
Scattered Context Generators of Sentences With Their
Parses

() Scattered Context Generators 1 / 18



Scattered Context Grammar (SCG )

Scattered context grammar G = (V, P, S, T)

V is a finite alphabet

T is a set of terminals, T ⊂ V

S is a starting symbol, S ∈ (V − T )

P is a finite set of productions of the form: (A1, . . . ,An) → (x1, . . . , xn);
A1, . . . ,An ∈ (V − T ); x1, . . . , xn ∈ V ∗

Propagating scattered context grammar (PSCG )

special case of SCG

every (A1, . . . ,An) → (x1, . . . , xn) satisfies x1, . . . , xn ∈ V +

() Scattered Context Generators 2 / 18



Derivation step

Derivation step

if (A1, . . . ,An) → (x1, . . . , xn) ∈ P
u = u1A1 . . . unAnun+1

v = u1x1 . . . unxnun+1

then u ⇒ v [(A1, . . . ,An) → (x1, . . . , xn)]

alph(w) denotes the set of all symbols occuring in w

Example

alph(bacaab) = {a, b, c}

Leftmost derivation step

every Ai /∈ alph(ui ) for all 1 ≤ i ≤ n

() Scattered Context Generators 3 / 18



Generated language

Generated language

L(G ) = {x | x ∈ T ∗,S ⇒∗ x}
if every step in every generation of x ∈ T ∗ is leftmost, then G
generates L(G ) in a leftmost way

Generative power

LSCG = LRE

LCF ⊂ LPSCG ⊆ LCS

() Scattered Context Generators 4 / 18



Production Labels

for every grammar, G , there is a set of production labels

we denote them lab(G )

every p ∈ lab(G ) uniquely identifies one production

we write p : (A1, . . . ,An) → (x1, . . . , xn)

Example

G1 = ({S ,A,B,C , a, b, c},P1,S , {a, b, c})
lab(G1) = {1, 2, 3}
P1 = { 1 : (S) → (ABC ),

2 : (A,B,C ) → (aA, bB, cC ),
3 : (A,B,C ) → (ε, ε, ε)}

L(G1) = {anbncn | n ≥ 0}
G1 generates L(G1) in a leftmost way

() Scattered Context Generators 5 / 18



Production Labels (cont.)

to express that x ⇒ y by p : (A1, . . . ,An) → (x1, . . . , xn), we write
x ⇒ y [p]

Example

S ⇒ ABC [1] ⇒ aAbBcC [2] ⇒ aaAbbBccC [2] ⇒ aabbcc [3] in G1

to express that x ⇒∗ y by productions labeled with p1, . . . , pn, we
write x ⇒∗ y [p1 . . . pn]

p1 . . . pn ∈ lab(G )∗

Example

S ⇒∗ aabbcc [1223] in G1

1223 ∈ lab(G1)
∗

() Scattered Context Generators 6 / 18



Proper Generator of its Sentences with Their Parses

Parse

If S ⇒∗ x [ρ], x ∈ T ∗, ρ ∈ lab(G )∗, then x is a sentence generated by G
according to parse ρ

Example

aabbcc is a sentence generated according to parse 1223 in G1

Proper generator of its sentences with their parses

G is a proper generator of its sentences with their parses if
L(G ) = {x | x = yρ, y ∈ (T − lab(G ))∗, ρ ∈ lab(G )∗,S ⇒∗ x [ρ]}
if G generates L(G ) in a leftmost way, G is a proper leftmost
generator of its sentences with their parses

() Scattered Context Generators 7 / 18



Proper Generator of its Sentences with Their Parses (cont.)

Example

G2 = ({S ,A,B,C , a, b, c , 1, 2, 3, 4, $},P2,S , {a, b, c , 1, 2, 3, 4})
lab(G2) = {1, 2, 3, 4}
P2 = { 1 : (S) → (ABC1$),

2 : (A,B,C , $) → (AA,BB,CC , 2$),
3 : (A,B,C , $) → (a, b, c , 3$),
4 : (A,B,C , $) → (ε, ε, ε, 4)}

S ⇒ ABC1$ [1] ⇒ AABBCC12$ [2] ⇒ AabBCc123$ [3] ⇒
AAabBBCCc1232$ [2] ⇒ aAabBbcCc12323$ [3] ⇒
aabbcc123234$ [4]

S ⇒∗ aabbcc123234 [123234]
L(G2) = {anbncnρ | n ≥ 0,S ⇒∗ anbncnρ [ρ]}
G2 is a proper generator of its sentences with their parses
G2 is not a proper leftmost generator of its sentences with their parses

() Scattered Context Generators 8 / 18



Main Result

let G = (V ,P,S ,T ) be a proper generator of its sentences with their
parses

we define the weak identity π from V ∗ to (V − lab(G ))∗ as

π(a) = a for every a ∈ (V − lab(G ))
π(p) = ε for every p ∈ lab(G )

Theorem

For every recursively enumerable language, L, there exists a PSCG, G,
such that G is a proper generator of its sentences with their parses and
L = π(L(G )).

Theorem

For every recursively enumerable language, L, there exists a PSCG, G,
such that G contains no more than six nonterminals, G is a proper
leftmost generator of its sentences with their parses and L = π(L(G )).

