String-Partitioning Systems and An Infinite Hierarchy

Zbynék Kfivka *
krivka@fit.vutbr.cz

Rudolf Sclbnecker
schonec@fit.vutbr.cz

Abstract: This paper introduces and discusses string-partitioning systems. This formalization
consists of partitioning the rewritten string into several parts, which the systems rewrite by rules
that specify to which part they are applied. Based on the number of parts, the present paper estab-
lishes an infinite hierarchy of language families that coincides with the hierarchy resulting from
the programmed grammars of finite index, so these systems actually represent a counterpart to
these grammars. In its conclusion, this paper suggests some open problem areas.

Keywords: string-partitioning systems; programmed grammars; finite index; infinite hierarchy.

1 Introduction

As opposed to classical formal models, which are classifiable under their main properties into
two groups - generative grammars or accepting automata, string-partitioning systems is a formal
model, that has properties from both - it is an accepting device that uses states to control its
computation.

However, M works with strings divided into several parts by a special bounder syr#hol,
During each computational step, the system rewrittes an occurregewvith a string, possibly
containing othe#s, and, thereby, rearrange the string division. If used in this way, starting from
#, M yields a stringe containg no#, z is in the language al/.

Based on this simple rewriting mechanism, we demonstrate that these automata give rise
to an infinite hierarchy of language families based on the number of parts of the rewritting
strings. More precisely, the systems that divide their strings into no morentpants are less
powerful than the systems that make this division up tp 1 parts, for alln > 1. In addition,
we demonstrate that this hierarchy coincides with the hierarchy resulting from the programmed
grammars of index, for alln > 1 (see analogy with matrix grammars of finite index — page 160
in [1]). In this sense, the string-partitioning systems represent a counterpart to these grammars,
which has lacked any automata counterpart of this kind so far; in this sense, the present paper
fills this gap.

In its conclusion, this paper suggests some variants of string-partitioning systems to study
in the future.

2 Preliminaries
This paper assumes that the reader is familiar with the formal language theory (see [2]). For a
set,@, card(Q) denotes the cardinality @). For an alphabel/, V* represents the free monoid

* Department of Information Systems, Faculty of Information Technology, Brno University of Technology,
BoZegchova 2, 612 66 Brno, Czech Republic

generated by under the operation of concatenation. The identity/6fis denoted by. Set
V+ =V*—{e}, algebraicallyl* is thus the free semigroup generatedbynder the operation
of concatenation. Fow € V*, |w| denotes the length af, and foriW C V, occur(w, W)
denotes the number of occurrences of symbols fi@nin w and sym(w,) denotes the-th
symbol ofw; for instance sym(abed, 3) = c.

A context-free grammais a quadruple(= (V,T, P,S), whereV is a total alphabet,
T C V is an alphabet of terminals;, € (V' — T') is the start symbol, ané is a finite set of
rules of the formg: A — v, whereA € (V —T), v € V* andq is a label of this rule. If
q: A— v e P,x,y e V* G makes a derivation step from!y to zvy according tay: A — v,
symbolically written astAy = zvy [¢: A — v] or, simply,zAy = zvy. In the standard
manner, we define>™, wherem > 0, =%, and=*. Thelanguage ofG, L(G), is defined as
L(G) ={w e T* | S =* w}. Alanguage/., is context-freéf and only if L = L(G), whereG
is a context-free grammar.

Forp € P, rhs(p) andihs(p) denotes right-side and left-side handle of ruleespectively,
lab(p) denotes label of rule and for set of rules?, lab(P) denotes set of all labels of rules
from P.

A programmed grammafsee page 28 in [1]) is a quadrupte,= (V, T, P, S), whereV is
a total alphabet]” C V is an alphabet of terminals, € (V' — T') is the start symbol, an# is
a finite set of rules of the form: A — v, g(¢q), whereq: A — v is a context free rule labeled
by ¢ andg(q) is a set of rule labels associated with this rule. After an application of a rule of
this form in an ordinary context way, in the next step a rule labeled by a label Jtgirhas
to be applied. Thus’ makes a derivation step, symbolically denoted=byby analogy with a
context-free grammar. In the standard manner, we defifiewherem > 0, =7, and=*. The
language of7, L(G), is defined ad.(G) = {w € T* | S =* w}.

