
String-Partitioning Systems and An Infinite Hierarchy

Zbyněk Křivka ?

krivka@fit.vutbr.cz

Rudolf Scḧonecker?

schonec@fit.vutbr.cz

Abstract: This paper introduces and discusses string-partitioning systems. This formalization
consists of partitioning the rewritten string into several parts, which the systems rewrite by rules
that specify to which part they are applied. Based on the number of parts, the present paper estab-
lishes an infinite hierarchy of language families that coincides with the hierarchy resulting from
the programmed grammars of finite index, so these systems actually represent a counterpart to
these grammars. In its conclusion, this paper suggests some open problem areas.

Keywords: string-partitioning systems; programmed grammars; finite index; infinite hierarchy.

1 Introduction

As opposed to classical formal models, which are classifiable under their main properties into
two groups - generative grammars or accepting automata, string-partitioning systems is a formal
model, that has properties from both - it is an accepting device that uses states to control its
computation.

However,M works with strings divided into several parts by a special bounder symbol,#.
During each computational step, the system rewrittes an occurrence of# with a string, possibly
containing other#s, and, thereby, rearrange the string division. If used in this way, starting from
#, M yields a stringx containg no#, x is in the language ofM .

Based on this simple rewriting mechanism, we demonstrate that these automata give rise
to an infinite hierarchy of language families based on the number of parts of the rewritting
strings. More precisely, the systems that divide their strings into no more thann parts are less
powerful than the systems that make this division up ton + 1 parts, for alln ≥ 1. In addition,
we demonstrate that this hierarchy coincides with the hierarchy resulting from the programmed
grammars of indexn, for all n ≥ 1 (see analogy with matrix grammars of finite index – page 160
in [1]). In this sense, the string-partitioning systems represent a counterpart to these grammars,
which has lacked any automata counterpart of this kind so far; in this sense, the present paper
fills this gap.

In its conclusion, this paper suggests some variants of string-partitioning systems to study
in the future.

2 Preliminaries

This paper assumes that the reader is familiar with the formal language theory (see [2]). For a
set,Q, card(Q) denotes the cardinality ofQ. For an alphabet,V , V ∗ represents the free monoid
? Department of Information Systems, Faculty of Information Technology, Brno University of Technology,

Božeťechova 2, 612 66 Brno, Czech Republic

generated byV under the operation of concatenation. The identity ofV ∗ is denoted byε. Set
V + = V ∗−{ε}; algebraically,V + is thus the free semigroup generated byV under the operation
of concatenation. Forw ∈ V ∗, |w| denotes the length ofw, and forW ⊆ V , occur(w, W)
denotes the number of occurrences of symbols fromW in w andsym(w, i) denotes thei-th
symbol ofw; for instance,sym(abcd, 3) = c.

A context-free grammaris a quadruple,G = (V, T, P, S), whereV is a total alphabet,
T ⊆ V is an alphabet of terminals,S ∈ (V − T) is the start symbol, andP is a finite set of
rules of the formq : A → v, whereA ∈ (V − T), v ∈ V ∗ andq is a label of this rule. If
q : A → v ∈ P , x, y ∈ V ∗, G makes a derivation step fromxAy to xvy according toq : A → v,
symbolically written asxAy ⇒ xvy [q : A → v] or, simply,xAy ⇒ xvy. In the standard
manner, we define⇒m, wherem ≥ 0, ⇒+, and⇒∗. The language ofG, L(G), is defined as
L(G) = {w ∈ T ∗ | S ⇒∗ w}. A language,L, is context-freeif and only if L = L(G), whereG
is a context-free grammar.

Forp ∈ P , rhs(p) andlhs(p) denotes right-side and left-side handle of rulep, respectively,
lab(p) denotes label of rulep and for set of rulesP , lab(P) denotes set of all labels of rules
from P .

