
Purple Dragon book - Chapter 10.3 & 10.4
(Basic Block Scheduling & Global Code Scheduling)

Abstract

Jan Görig, xgorig01@stud.fit.vutbr.cz

Tomáš Ocelík, xoceli00@stud.fit.vutbr.cz

Many modern high-performance processors can execute more instructions per machine cycle.
Such processors have more computing units of some kind - for example, multiple Arithmetic logic
units. The aim of modern compilers for such architectures is the maximum utilization of available
parallel computing units. In that case it is necessary to keep data and control dependencies between
instructions. Otherwise, execution of a program would lead to unexpected results.

First, the article describes data dependencies between instructions and their representation by a
data-dependence graph. Besides showing dependencies between operations, the graph shows the
delays between them. For example, delay two means that the second instruction can be done no
earlier than 2 cycles after the first instruction, on which is data-dependent.

Second part of the article deals with the basic blocks scheduling. The algorithm works with a
dependence-graph introduced in the previous section. The simplest approach is to visit each node of
the graph according to prioritized topological order. Since the graph can have no cycles, there is
always at least one topological order for the nodes. However, among the possible topological
orders, some may be more preferable than others.

The following section describes the List-scheduling algorithm. The algorithm visits each node
of the data-dependence graph according to the selected order. For each node it computes the earliest
time the node can be executed regarding to data dependencies of the previously scheduled nodes.
Then, the resources needed by the node are checked against a resource-reservation table. The node
is scheduled at the earliest time the resources are available.

Next chapter deals with the actual selection of a suitable prioritized topological order for the
List-scheduling. The algorithm visits each node only once (does not backtrack), so heuristic priority
function is used to choose among the nodes that are ready to be scheduled next. If there are no
constraints on resources, the shortest schedule is given by the longest path through the dependence
graph. On the other hand, if all the operations are data-independent, scheduling is constrained only
by available resources. Then, the most critical operations may be given the highest priority. The
third option is to first schedule operations which appears in the source program earlier.

Scheduling within the basic blocks can leave a lot of resources unused. Therefore following
section deals with the global scheduling to make use of machine resources better. Instructions can
be moved from one basic block to another. Now besides data dependencies, we also must take
control dependencies into account. It is necessary to ensure that all instructions in the original
program must be executed in the optimized program and while the optimized program may execute
extra instructions speculatively, these instructions must not have any unwanted side effects. The
concept of dominance relation is introduced. We say that a block B dominates block B' if every path
from the entry of the graph to B' goes through B. Similarly, block B post-dominates block B' if
every path from B' to the exit of the graph goes through B. If B dominates B' and also B' post-
dominates B, we say that B and B' are control-equivalent. Based on this relation, situations that may
arise and their solutions are presented. For example, sometimes it is necessary to insert an
instruction being processed to more branches as compensation code if any of that branches can be
executed. Then it may happen that one branch will run slower than before optimization. So
optimization will improve program execution only if the optimized paths are executed more
frequently than the slower ones.

Another part of the article deals with the global scheduling algorithms themselves. Generally,
over 90% of a program's execution time is spent on less than 10% of the code. Thus, we should aim
to make the most frequent executed paths run faster, while possibly making the least frequent paths
run slower. The most frequent paths can be found either by estimation - for example, the inner loops
are performed more frequently than those outside – or another option is to use profiling with a
representative sample of data to measure which paths are executed the most frequently.

The Region-based scheduling algorithm is introduced. It moves operations up to control-
equivalent block and speculative moves operations up one branch to a dominating predecessor.

Another technique is Loop Unrolling. In the Region-based scheduling, operations from one
loop iteration cannot overlap with the operations in the next iteration. The principle is to unroll the
loop small number of times before code scheduling.

The last described algorithm called Neighborhood Compaction uses also techniques with
compensation code. Region-based scheduling is followed by a simple pass. In this pass, we can
examine each pair of basic blocks that are executed one after one and eventually move some
operations up or down to improve performance. Finally, thesis introduces some advanced
techniques and describes dynamic scheduling.

	Purple Dragon book - Chapter 10.3 & 10.4
(Basic Block Scheduling & Global Code Scheduling)
	Abstract

