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Registers. instantaneous access
Caches. a few clock cycles latency
Main memory: hundreds of clock cycles latency
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Registers. instantaneous access
Caches. a few clock cycles latency
Main memory: hundreds of clock cycles latency

Supply of registers is limited (architecture-specific)

Compiler has to work out the assignment of
variables to registers

Including intermediate code temporaries
Leftovers are stored in main memory
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Process overview:

1. Parse Source Code

Build Intermediate Representation
Build Control Flow Graph

Perform Liveness Analysis

Build Variable Interference Graph
6. Assign Registers

ok D

Output of each phase is the input to the next one.
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Given an undirected grapgh = (V, £)
Given a set of colour§’ (|C| = k)
Find a mappingf : V — C

Such that(u,v) € E : f(u) # f(v)
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Register Allocation | Graph Colouring
Registers Colours
Variables Vertices

Variable Interferences Edges

Two variableganterfere if they are both live at any
point in the program. Such a pair of variables cannot
share a single register.

Interfering variables have an edge between the
corresponding nodes, thus the nodes are not
assigned the same colour.
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Sample function

inline int max(int a, int b)

{

return (a >b ? a: b);

Int greatest(int x, I1nt y, int 2)

{

[/ max calls wmll be 1 nlined here
return max(max(x, y), z);
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greatest(x, vy, 2):
W <- gt xXvy
cjnmp %d -> thenl / elsel
thenl: %2 <- nov X

jnmp -> endl

0

1

2

3

4

5 el sel: 92 <- nov y
6 endl: 98 <- gt R z

7 cijnmp %3 -> then2 / el se2
8 t hen2: % <- nmov 9@

9 jnmp endif2

10 el se2: % <- nov z

11 end2: ret %l
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|nterference Graph

Task: Assign 3 reqisters (red, green, blue) to these e
variables
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Heuristic: fork-colouring, remove a node with the
degree of at most — 1

If the rest of the graph is-colourable, then the
graph with the removed node is alsacolourable.

If there Is no such node, pick a different one,
guessing which can be coloured despite having the

degree> k
Add nodes back in reverse order, assigning colours

If no colour can be assigned, the variable has to be
stored in memory (generakead/st or e
Instruction as appropriate)
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Algorithm Demonstration

STACK:
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Algorithm Demonstration

STACK: %3

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12



Algorithm Demonstration

%3

%2
%1

X

Step #3

STACK: %3, %2
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Algorithm Demonstration

%3

%2
%1

%4

Step #4

STACK: %3, %2, %4
Heuristics fails!
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Algorithm Demonstration

%3

%2
%1 Z

%4

Step #5
STACK: %3, %2, %4, z

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12



Algorithm Demonstration

%3

%2
%1 /4

Step #6
STACK: %3, %2, %4, z, %l
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Algorithm Demonstration

%3

%2
%1 /4

Step #/
STACK: %3, %2, %4, z, %1, X
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Algorithm Demonstration

%3

%2
%1 /4

%4
y

Step #8
STACK: %3, %2, %4, z, %1, X,y
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Algorithm Demonstration

%3

%2
%1 /4

Step #9
STACK: %3, %2, %4, z, %1, X
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Algorithm Demonstration

%3

%2
%1 /4

Step #10
STACK: %3, %2, %4, z, %l
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Algorithm Demonstration

%3

%2

%4

Step #11
STACK: %3, %2, %4, z
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Algorithm Demonstration

%1

Step #12

STACK: %3, %2, %4
Optimistic colouring fails, have to spill variabke
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Algorithm Demonstration

%3

%2
%1

X

Step #13

STACK: %3, %2
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Algorithm Demonstration

Step #14

STACK: %3
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Algorithm Demonstration

Step #15

STACK:

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12



Both problems, graph colouring and optimal register
allocation, are NP-complete, hence the heuristics

Heuristics on many levels

Colouring algorithm adjusted for the register
allocation use-case: spilling, pre-coloured nodes

Widely adopted approach (GCC, LLVM)

References:

Michael Matz.Design and Implementation of a
Graph Coloring Register Allocator for GCC. 2003.
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The End

Thank you!

Questions?

as Kuklkne- (2012) = p. 12/12
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