Let G be a programmed grammar, and Tetand S be its terminal alphabet, and axiom,
respectively. For a derivatioh: S = w; = wy, = - = w, = w € T*, wherer > 1,
according toG, we set/nd(D, G) = max {occur(w;,V —T) | 1 <i < r}, and, forw € T*,
we definelnd(w, G) = min {Ind(D, Q) | D is a derivation forw in G}. Theindex of grammar
(see page 151 in [1]F is defined agnd(G) = sup {Ind(w, G) | w € L(G)}. For alanguagé
in the family £(X) of languages generated by grammars of some ypee definelndx (L) =
inf {Ind(G) | L(G) = L, G is of typeX }. For a familyL(X), we set,,(X) = {L | L € L(X)
andIndx(L) <n},n>1landL,(X) = U L.(X).

n>1

3 Definitions

Let I be a set of positive integefd, 2, ..., k}. A string-partitioning systenis a quadruple
H = (Q,X,s, R), where(is a finite set of states}’ is an alphabet containing a special
symbol,#, called abounder s € () is a start state ant C @) x I x {#} x Q x X* is afinite
relation whose members are calledes A rule (¢, n, #,p,z) € R, wheren € I, ¢,p € Q and
x € X* is written as: ¢,# — px hereafter, where is unique label and can be omitted.

A configurationz of H is a stringe € Q(X U {#})*.

H makes alerivation stefrom pu#tv to quzv by usingr: p,# — qx, whereoccur(u, #) =
n — 1, symbolically writtenpu#v = quzv [r] in H or simply pu#v = quzv.

Let="* denote the transitive and reflexive closuref Thelanguage derivethy H, L(H),
is defined as

LH) ={w|s# =" qu, € Qw € (¥ — {#})"}.

A string-partitioning systent/ is of indexk, if for every configurationyx, s# =* gz holds
occur(z, #) < k.

Example1.H = ({s,p,q, f},{a,b,c,#}, s, R), whereR contains:

1. s — p##
2. pi# — qa#tb
3. qott — p #c
4. pwt — fab
S. f#t— fc

L(H) = {a™"c" | n > 1}, holds thatind(H) = 2.
Example of a derivation resulting stringabbbcce: s# = p## [1] = qa#b# [2] =
pa#b#c [3] = qaa#bb#c 2] = paa#bb#cc (3] = faaabbb#cc [4] = faaabbbeee [5].

Let £, (SPS), andL, (P, CF) denote the families of languages derived by string-partition-
ing systems, and programmed languages of index > 1, based on context-free grammar,
respectively.

4 Results

This section establishes an infinite hierarchy of language families resulting from the string-
partitioning systems defined in the previous section.

Lemmal.Foreveryk > 1, L (P,CF) C Ly (SPS)
Letk > 1. For every programmed grammar of indexG, there is a string-partitioning system
of indexk, H, such thatl,(G) = Li(H).

Construction.Let £ > 1 be a positive integer. Let = (V, T, P, S) is programmed grammar
of index k, where N = V — T. Introduce the string-partitioning system of indexH =
(Q, T U{#},s,R), where# ¢ T, s = (o), o is a new symbolR and(are constructed by
performing the following steps:

1. Foreaclp: S — a € P,a € V*, add(o)1# — ([p])# to R, ([p]) is new state ir)
2. If AjAy. A L A, e NS e {1,2,... k) pr Aj —xoBix Baxs . .. 2y 1 Bpy, g(p) €
P,je{1,2,... h}forn>0,z9,2, € T*, B, € N,1 <t <nandn+ h—1<k,then
(a) if g(p) = @, then <A1A2 Ce Aj—l Lp]Aj-i-l - Ah>, <A1A2 ...By...B, ... Ah> are new
statesin) andtherul€A; Ay ... A; 1 [p|Ajs1 ... Ap)# — (A1As ... By ... By ... Ay)
ToHTy ... Th_1#x, 1S added taR