() Scattered Context Generators 9 / 18



Queue Grammar (QG)

we represent the recursively enumerable language by a queue grammar

Queue grammar G = (V, T, W, F, s, P)

V is a finite alphabet of symbols

T is a set of terminals, T ⊂ V

W is a finite alphabet of states

s is a starting configuration, s ∈ (V − T )(W − F )

F is a set of final states, F ⊆ W

P is a finite set of productions of the form: (a, b, x , c)

a ∈ V
b ∈ (W − F )
x ∈ V ∗

c ∈ W

() Scattered Context Generators 10 / 18



Derivation Step

Derivation step

if u = arb, v = rxc , a ∈ V , r , x ∈ V ∗, b, c ∈ W , and (a, b, x , c) ∈ P,
then

u ⇒ v [(a, b, x , c)]

Generated language

L(G ) = {w | s ⇒∗ wf ,w ∈ T ∗, f ∈ F}

Example

G = (V ,T ,W ,F , s,P), {(a, 1, bFc , 2), (B, 2,AA, 2)} ⊆ P, then

aBB1 ⇒ BBbFc2 [(a, 1, bFc , 2)] ⇒ BbFcAA2 [(B, 2,AA, 2)] ⇒
bFcAAAA2 [(B, 2,AA, 2)] in G

() Scattered Context Generators 11 / 18



Generative Power

Generative power

LQG = LRE

for every queue grammar there exists an equivalent queue grammar
which first generates only words from (V − T )∗, and then only words
from T+

() Scattered Context Generators 12 / 18



Proof Sketch

Basic idea

1 represent the recursively enumerable language by a QG

2 initiate the derivation

3 simulate QG by PSCG

1 simulate generation of words from (V − T )∗

2 simulate generation of words from T+

4 check if the simulation was correct

5 complete the derivation

every production has to add its label to the sentential form to create
the parse in the correct order

generated sentence must precede this parse

() Scattered Context Generators 13 / 18



Proof

Q = (V ,T ,W ,F , s,R), L(Q) = L

α: injection from lab(Q) to {0̄}∗{1̄}
β: injection from T to {0}∗{1}
f (a) = {α(r) | r : (a, b, x , c) ∈ R} for all a ∈ V

g(b) = {α(r) | r : (a, b, x , c) ∈ R} for all b ∈ W

Constructed PSCG

G = ({S ,A,B,#, 0̄, 1̄},P,S , {0, 1} ∪ lab(G ))

the construction of P and lab(G ) is demonstrated on the following
slides

() Scattered Context Generators 14 / 18



Productions

Step 1 (initialization)

For every ā0 ∈ f (a0), q̄0 ∈ g(q0) such that s = a0q0, add

b1ā0q̄0c : (S) → (Ab1ā0q̄0cAAq̄0Aā0AB) to P

Step 2 (simulation of Q’s productions generating words over V-T)

For every r : (a, b, c1 . . . cn, d) ∈ R, c1, . . . , cn ∈ (V − T ) for some n ≥ 0
and d ∈ (W − F ), c̄1 ∈ f (c1), . . . , c̄n ∈ f (cn), d̄ ∈ g(d), add

b2r c̄1 . . . c̄nd̄c: (A,A,A,A,A,B) →
: (A, b2r c̄1 . . . c̄nd̄cA, α(r)A, d̄A, c̄1 . . . c̄nA,B) to P

Step 3 (separation between steps 2 and 4)

Add b3c : (A,A,A,A,A,B) → (A, b3cA,A,A,B,A) to P

() Scattered Context Generators 15 / 18



Productions (cont.)

Step 4 (simulation of Q’s productions generating words over T)

For every r : (a, b, c1 . . . cn, d) ∈ R, c1, . . . , cn ∈ T for some n ≥ 0 and
d ∈ (W − F ), d̄ ∈ g(d), add

b4r d̄c : (A,A,A,A,B,A) → (β(c1) . . . β(cn)A, b4r d̄cA, α(r)A, d̄A,B,A) to
P

Step 5 (simulation of Q’s final step)

For every r : (a, b, c1 . . . cn, d) ∈ R, c1, . . . , cn ∈ T for some n ≥ 0 and
d ∈ F , add

b5rc : (A,A,A,A,B,A) → (β(c1) . . . β(cn), b5rcA, α(r)A,A,B,AA) to P

() Scattered Context Generators 16 / 18



Productions (cont.)

Step 6 (simulation verification)

Add

b6c : (A, 0̄,A, 0̄,A, 0̄,B,A,A) → (b6c,A,#,A,#,A,B,A,A), and
b7c : (A, 1̄,A, 1̄,A, 1̄,B,A,A) → (b7c,A,#,A,#,A,B,A,A) to P;

Step 7 (finishing the derivation)

Add

b8c : (A,A,A,B,A,A) → (b8cB,#,#,#,#,#),
b9c : (B,#) → (b9c,B), and
b10c : (B) → (b10c) to P.

() Scattered Context Generators 17 / 18



Future Investigation

which other grammars can be used as proper generators of their
sentences with their parses?

grammar systems seem to be appropriate candidates

is it possible to generate sentences together with other useful
information (e.g. derivation trees)?

() Scattered Context Generators 18 / 18


	Definitions
	Scattered Context Grammars
	Production Labels
	Proper Generator of its Sentences with Their Parses

	Results
	Main Result

	Proof
	Queue Grammar
	Proof Sketch
	Construction

	Conclusion
	Future Investigation