A programmed grammar(see page 28 in [1]) is a quadruple,G = (V, T, P, S), whereV is
a total alphabet,T ⊆ V is an alphabet of terminals,S ∈ (V − T) is the start symbol, andP is
a finite set of rules of the formq : A → v, g(q), whereq : A → v is a context free rule labeled
by q andg(q) is a set of rule labels associated with this rule. After an application of a rule of
this form in an ordinary context way, in the next step a rule labeled by a label fromg(q) has
to be applied. ThusG makes a derivation step, symbolically denoted by⇒, by analogy with a
context-free grammar. In the standard manner, we define⇒m, wherem ≥ 0,⇒+, and⇒∗. The
language ofG, L(G), is defined asL(G) = {w ∈ T ∗ | S ⇒∗ w}.

Let G be a programmed grammar, and letT , and S be its terminal alphabet, and axiom,
respectively. For a derivationD : S = w1 ⇒ w2 ⇒ · · · ⇒ wr = w ∈ T ∗, wherer > 1,
according toG, we setInd(D, G) = max {occur(wi, V − T) | 1 ≤ i ≤ r}, and, forw ∈ T ∗,
we defineInd(w, G) = min {Ind(D, G) |D is a derivation forw in G}. Theindex of grammar
(see page 151 in [1])G is defined asInd(G) = sup {Ind(w, G) | w ∈ L(G)}. For a languageL
in the familyL(X) of languages generated by grammars of some typeX, we defineIndX(L) =
inf {Ind(G) | L(G) = L, G is of typeX}. For a familyL(X), we setLn(X) = {L | L ∈ L(X)
andIndX(L) ≤ n}, n ≥ 1 andLfin(X) =

⋃
n≥1

Ln(X).

3 Definitions

Let I be a set of positive integers{1, 2, . . . , k}. A string-partitioning systemis a quadruple
H = (Q, Σ, s, R), whereQ is a finite set of states,Σ is an alphabet containing a special
symbol,#, called abounder, s ∈ Q is a start state andR ⊆ Q× I × {#} ×Q×Σ∗ is a finite
relation whose members are calledrules. A rule (q, n, #, p, x) ∈ R, wheren ∈ I, q, p ∈ Q and
x ∈ Σ∗, is written asr : q n# → px hereafter, wherer is unique label and can be omitted.

A configurationx of H is a stringx ∈ Q(Σ ∪ {#})∗.
H makes aderivation stepfrompu#v to quxv by usingr : p n# → qx, whereoccur(u, #) =

n− 1, symbolically writtenpu#v ⇒ quxv [r] in H or simplypu#v ⇒ quxv.
Let⇒∗ denote the transitive and reflexive closure of⇒. Thelanguage derivedby H, L(H),

is defined as
L(H) = {w | s# ⇒∗ qw, q ∈ Q, w ∈ (Σ − {#})∗}.

A string-partitioning systemH is of indexk, if for every configurationqx, s# ⇒∗ qx holds
occur(x, #) ≤ k.

Example 1.H = ({s, p, q, f}, {a, b, c, #}, s, R), whereR contains:

1. s 1# → p ##
2. p 1# → q a#b
3. q 2# → p #c
4. p 1# → f ab
5. f 1# → f c

L(H) = {anbncn | n ≥ 1}, holds thatInd(H) = 2.
Example of a derivation resulting stringaaabbbccc: s# ⇒ p## [1] ⇒ qa#b# [2] ⇒
pa#b#c [3] ⇒ qaa#bb#c [2] ⇒ paa#bb#cc [3] ⇒ faaabbb#cc [4] ⇒ faaabbbccc [5].

LetLk(SPS), andLk(P, CF) denote the families of languages derived by string-partition-
ing systems, and programmed languages of indexk, k ≥ 1, based on context-free grammar,
respectively.

4 Results

This section establishes an infinite hierarchy of language families resulting from the string-
partitioning systems defined in the previous section.

Lemma 1.For everyk ≥ 1, Lk(P, CF) ⊆ Lk(SPS)
Letk ≥ 1. For every programmed grammar of indexk, G, there is a string-partitioning system
of indexk, H, such thatLk(G) = Lk(H).