(b) for everyq € g(p), q: Dg—a, o € V* add new statesA; A, ... Aj_1[p]Aj11... Ap)
and(D1D5...[q] ... D,ir_1) to Q and add the following rule to R:
<A1A2 e Aj—l [P]Aj—kl Ce Ah>j# — <D1D2 e [q] Ce Dn+h_1>l’0#l’1 . Ty
WherEAl o Aj—lBl . BnAj—l—l o Ah = D... Dh+n—11 B,...B, = Dj ... Dj+n—1
forsomed € {1,2,...,n+h —1}.

Basic Idea.The information necessary for the simulation is recorded inside of states. Bigery
state label carries string of nonterminals frayri where one symbol of this string is replaced
by Pg’s rule label.

Let us have a configuratiomyA;z; ...x,_1Apz, IN SOMe programmed gramméi
(N,T,P,S) of indexk, wherez; € T*for0 < i < h < kandA, € Nforl <[<
and letp: A; — « is applicable in the next step to the nontermida) 1 < j < h.

Then, new configuration of equivalent string-partitioning systéns of the form
(A1As ... Ajq[plAjr .. Ap)xo#ay . ..z, #xp, and encodes simulated nonterminalsiis
sentential form and next applicable rule label.

h,

Clam?z2 If § =™ IOA1[E1A2[E2 ce ZL’n_lAhJ]h inG, then<0’># =" <A1A2 ce Ah>l’0#l’1 LTy
[q1q2 ... ¢-]in H,form > 0,r > 1.Forg(q,) # 0 existsaruley.1: A; — yoBiy1 - .. Yyn—1Bnyn,
n+h-—1 < ka Gr+1 € g(Qr) andAj = [QT—H]a Qi qr;Qr41 € lab(R)

Proof. This claim is established by induction en

Basis Letm = 0. For S = S in G there existgo)# ="' ([p])# in H, wherep: S — a € P
and(o)1# = ([p))# € R.

Induction HypothesisSuppose that Claim 2 holds for all derivations of lengthor less for
somem > 0.

Induction StepConsiderS =" y [p1p2 . . . pm], Wherey = xg Az ... 21 Apzpandpy, . .. P,
Pm+1 € lab(P) so thaty = x [py]. If m = 0, thenp,,.1 € {p | lhs(p) = S,p €
lab(P)} otherwisep,,+1 € ¢(pm). FOr pmi1: A; — YoBiv1 - .. Yn—1Byyn IS x in the form:
T = ZL’()AlZEl e Aj_lxj_lyOBlyl e Un—1 BnynxjAj—i-l e ZL’h_lAhl’h, for Loy, Th € T and
Yo,---,Yn € T*. Based on the induction hypothesis, there exists the derivatipft ="
(A1Ag . A4 [Pms1]Ajer - Ap)xoFar . o (G2 - - @) =

(A1Ag .. A; 1By ... ByAjr . AR To# - HT i YoFE - FYnZ i FE - FHX (@], T > 1, g €
lab(R), 1 < i < r+ 1. If g(pms1) # 0, then exists a rule,,.» € g(p,+1) and a sequence
DD, ... Dn+h—1 SO thatA1A2 c Aj—lBl R BnAj+1 ce Ah = DiD,... Dn+h—11 where for
atmostonel € {1,2,...,n+h —1}iS Dy = [¢r+2], @r+2 € 9(qrs1)-

Claim 3 If S =* xin G, then(o)# =" ()= in H for somez > 0,z € T™.

Proof. Consider Claim 2 withh = 0. At this point, if S =* z, then(o)# =* ()z, and so
Lo = T.

