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Part I

Recursion Theorem and Kleene’s
s−m−n Theorem
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Recursion Theorem

• Consider any total computable function γ over N and apply γ to
the indices of Turing Machines in ζ.

• There necessarily exists n ∈ N, customarily referred to as a fixed
point of γ, such that nM and γ(n)M compute the same function.

• That is, in terms of ξ, nM−f =γ(n) M−f .

Theorem
For every total computable function γ over N, there is n ∈ N such that
nM−f =γ(n) M−f in ξ.

The recursion theorem is a powerful tool frequently applied in the
theory of computation.
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Recursion Theorem

Generalization to the m-argument function M−f m computed by
M ∈TMΨ.

Definition
Let M ∈TMΨ. The m-argument function computed by M is denoted by
M−f m and defined as

M−f m = {(x , y)|x ∈ 4∗,occur(x ,#) = m − 1, y ∈ (4− {#})∗,
�Ix�⇒∗ ��yu� in M,u ∈ {2}∗}

That is
• f m(x1, x2, . . . , xm) = y iff �Ix1#x2# . . .#xm�⇒∗ ��yu� in M

with u ∈ {2}∗,
• f m(x1, x2, . . . , xm) is undefined iff M loops on x1#x2# . . .#xm or

rejects x1#x2# . . .#xm,
• Notice that M−f 1 coincides with M−f .
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Recursion Theorem

Definition
Let m ∈ N. A function f m is a computable function if there exists
M ∈TMΨ such that f m = M−f m; otherwise, f m is incomputable.

To use Turing Machines as computers of m-argument integer
functions, we assume these machines work with the unary-based
representation of integers by analogy with one-argument integer
functions computed by these machines.

Definition
Let M ∈TMΨ,m ∈ N, and f m be an m-argument function from
A1 × · · · × Am to N, where Ai = N, for all 1 ≤ i ≤ m. M computes f m iff
this equivalence holds

f m(x1, . . . , xm) = y iff (unary(x1)# . . .#unary(xm),unary(y)) ∈ M−f m
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Kleene’s s −m − n theorem

Kleene’s s −m − n theorem says that for all m,n ∈ N, there is a total
computable function s of m + 1 arguments such that
iM−f m+n(x1, . . . , xm, y1, . . . , yn) =s(i,x1,...,xm) M−f n(y1, . . . , yn) for all
i , x1, . . . , xm, y1, . . . , yn.

• That is, the number of arguments is lowered, yet the same
function is computed.

Theorem

For all i ,m,n ∈ N, there is a total computable (m + 1)-argument
function sm+1 such that
iM−f m+n(x1, . . . , xm, y1, . . . , yn) =sm+1(i,x1,...,xm) M−f n(y1, . . . , yn).

Theorem represents a powerful tool for demonstrating closure
properties concerning computable functions.
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Kleene’s s−m−n theorem

Proof idea
• Construct a Turing machine S ∈TMΨ and demonstrate that

S−f m+1 satisfies the properties of sm+1 stated in previous
Theorem.

• Thus, we just take sm+1 = S−f m+1 to complete the proof.
Construction of S

• Let i ,m,n ∈ N.
• Construct a Turing machine S ∈TMΨ so S itself constructs

another machine in TMΨ and produces its index in ζ as the
resulting output value.
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Kleene’s s−m−n theorem

Properties of S−f (m+1)

• Consider the (m + 1)-argument function S−f (m+1) computed by S
constructed above.

• S−f (m+1) maps (i , x1, . . . , xm) to the resulting output value equal
to the index of M[i , x1, . . . , xm] in ζ.

• M[i , x1, . . . , xm] computes iM−f m+n(x1, . . . , xm, y1, . . . , yn) on
every input (y1, . . . , yn), where iM−f m+n denotes the
(m + n)-argument computable function.

• Thus,
iM−f m+n(x1, . . . , xm, y1, . . . , yn) =jM−f n(y1, . . . , yn) =S−f m+1(i,x1,...,xm)

M−f n(y1, . . . , yn).
• Therefore, to obtain the total computable (m + 1)-argument

function sm+1 satisfying previous Theorem, set sm+1 = S− f m+1.
This theorem represents a powerful tool for demonstrating closure
properties concerning computable functions.
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Kleene’s s−m−n theorem

Example

• Consider a total computable 2-argument function g2 such that
iM−f (jM−f (x)) =g2(i,j) M−f (x) for all i , j , x ∈ N.

• Define the 3-argument function h3 as h3(i , j , x) =iM−f (jM−f (x))
for all i , j , x ∈ N.

• Introduce a Turing Machine H that computes h3 so it works on
every input x as follows:

1 H runs jM on x ,
2 if jM−f (x) is defined and produced by H in (1), H runs iM on

jM−f (x),
3 if iM−f (jM−f (x)) is defined, H produces iM−f (jM−f (x)), so H

computes iM−f (jM−f (x)).

Thus, h3 is computable.
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Kleene’s s−m−n theorem

Example (cont.)

• Let h3 be computed by k M in ζ. That is, k M−f 3 = h.
• There is a total computable function s such that

s3(k,i,j)M−f (x) =k M−f 3(i , j , x) for all i , j , x ∈ N.

• Set g2(i , j) = s3(k , i , j) for all i , j ∈ N.
• Thus, iM−f (jM−f (x)) =s3(k,i,j) M−f (x) =g2(i,j) M−f (x), for all

i , j , x ∈ N.

So, the composition of two computable functions is again computable,
so the set of computable one-argument functions is closed with
respect to composition.
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