Construction.Let k ≥ 1 be a positive integer. LetG = (V, T, P, S) is programmed grammar
of index k, whereN = V − T . Introduce the string-partitioning system of indexk, H =
(Q, T ∪ {#}, s, R), where# /∈ T , s = 〈σ〉, σ is a new symbol,R andQ are constructed by
performing the following steps:

1. For eachp : S → α ∈ P , α ∈ V ∗, add〈σ〉1# → 〈[p]〉# to R, 〈[p]〉 is new state inQ
2. If A1A2 . . . Aj . . . Ah ∈ N∗, h ∈ {1, 2, . . . , k}, p : Aj →x0B1x1B2x2 . . . xn−1Bnxn, g(p) ∈

P , j ∈ {1, 2, . . . , h} for n ≥ 0, x0, xt ∈ T ∗, Bt ∈ N , 1 ≤ t ≤ n andn + h− 1 ≤ k, then
(a) if g(p) = ∅, then〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉, 〈A1A2 . . . B1 . . . Bn . . . Ah〉 are new

states inQ and the rule〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉j# → 〈A1A2 . . . B1 . . . Bn . . . Ah〉
x0#x1 . . . xn−1#xn is added toR

(b) for everyq ∈ g(p), q : Dd→α, α ∈ V ∗ add new states〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉
and〈D1D2 . . . [q] . . . Dn+h−1〉 to Q and add the following rule to R:
〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉j# → 〈D1D2 . . . [q] . . . Dn+h−1〉x0#x1 . . . xn,
whereA1 . . . Aj−1B1 . . . BnAj+1 . . . Ah = D1 . . . Dh+n−1, B1 . . . Bn = Dj . . . Dj+n−1

for somed ∈ {1, 2, . . . , n + h− 1} .

Basic Idea.The information necessary for the simulation is recorded inside of states. EveryQ’s
state label carries string of nonterminals fromN∗ where one symbol of this string is replaced
by PG’s rule label.

Let us have a configurationx0A1x1 . . . xh−1Ahxh in some programmed grammarG =
(N, T, P, S) of index k, wherexi ∈ T ∗ for 0 ≤ i ≤ h ≤ k andAl ∈ N for 1 ≤ l ≤ h,
and letp : Aj → α is applicable in the next step to the nonterminalAj, 1 ≤ j ≤ h.

Then, new configuration of equivalent string-partitioning systemH is of the form
〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉x0#x1 . . . xn−1#xh and encodes simulated nonterminals inG’s
sentential form and next applicable rule label.

Claim 2 If S ⇒m x0A1x1A2x2 . . . xn−1Ahxh in G, then〈σ〉# ⇒r 〈A1A2 . . . Ah〉x0#x1 . . . xh

[q1q2 . . . qr] in H, for m ≥ 0, r ≥ 1. For g(qr) 6= ∅ exists a ruleqr+1 : Aj → y0B1y1 . . . yh−1Bnyn,
n + h− 1 ≤ k, qr+1 ∈ g(qr) andAj = [qr+1], q1, . . . , qr, qr+1 ∈ lab(R).

Proof. This claim is established by induction onm.

Basis: Let m = 0. ForS ⇒0 S in G there exists〈σ〉# ⇒1 〈[p]〉# in H, wherep : S → α ∈ P
and〈σ〉1# ⇒ 〈[p]〉# ∈ R.

Induction Hypothesis: Suppose that Claim 2 holds for all derivations of lengthm or less for
somem ≥ 0.

Induction Step: ConsiderS ⇒m y [p1p2 . . . pm], wherey = x0A1x1 . . . xn−1Ahxh andp1, . . . , pm,
pm+1 ∈ lab(P) so thaty ⇒ x [pm+1]. If m = 0, then pm+1 ∈ {p | lhs(p) = S, p ∈
lab(P)} otherwisepm+1 ∈ g(pm). For pm+1 : Aj → y0B1y1 . . . yn−1Bnyn is x in the form:
x = x0A1x1 . . . Aj−1xj−1y0B1y1 . . . yn−1 BnynxjAj+1 . . . xh−1Ahxh, for x0, . . . , xh ∈ T ∗ and
y0, . . . , yn ∈ T ∗. Based on the induction hypothesis, there exists the derivation〈σ〉# ⇒r