Lemmad4.For everyk > 1, L, (SPS) C Lx(P,CF)
Letk > 1. For every string-partitioning system of indéx H, exists equivalent programmed
grammar of index, G, such thatl,(G) = L,(H).

Construction.Letk > 1 be a positive integer. Lél = (Q, TU{#}, s, R) is string-partitioning
system of indext, whereX = T U {#}. Introduce the programmed grammar of index
G = (V,T, P, S), where the sets of nonterminals = V' — T and rulesP are constructed as
follows:

1. P =40,

2.8 =(s,1,1),

BN=A{{p,i,h) |pe@,1<i<k1<h<ki<htU{{,i,h)|qe@,1<i<Ek,
1<h<ki<h}tU{{¢",i,h)|qe@,1<i<k 1<h,i<h<k},

4. Foreveryrule: p# — qy € R,y = Yo#Y1 - - - Ym-1HYm> Yo, Y1, Y2 - - - Ym € T, 1f m =0,
thenh,,.. = k elseh,,.. = k —m + 1, add the following set t@:

(I) {<p7.]7h> - <q,’jah+m_1>7

{r'| if j+1=1ithenr": (p,i,h) — (¢",i,h+m —1)elser’: (p,j+1,h) —
(d,j+1L,h+m-1)}

11<j<i,i<h<
U
(“) {<p,Z,h> - <q//ai7h+m_ 1>7

{r'| if i =h,thenr’: (¢",i,h+m —1) — yo(¢,i,h+m — V(¢ i+ 1,h+
m—Dys... Ym1(qd,i+m—1,h+m— 1)y, elser’: (p,i+1,h) —
(d,i+14+m—1,h+m-—1)}

|1 < B < has
U
i) {(p,g.h) — {¢,j+m—1,h+m—1),

{r'| if j =h,thent’: (¢",i,h+m —1) — yo(¢',i,h+m — D)y (¢, i+ 1,
h4+m—1ys ... Ym_1(¢,i+m—1,h+m— 1)y, elser': (p,7+1,h) —
(d,7+14+m—1h+m-—1)}

i< <hi <h <)
U

(IV) {<qﬂ7iah+m—1> _>y0<q/7i7h+m_1>y1<q,7i+17h+m_1>y2---ymfl<q/7i+
m—1,h+m—1)yn,

{r'|r": (¢, 1,h+m—1) — (¢, 1,h+m—1)}

|1 < h < Pinaa)
U
(V) {<q,7jah+m_1> _><Q7jah+m_1>:

{r'"|ifj<h+m—1,then’: (¢,j+1,h+m—1) — (¢,j+1,h+m—1)
elser’: (p,1,h+m—1) —(¢,1,h+m —1+m — 1), where
Pitt — QoHYL - - Un1#Um € R, Yo, U1, -, Um €T, 11 =1,
theng = ¢"}

11<j<h+m—1,i<h< hpal

Basic Idea.Inside of every nontermindb, i,) in programmed grammar occurring in a sen-
tential form, we record

(1) p—current state of simulated string-partitioning system (the same in first and last simulation
stage);

(2) i—the position of the bounder occurrence in the sentential form

(3) h—the total number of all bounders in the simulated sentential form.

From these three pieces of information and the gel associated wittp, we find out
whetherp is applicable in the next step, and if so, we simulate the step by rules introduced
in 41 step of the above construction as follows:

(a) inside of all nonterminals in the sentential form, chahdge h + m — 1, wherem is the
number of nonterminals occurring on the right-hand sidg, ab/ + m — 1 is the number
of nonterminals after the application p{see (i) through (iii));

(b) in the nonterminals that follow the rewritten nonterminal, change their position so it corre-
sponds to the position after the applicatiompdtee (iii));

(c) applyp and select a rule labelfrom p's set of labelsy(p) to be applied in the next step
(see (iv));

(d) some auxiliary steps id- to finish the simulation of one derivation step from string-
partitioning systent{ (see (v)).

