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| Recursion Theorem i

» Consider any total computable function v over N and apply v to
the indices of Turing Machines in ¢.

o There necessarily exists n € N, customarily referred to as a fixed
point of ~, such that ,M and ., M compute the same function.

e Thatis, in terms of £, ,M—f =,y M.

Theorem

For every total computable function ~ over N, there is n € N such that
nM—f =~(n) M—f in 5

The recursion theorem is a powerful tool frequently applied in the
theory of computation.
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| Recursion Theorem |

Generalization to the m-argument function M—f computed by
M emV.
Definition

Let M eyV. The m-argument function computed by M is denoted by
M—f™ and defined as

M—f% = {(Xay)|x € A*70001*”-()(73'%) =m-— 17}’ € (A - {#})*7
>ex< =* >Byu< in M,u e {O}*}

That is
o (X1, X0, ..., Xm) = Y iff X1 #X0# ... #Xn<d =" >Byu<in M
with u € {O0}%,

o fM(Xy,Xo,...,Xn) is undefined iff M loops on xy#Xxo# . .. #Xp, Of
rejects xi#xo# . . . #Xm,
« Notice that M—f1 coincides with M—f.
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| Recursion Theorem | m

Definition
Let m € N. A function fZ is a computable function if there exists
M €7V such that fZ = M—f; otherwise, fZ is incomputable.

To use Turing Machines as computers of m-argument integer
functions, we assume these machines work with the unary-based
representation of integers by analogy with one-argument integer
functions computed by these machines.

Definition

Let M emyV¥, m € N, and fZ be an m-argument function from

Ay x---x Apto N, where A; =N, forall 1 </ < m. M computes f iff
this equivalence holds

(X1, ...,Xm) =y iff (unary(x1)# ... #unary(xn), unary(y)) € M—f
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| Kleene’s s — m — ntheorem i

Kleene’'s s — m — ntheorem says that for all m, n € N, there is a total
computable function s of m + 1 arguments such that
iM=FTE0(X o Xy YAy -+ o3 Vi) =s(ixnxn) M2, -, yn) for all
iaX17-~-,Xm,Y17~~7Yn-
e That is, the number of arguments is lowered, yet the same
function is computed.

Theorem

For all i, m, n € N, there is a total computable (m + 1)-argument
function s+ such that

IM_fLJ’_n(X'I y oo Xmy y1 gooo 7yn) :sL“(i7x17__7xm) M_fﬂ(y1 P 7yn)-

Theorem represents a powerful tool for demonstrating closure
properties concerning computable functions.
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| Kleene’s s—m—n theorem il

Proof idea

o Construct a Turing machine S €1V and demonstrate that
S-fm+1 satisfies the properties of s”*! stated in previous
Theorem.

e Thus, we just take ™! = S-f™*1 to complete the proof.
Construction of S
o Leti;m neN.

e Construct a Turing machine S €1,V so S itself constructs
another machine in 7V and produces its index in ¢ as the
resulting output value.
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| Kleene’s s—m—n theorem il

Properties of S—f"+1)

« Consider the (m + 1)-argument function S—"") computed by S
constructed above.

o S maps (i, x1, ..., Xn) to the resulting output value equal
to the index of M[i, x1,..., Xm] in C.
o M[i,x,...,Xxn] computes ;M—fTL0(xq, ... Xm, Y1,---,¥n) ON

every input (y1, ..., ¥n), where ;M—f™" denotes the
(m -+ n)-argument computable function.

e Thus,
il\/,_fm()ﬂ, ‘e ,Xm,y1, e ,yn) :]Wﬂ(y‘l g ,yn) :s_fLH(i7X17u->Xm)
M—f2(y1, ..., ¥n)-

o Therefore, to obtain the total computable (m + 1)-argument
function s+ satisfying previous Theorem, set s”+! = S— fm+1,

This theorem represents a powerful tool for demonstrating closure
properties concerning computable functions.
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| Kleene’s s—m—n theorem | o

« Consider a total computable 2-argument function g2 such that
iM—f(jM—f(x)) =g (i jy M—f(x) for all i, j, x € N.

« Define the 3-argument function h® as h*(i, j, x) = M—f(;M—f(x))
forall i,j, x € N.
e Introduce a Turing Machine H that computes /2 so it works on
every input x as follows:
©® H runs ;M on x,
® if jM—f(x) is defined and produced by H in (1), H runs ;M on
iM—f(x),
J
@ if iM—f(;M—f(x)) is defined, H produces ;M—f(;M—f(x)), so H
computes jM—f(;M—f(x)).
Thus, h® is computable.
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| Kleene’s s—m—n theorem il

Example (cont.)
e Let h° be computed by M in (. Thatis, (M2 = h.
e There is a total computable function s such that
ki yM—F(X) =xM—13(i.j, x) for all i, j, x € N.
e Set g2(i,)) = s3(k, i,j) forall i,j € N.
e Thus, ,M—f(;M—f(x)) =sk,ijy M=f(X) =g jy M—f(x), for all
i,j,x € N.
So, the composition of two computable functions is again computable,

so the set of computable one-argument functions is closed with
respect to composition.
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Thank you for your attention!
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