〈A1A2 . . . Aj−1[pm+1]Aj+1 . . . Ah〉x0#x1 . . . xh−1#xh [q1q2 . . . qr] ⇒
〈A1A2 . . . Aj−1B1 . . . BnAj+1 . . . Ah〉x0# . . . #xj−1y0# . . . #ynxj# . . . #xh [qr+1], r ≥ 1, qi ∈
lab(R), 1 ≤ i ≤ r + 1. If g(pm+1) 6= ∅, then exists a rulepm+2 ∈ g(pm+1) and a sequence
D1D2 . . . Dn+h−1 so thatA1A2 . . . Aj−1B1 . . . BnAj+1 . . . Ah = D1D2 . . . Dn+h−1, where for
at most oned ∈ {1, 2, . . . , n + h− 1} is Dd = [qr+2], qr+2 ∈ g(qr+1).

Claim 3 If S ⇒z x in G, then〈σ〉# ⇒∗ 〈〉x in H for somez ≥ 0, x ∈ T ∗.

Proof. Consider Claim 2 withh = 0. At this point, if S ⇒z x0, then〈σ〉# ⇒∗ 〈〉x0 and so
x0 = x.

Lemma 4.For everyk ≥ 1, Lk(SPS) ⊆ Lk(P, CF)
Let k ≥ 1. For every string-partitioning system of indexk, H, exists equivalent programmed
grammar of indexk, G, such thatLk(G) = Lk(H).

Construction.Let k ≥ 1 be a positive integer. LetH = (Q, T ∪{#}, s, R) is string-partitioning
system of indexk, whereΣ = T ∪ {#}. Introduce the programmed grammar of indexk,
G = (V, T, P, S), where the sets of nonterminalsN = V − T and rulesP are constructed as
follows:

1. P = ∅,
2. S = 〈s, 1, 1〉,
3. N = {〈p, i, h〉 | p ∈ Q, 1 ≤ i ≤ k, 1 ≤ h ≤ k, i ≤ h} ∪ {〈q′, i, h〉 | q ∈ Q, 1 ≤ i ≤ k,

1 ≤ h ≤ k, i ≤ h} ∪ {〈q′′, i, h〉 | q ∈ Q, 1 ≤ i ≤ k, 1 ≤ h, i ≤ h ≤ k},
4. For every ruler : p i# → qy ∈ R, y = y0#y1 . . . ym−1#ym, y0, y1, y2 . . . ym ∈ T ∗, if m = 0,

thenhmax = k elsehmax = k −m + 1, add the following set toP :

(i) {〈p, j, h〉 → 〈q′, j, h + m− 1〉,
{r′ | if j + 1 = i thenr′ : 〈p, i, h〉 → 〈q′′, i, h + m− 1〉 elser′ : 〈p, j + 1, h〉 →

〈q′, j + 1, h + m− 1〉 }
| 1 ≤ j < i, i ≤ h ≤ hmax}
∪

(ii) {〈p, i, h〉 → 〈q′′, i, h + m− 1〉,
{r′ | if i = h, thenr′ : 〈q′′, i, h + m− 1〉 → y0〈q′, i, h + m− 1〉y1〈q′, i + 1, h +

m− 1〉y2 . . . ym−1〈q′, i + m− 1, h + m− 1〉ym elser′ : 〈p, i + 1, h〉 →
〈q′, i + 1 + m− 1, h + m− 1〉}

| i ≤ h ≤ hmax}
∪

(iii) {〈p, j, h〉 → 〈q′, j + m− 1, h + m− 1〉,
{r′ | if j = h, thenr′ : 〈q′′, i, h + m− 1〉 → y0〈q′, i, h + m− 1〉y1〈q′, i + 1,

h + m− 1〉y2 . . . ym−1〈q′, i + m− 1, h + m− 1〉ym elser′ : 〈p, j + 1, h〉 →
〈q′, j + 1 + m− 1, h + m− 1〉}