Claim5 If (o)# = (D) yo#Y1 - - - Yn—1#yn In H, thenS =* yoA1y; ... Y14y, In G for
somec > 0.

Proof. BasisLetc = 0. For (o)# =" (0)# in H there existss =° S in G.

Induction HypothesisSuppose Claim 5 holds for all derivations of lengtbr less for some
c>0.

Induction StepConsider(o)# =° (D)yo#y1 ... yn [r1r2... 7] IN H,rp € lab(R), 1 <t < ¢
andr..1: (0);# — (W)xoF#xy ... Ty 1#Tm € R, xo, ..., 2, € T* S0 that{(W)yo# . .. #yn =
(WyoH - . HyiaxoFto# .. #rnyittyia# - . #yn [rer1]. Based on Claim 5 there ex-
ists also a derivatio®,,, : yoA; ... Apyn =" YoA1ysr ... yi1xoB1x1 ... BTy Ai1 - - Apyn

in G. It is shown such a derivation exists based on the construction part of the proof.

Let us have a formy, A,y ... Axy,. Rename nonterminal, to (J, ¢, h) for 1 <t < h and get
a base formyy (¥, 1, h)y1 . . . yn—1 (9, h, h)y, which starts the simulation of thB, .. derivation.
This simulation must come out of continuous application of constructidhigem.

(4i) V5 : 1 < j < iapplyrulesof the formip, j, h) — (¢, j,h +m — 1):
F, = y0<19, 17 h>y1 e yh_1<19, h7 h>yh = y0<w’, 1, h+m — 1>y1<19, 27 h>y2 e Yn—1
(0, h, hyyp, =2 yo(', L,h+m — Dyp ...y o(w'si — 1L, h+m — Dy 1 (9,4, h)
Yi - Yn—1(0, hy hyyn = Fy

(4ii) apply (p, i, h) — (¢",i,h +m — 1):

F2 = y()(w’, 1, h+m — 1>y1 c. yi,1<w”, i, h+m — 1>yz .. .yh,1<19, h, h> = Fg.
If i = h, thenF} := F3 and continue with [4iv] otherwise with [4iii].

(4ii)) Vj:1 < j < happly rules of the formp, j,h) — (¢/,j+ m —1,h+m — 1):

Fs =y, L,h+m — Dy ...y;0(w,i — 1L,h+m— 1)y, (", i, h +m — L)y,
(Witm,h+m—1) g1 (9,5 +2, h)yiva ... yn_1(0, b, W)y =" yolo', 1, h+m—1)
Y- Yot (Wi h+m = Dy -y (W h+m =L h+m— Ly, = F,

(4iv) apply(q",i,h+m — 1) — yo(¢'si,h+m — D)y1 ... Ym_1{¢ i+ m — 1L, h +m — Dy,:
Fy =y, L,h+m — Dy ... yiqxo{, i, h +m — Dy .oy (Wi +m — 1,h +
m—Dx,yi. . .y (W, h+m—1h+m— 1y, = F;

(4v) Vj : 1 <j < h+m— 1apply rules of the form¢’, j,h +m — 1) — (¢, 5, h + m — 1):
Fy =M=l yolw, 1, h+m—Dy; ... yizol{w, i, h+m— 1Dz .. 2y (w,i+m—1,h+
m— D,y .. yp_1{w,h+m —1,h+m — 1)y, = Fs (Final form)

Rename all nonterminals of the forfw,t,h + m — 1) in Fs to A, for 1 < ¢t < i,
(w,it,h +m — 1) to By_jy fori < t < i+ m—1, (w,t,h + m — 1) to A,y for
i+m<t<h+m-—1. We have ObtainegjoAlyl . %—1%311’1 e BmxmyiAi—l-l R Ahyh-

Claim 6 If (o)# =* ()y in H, thenS =* y for somez > 0.
Proof. This claim follows from Claim 5 withh = 0 andy = .
Theorem 7.Infinite hierarchyL,(SPS) C L1 (SPS) holds for everys > 1.

