finite, so this set can be put into
a bijection with N.

• The set of all Turing Machines, which are defined as rewriting
systems, is countable.

• The set of all functions is uncountable.
• Thus, there are more functions than Turing Machines.
• Some functions are incomputable.
• Even some simple total well-defined functions over N are

incomputable.

Theory of Computatio 8 / 1



Incomputable Functions

Example

For every k ∈ N, set
k X = {M ∈TMΨ|card(MQ) = k + 1,L(M) ⊆ {a}∗}

Informally
• k X denotes the set of all Turing Machines in TMΨ with k + 1

states such that their languages are over {a}.
• Suppose that MQ = {q0,q1, . . . ,qk} with I= q0 and � = qk .
• Let g be the function over N defined for every i ∈ N so g(i)

equals the greatest integer j ∈ N satisfying �q0a�⇒∗ �qiaju�
in M with M ∈jX where u ∈ {2}∗.

• For every i ∈ N, iX is finite.
• iX always contains M ∈TMΨ such that �q0a�⇒∗ qiaju� in M

with j ∈ N, so g is total.
• g(i) is defined quite rigorously because each Turing Machine in

iX is deterministic.
• But, g is incomputable.

Theory of Computatio 9 / 1



Incomputable Functions

Proof idea (based upon diagonalization)
• Assume that g is computable.
• Thus, TMΨ contains a Turing Machine M that computes g.
• Convert M to a Turing Machine N, which we subsequently

transform to a Turing Machine O.
• Demonstrate that O performs a computation that contradicts the

definition of g.
• So our assumption that g is computable is incorrect.
• Thus, g is incomputable.

Theory of Computatio 10 / 1



Incomputable Functions

Convention
In the sequel, ζ denotes some fixed enumeration of all possible Turing
Machines,

ζ =1M, 2M,. . .

Regarding ζ, we just require the existence of two algorithms
• Translation of every i ∈ N to iM,
• Translation of every M ∈TMΨ to i so M =i M, where i ∈ (N).

Let

ξ =_1M−f ,2M−f , . . .

That is, ξ corresponds to ζ so ξ denotes the enumeration of the
functions computed by the machines listed in ζ. The positive integer i
of iM−f is referred to as the index of iM−f ; in terms of ζ, i is referred to
as the index of iM.

Theory of Computatio 11 / 1



References

Wayne Goddard.
Introducing the Theory of Computation.
Jones Bartlett Publishers, 2008.

Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani.
Introduction to Automata Theory, Languages, and Computation.
Addison Wesley, 2006.

Dexter C. Kozen.
Automata and Computability.
Springer, 2007.

Dexter C. Kozen.
Theory of Computation.
Springer, 2010.

John C. Martin.
Introduction to Languages and the Theory of Computation.
McGraw-Hill Science/Engineering/Math, 2002.

Theory of Computatio 12 / 1



Thank you for your attention!



End


	Theory of Computation
	Applications of Turing Machines
	Computability
	References