| i < j ≤ h, i ≤ h ≤ hmax}
∪

(iv) {〈q′′, i, h + m− 1〉 → y0〈q′, i, h + m− 1〉y1〈q′, i + 1, h + m− 1〉y2 . . . ym−1〈q′, i +
m− 1, h + m− 1〉ym,
{r′ | r′ : 〈q′, 1, h + m− 1〉 → 〈q, 1, h + m− 1〉}

| i ≤ h ≤ hmax}
∪

(v) {〈q′, j, h + m− 1〉 → 〈q, j, h + m− 1〉,
{r′ | if j < h + m− 1, thenr′ : 〈q′, j + 1, h + m− 1〉 → 〈q, j + 1, h + m− 1〉

elser′ : 〈p̃, 1, h + m− 1〉 → 〈q̃′, 1, h + m− 1 + m̃− 1〉, where
p̃ ĩ# → q̃ỹ0#ỹ1 . . . ỹm̃−1#ỹm̃ ∈ R, ỹ0, ỹ1, . . . , ỹm̃ ∈ T ∗, if ĩ = 1,
thenq̃′ := q̃′′}

| 1 ≤ j ≤ h + m− 1, i ≤ h ≤ hmax}.

Basic Idea.Inside of every nonterminal〈p, i, h〉 in programmed grammar occurring in a sen-
tential form, we record

(1) p–current state of simulated string-partitioning system (the same in first and last simulation
stage);

(2) i–the position of the bounder occurrence in the sentential form
(3) h–the total number of all bounders in the simulated sentential form.

From these three pieces of information and the setg(p) associated withp, we find out
whetherp is applicable in the next step, and if so, we simulate the step by rules introduced
in 4th step of the above construction as follows:

(a) inside of all nonterminals in the sentential form, changeh to h + m − 1, wherem is the
number of nonterminals occurring on the right-hand side ofp, soh + m− 1 is the number
of nonterminals after the application ofp (see (i) through (iii));

(b) in the nonterminals that follow the rewritten nonterminal, change their position so it corre-
sponds to the position after the application ofp (see (iii));

(c) applyp and select a rule labelq from p’s set of labelsg(p) to be applied in the next step
(see (iv));

(d) some auxiliary steps inG to finish the simulation of one derivation step from string-
partitioning systemH (see (v)).

Claim 5 If 〈σ〉# ⇒c 〈ϑ〉y0#y1 . . . yn−1#yn in H, thenS ⇒∗ y0A1y1 . . . yn−1Anyn in G for
somec ≥ 0.

Proof. Basis: Let c = 0. For〈σ〉# ⇒0 〈σ〉# in H there existsS ⇒0 S in G.

Induction Hypothesis: Suppose Claim 5 holds for all derivations of lengthc or less for some
c ≥ 0.

Induction Step: Consider〈σ〉# ⇒c 〈ϑ〉y0#y1 . . . yh [r1r2 . . . rc] in H, rt ∈ lab(R), 1 ≤ t ≤ c
andrc+1 : 〈ϑ〉i# → 〈ω〉x0#x1 . . . xm−1#xm ∈ R, x0, . . . , xm ∈ T ∗ so that〈ϑ〉y0# . . . #yh ⇒
〈ω〉y0#y1# . . . #yi−1x0#x1# . . . #xmyi#yi+1# . . . #yh [rc+1]. Based on Claim 5 there ex-
ists also a derivationD1∗ : y0A1 . . . Ahyh ⇒∗ y0A1y1 . . . yi−1x0B1x1 . . . BmxmyiAi+1 . . . Ahyh

in G. It is shown such a derivation exists based on the construction part of the proof.
Let us have a formy0A1y1 . . . Ahyh. Rename nonterminalsAt to 〈ϑ, t, h〉 for 1 ≤ t ≤ h and get
a base formy0〈ϑ, 1, h〉y1 . . . yh−1〈ϑ, h, h〉yh which starts the simulation of theD1∗ derivation.
This simulation must come out of continuous application of construction’s4th item.