Proof. L,.(P,CF) = L,(SPS) follows from Lemma 1 and Lemma 4. Then, Theorem 7 fol-
lows from L, (P,CF) = L(SPS) and theorenCy(P,CF) C Ly+1(P,CF), for everyk > 1
which is an analogy to Theorem 3.1Z;,(M,CF) C Ly1(M,CF)in[1], page 161.

5 Conclusion

There was presented a basic variant of the string-partitioning system of indsxa com-
pletely new concept of rewriting mechanism. The entire system uses only special symbol (called
bounder) and rewriting rules contain an index specifying which bounder in the sentential form
will be rewritten. The family of languages generated by string-partitioning systems of index
was described and classified.

We would like to mention here also some other variants of the string-partitioning systems
as an open field for the next investigation.

5.1 Deterministic variant

A string-partitioning system of indekis calleddeterministicif for every two rules-; : p; # —
@z andry: py # — gy holds if p; = p,, theni # 5. We can also mention trerict determin-
istic form, which suppose, that for every two rule®is# p-.

5.2 Accepting variant

Let H = (Q, X, s, R) be a string-partitioning system of indéx H is calledaccepting string-

partitioning systemif accepts given language through series of reductiinakes aeduction

stepfrom quxv to pu#v by usingr: p,# F gz, symbolically writtenguxv E pu#v [r] in H or

simply quzv F pu#v. LetF* denote the transition and reflexive closuré=pfespectively.
Thelanguage reducelly H, L(H), is defined as

L(H) =A{w | quF" s#, ¢ € Q,w € (¥ —{#})"}.

ConsiderM = ({s,p,q, [}, {a,b,c, #}, s, R) from Example 1. Example of accepting vari-
ant is given in reduction of stringaabbbcee: faaabbbece E - faaabbb#cce [5] E paa#tbb#ce

[4] F qaa#bbitc [3] F pa##bitc [2] F qaztbit 3] F p## [2] F s# [1].

5.3 Parallel variant

Let I be a set of positive integefd, 2, ..., k}. A parallel string-partitioning systers a quin-
tuple H = (Q, X, s, P, R), where@, X and s are defined in the same manner as previously,
P C I x X*is afinite relation containing items callednple rulesthat are written in the form
As— x,n € I,z € X*, hereafter,R C Q x 2F x @ is a finite relation with a condition:
for each rule(p, F,q) € R, p,q € Q, F € 2" holds, that for every two simple rulesd € F,

ct i FHs— T dt Fs— Tq 1S F ig.

Arulet = (p;, {r1,...,mm},q) € R is applicable to the configuratign, p € Q, = € X*,
if and only if p = py, occur(x, #) > i;, for1 < j < m, wherer;: ; # .— y;.

H makes a derivation step frop to quv by usingt = (p, {rl} .., Tm},q), symbolically
written pu .= qu [t] in H, if ¢ is applicable to theu and basic rules, ..., r,, are applicated
to u and statey is changed ontg.

Consider parallel string-partitioning system of indeas a direct analogy of basic variant of
string-partitioning system of indek, then the paragraph descripting the rule-applicability has
to be extended with the conditiercur(xz, #) — m + >_,", occur(y;, #) < k.

Let ,,=" denote the transitive and reflexive closure,gf-. Thelanguage derivedy H,
L(H, ,4=), is defined as

L(H, pd:>) = {w ’ 87é/é}711:>>k qu, q € Qaw € (Z - {#})*}

Acknowledgements

The authors acknowledge the support of FRVSMT grant FR1909/2006/G1.

Bibliography

1. J. Dassow, Gh.&un:Regulated Rewriting in Formal Language ThedBpringer, New York, 1989.

2. A. MedunaAutomata and Languages, Theory and Applicati@xinger, London, 2000.

3. T. Kasai: A Hierarchy Between Context-Free and Context-Sensitive Languagésuinal of Com-
puter and System Scienc&slume 4, 1970.

