
Recursion Theorem
and Kleene’s s−m−n Theorem

Martin Čermák, Jiří Koutný and Alexander Meduna
Deparment of Information Systems

Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science

FRVŠ MŠMT FR2581/2010/G1



Part I

Recursion Theorem and Kleene’s
s−m−n Theorem

Recursion Theorem and Kleene’s s−m−n Theorem 2 / 13



Recursion Theorem

• Consider any total computable function γ over N and apply γ to
the indices of Turing Machines in ζ.

• There necessarily exists n ∈ N, customarily referred to as a fixed
point of γ, such that nM and γ(n)M compute the same function.

• That is, in terms of ξ, nM−f =γ(n) M−f .

Theorem
For every total computable function γ over N, there is n ∈ N such that
nM−f =γ(n) M−f in ξ.

The recursion theorem is a powerful tool frequently applied in the
theory of computation.

Recursion Theorem and Kleene’s s−m−n Theorem 3 / 13



Recursion Theorem

Generalization to the m-argument function M−f m computed by
M ∈TMΨ.

Definition
Let M ∈TMΨ. The m-argument function computed by M is denoted by
M−f m and defined as

M−f m = {(x , y)|x ∈ 4∗,occur(x ,#) = m − 1, y ∈ (4− {#})∗,
�Ix�⇒∗ ��yu� in M,u ∈ {2}∗}

That is
• f m(x1, x2, . . . , xm) = y iff �Ix1#x2# . . .#xm�⇒∗ ��yu� in M

with u ∈ {2}∗,
• f m(x1, x2, . . . , xm) is undefined iff M loops on x1#x2# . . .#xm or

rejects x1#x2# . . .#xm,
• Notice that M−f 1 coincides with M−f .

Recursion Theorem and Kleene’s s−m−n Theorem 4 / 13



Recursion Theorem

Definition
Let m ∈ N. A function f m is a computable function if there exists
M ∈TMΨ such that f m = M−f m; otherwise, f m is incomputable.

To use Turing Machines as computers of m-argument integer
functions, we assume these machines work with the unary-based
representation of integers by analogy with one-argument integer
functions computed by these machines.

Definition
Let M ∈TMΨ,m ∈ N, and f m be an m-argument function from
A1 × · · · × Am to N, where Ai = N, for all 1 ≤ i ≤ m. M computes f m iff
this equivalence holds

f m(x1, . . . , xm) = y iff (unary(x1)# . . .#unary(xm),unary(y)) ∈ M−f m

Recursion Theorem and Kleene’s s−m−n Theorem 5 / 13



Kleene’s s −m − n theorem

Kleene’s s −m − n theorem says that for all m,n ∈ N, there is a total
computable function s of m + 1 arguments such that
iM−f m+n(x1, . . . , xm, y1, . . . , yn) =s(i,x1,...,xm) M−f n(y1, . . . , yn) for all
i , x1, . . . , xm, y1, . . . , yn.

• That is, the number of arguments is lowered, yet the same
function is computed.

Theorem

For all i ,m,n ∈ N, there is a total computable (m + 1)-argument
function sm+1 such that
iM−f m+n(x1, . . . , xm, y1, . . . , yn) =sm+1(i,x1,...,xm) M−f n(y1, . . . , yn).

Theorem represents a powerful tool for demonstrating closure
properties concerning computable functions.

Recursion Theorem and Kleene’s s−m−n Theorem 6 / 13



Kleene’s s−m−n theorem

Proof idea
• Construct a Turing machine S ∈TMΨ and demonstrate that

S−f m+1 satisfies the properties of sm+1 stated in previous
Theorem.

• Thus, we just take sm+1 = S−f m+1 to complete the proof.
Construction of S

• Let i ,m,n ∈ N.
• Construct a Turing machine S ∈TMΨ so S itself constructs

another machine in TMΨ and produces its index in ζ as the
resulting output value.

Recursion Theorem and Kleene’s s−m−n Theorem 7 / 13



Kleene’s s−m−n theorem

Properties of S−f (m+1)

• Consider the (m + 1)-argument function S−f (m+1) computed by S
constructed above.

• S−f (m+1) maps (i , x1, . . . , xm) to the resulting output value equal
to the index of M[i , x1, . . . , xm] in ζ.

• M[i , x1, . . . , xm] computes iM−f m+n(x1, . . . , xm, y1, . . . , yn) on
every input (y1, . . . , yn), where iM−f m+n denotes the
(m + n)-argument computable function.

• Thus,
iM−f m+n(x1, . . . , xm, y1, . . . , yn) =jM−f n(y1, . . . , yn) =S−f m+1(i,x1,...,xm)

M−f n(y1, . . . , yn).
• Therefore, to obtain the total computable (m + 1)-argument

function sm+1 satisfying previous Theorem, set sm+1 = S− f m+1.
This theorem represents a powerful tool for demonstrating closure
properties concerning computable functions.

Recursion Theorem and Kleene’s s−m−n Theorem 8 / 13



Kleene’s s−m−n theorem

Example

• Consider a total computable 2-argument function g2 such that
iM−f (jM−f (x)) =g2(i,j) M−f (x) for all i , j , x ∈ N.

• Define the 3-argument function h3 as h3(i , j , x) =iM−f (jM−f (x))
for all i , j , x ∈ N.

• Introduce a Turing Machine H that computes h3 so it works on
every input x as follows:

1 H runs jM on x ,
2 if jM−f (x) is defined and produced by H in (1), H runs iM on

jM−f (x),
3 if iM−f (jM−f (x)) is defined, H produces iM−f (jM−f (x)), so H

computes iM−f (jM−f (x)).

Thus, h3 is computable.

Recursion Theorem and Kleene’s s−m−n Theorem 9 / 13



Kleene’s s−m−n theorem

Example (cont.)

• Let h3 be computed by k M in ζ. That is, k M−f 3 = h.
• There is a total computable function s such that

s3(k,i,j)M−f (x) =k M−f 3(i , j , x) for all i , j , x ∈ N.

• Set g2(i , j) = s3(k , i , j) for all i , j ∈ N.
• Thus, iM−f (jM−f (x)) =s3(k,i,j) M−f (x) =g2(i,j) M−f (x), for all

i , j , x ∈ N.

So, the composition of two computable functions is again computable,
so the set of computable one-argument functions is closed with
respect to composition.

Recursion Theorem and Kleene’s s−m−n Theorem 10 / 13



References

Wayne Goddard.
Introducing the Theory of Computation.
Jones Bartlett Publishers, 2008.

Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani.
Introduction to Automata Theory, Languages, and Computation.
Addison Wesley, 2006.

Dexter C. Kozen.
Automata and Computability.
Springer, 2007.

Dexter C. Kozen.
Theory of Computation.
Springer, 2010.

John C. Martin.
Introduction to Languages and the Theory of Computation.
McGraw-Hill Science/Engineering/Math, 2002.

Recursion Theorem and Kleene’s s−m−n Theorem 11 / 13



Thank you for your attention!



End


	Recursion Theorem and Kleene's s-m-n Theorem
	References