(4i) ∀j : 1 ≤ j < i apply rules of the form〈p, j, h〉 → 〈q′, j, h + m− 1〉:
F1 = y0〈ϑ, 1, h〉y1 . . . yh−1〈ϑ, h, h〉yh ⇒ y0〈ω′, 1, h + m− 1〉y1〈ϑ, 2, h〉y2 . . . yh−1

〈ϑ, h, h〉yh ⇒i−2 y0〈ω′, 1, h + m− 1〉y1 . . . yi−2〈ω′, i− 1, h + m− 1〉yi−1〈ϑ, i, h〉
yi . . . yh−1〈ϑ, h, h〉yh = F2

(4ii) apply 〈p, i, h〉 → 〈q′′, i, h + m− 1〉:
F2 ⇒ y0〈ω′, 1, h + m− 1〉y1 . . . yi−1〈ω′′, i, h + m− 1〉yi . . . yh−1〈ϑ, h, h〉 = F3.
If i = h, thenF4 := F3 and continue with [4iv] otherwise with [4iii].

(4iii) ∀j : i < j ≤ h apply rules of the form〈p, j, h〉 → 〈q′, j + m− 1, h + m− 1〉:
F3 ⇒ y0〈ω′, 1, h + m− 1〉y1 . . . yi−2〈ω′, i− 1, h + m− 1〉yi−1〈ω′′, i, h + m− 1〉yi

〈ω′, i+m,h+m−1〉 yi+1〈ϑ, i+2, h〉yi+2 . . . yh−1〈ϑ, h, h〉yh ⇒h−i−1 y0〈ω′, 1, h+m−1〉
y1 . . . yi−1〈ω′′, i, h + m− 1〉yi+1 . . . yh−1〈ω′, h + m− 1, h + m− 1〉yh = F4

(4iv) apply〈q′′, i, h + m− 1〉 → y0〈q′, i, h + m− 1〉y1 . . . ym−1〈q′, i + m− 1, h + m− 1〉ym:
F4 ⇒ y0〈ω′, 1, h + m − 1〉y1 . . . yi−1x0〈ω′, i, h + m − 1〉x1 . . . xm−1〈ω′, i + m − 1, h +
m− 1〉xmyi . . . yh−1〈ω′, h + m− 1, h + m− 1〉yh = F5

(4v) ∀j : 1 ≤ j ≤ h + m− 1 apply rules of the form〈q′, j, h + m− 1〉 → 〈q, j, h + m− 1〉:
F5 ⇒h+m−1 y0〈ω, 1, h+m−1〉y1 . . . yi−1x0〈ω, i, h+m−1〉x1 . . . xm−1〈ω, i+m−1, h+
m− 1〉xmyi . . . yh−1〈ω, h + m− 1, h + m− 1〉yh = F6 (Final form)

Rename all nonterminals of the form〈ω, t, h + m − 1〉 in F6 to At for 1 ≤ t < i,
〈ω, t, h + m − 1〉 to Bt−i+1 for i ≤ t ≤ i + m − 1, 〈ω, t, h + m − 1〉 to At−m+1 for
i + m ≤ t ≤ h + m− 1. We have obtainedy0A1y1 . . . yi−1x0B1x1 . . . BmxmyiAi+1 . . . Ahyh.

Claim 6 If 〈σ〉# ⇒z 〈〉y in H, thenS ⇒∗ y for somez ≥ 0.

Proof. This claim follows from Claim 5 withn = 0 andy = y0.

Theorem 7.Infinite hierarchyLk(SPS) ⊂ Lk+1(SPS) holds for everyk ≥ 1.

Proof. Lk(P, CF) = Lk(SPS) follows from Lemma 1 and Lemma 4. Then, Theorem 7 fol-
lows fromLk(P, CF) = Lk(SPS) and theoremLk(P, CF) ⊂ Lk+1(P, CF), for everyk ≥ 1
which is an analogy to Theorem 3.1.7:Lk(M, CF) ⊂ Lk+1(M, CF) in [1], page 161.

5 Conclusion

There was presented a basic variant of the string-partitioning system of indexk as a com-
pletely new concept of rewriting mechanism. The entire system uses only special symbol (called
bounder) and rewriting rules contain an index specifying which bounder in the sentential form
will be rewritten. The family of languages generated by string-partitioning systems of indexk
was described and classified.

We would like to mention here also some other variants of the string-partitioning systems
as an open field for the next investigation.

5.1 Deterministic variant

A string-partitioning system of indexk is calleddeterministic, if for every two rulesr1 : p1 i# →
q1x andr2 : p2 j# → q2y holds ifp1 = p2, theni 6= j. We can also mention thestrict determin-
istic form, which suppose, that for every two rules isp1 6= p2.

5.2 Accepting variant

Let H = (Q,Σ, s, R) be a string-partitioning system of indexk. H is calledaccepting string-
partitioning system, if accepts given language through series of reductions.H makes areduction
stepfrom quxv to pu#v by usingr : p n# ` qx, symbolically writtenquxv � pu#v [r] in H or
simply quxv � pu#v. Let �∗ denote the transition and reflexive closure of�, respectively.

The language reducedby H, L(H), is defined as

L(H) = {w | qw �∗ s#, q ∈ Q,w ∈ (Σ − {#})∗}.

ConsiderM = ({s, p, q, f}, {a, b, c, #}, s, R) from Example 1. Example of accepting vari-
ant is given in reduction of stringaaabbbccc: faaabbbccc � faaabbb#cc [5] � paa#bb#cc
[4] � qaa#bb#c [3] � pa#b#c [2] � qa#b# [3] � p## [2] � s# [1].

5.3 Parallel variant

Let I be a set of positive integers{1, 2, . . . , k}. A parallel string-partitioning systemis a quin-
tuple H = (Q,Σ, s, P, R), whereQ,Σ ands are defined in the same manner as previously,
P ⊆ I ×Σ∗ is a finite relation containing items calledsimple rules, that are written in the form
n# s→ x, n ∈ I, x ∈ Σ∗, hereafter,R ⊆ Q × 2P × Q is a finite relation with a condition:
for each rule(p, F, q) ∈ R, p, q ∈ Q, F ∈ 2P holds, that for every two simple rulesc, d ∈ F ,
c : ic# s→ xc, d : id# s→ xd is ic 6= id.

A rule t = (pt, {r1, . . . , rm}, qt) ∈ R is applicable to the configurationpx, p ∈ Q, x ∈ Σ∗,
if and only if p = pt, occur(x, #) ≥ ij, for 1 ≤ j ≤ m, whererj : ij# s→ yj.

H makes a derivation step frompu to qv by usingt = (p, {r1, . . . , rm}, q), symbolically
writtenpu pd⇒ qv [t] in H, if t is applicable to thepu and basic rulesr1, . . . , rm are applicated
to u and statep is changed ontoq.

Consider parallel string-partitioning system of indexk as a direct analogy of basic variant of
string-partitioning system of indexk, then the paragraph descripting the rule-applicability has
to be extended with the conditionoccur(x, #)−m +

∑m
l=1 occur(yl, #) ≤ k.

Let pd⇒∗ denote the transitive and reflexive closure ofpd⇒. The language derivedby H,
L(H, pd⇒), is defined as

L(H, pd⇒) = {w | s# pd⇒∗ qw, q ∈ Q,w ∈ (Σ − {#})∗}.

Acknowledgements

The authors acknowledge the support of FRVŠ MŠMT grant FR1909/2006/G1.

Bibliography

1. J. Dassow, Gh. P̆aun:Regulated Rewriting in Formal Language Theory, Springer, New York, 1989.
2. A. Meduna:Automata and Languages, Theory and Applications, Springer, London, 2000.
3. T. Kasai: A Hierarchy Between Context-Free and Context-Sensitive Languages. In:Journal of Com-

puter and System Sciences, volume 4, 1970.

