Register Allocation via Graph
Colouring

Lukas Kuklinek
xkukl i 01@tud.fit.vutbr.cz

Fakulta Informacnich Technologii
Wsoké UcCeni Technické, Brno

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) -=bp. 1/12

Registers. instantaneous access
Caches. a few clock cycles latency
Main memory: hundreds of clock cycles latency

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — pn. 2/12

Registers. instantaneous access
Caches. a few clock cycles latency
Main memory: hundreds of clock cycles latency

Supply of registers is limited (architecture-specific)

Compiler has to work out the assignment of
variables to registers

Including intermediate code temporaries
Leftovers are stored in main memory

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — pn. 2/12

Process overview:

1. Parse Source Code

Build Intermediate Representation
Build Control Flow Graph

Perform Liveness Analysis

Build Variable Interference Graph
6. Assign Registers

ok D

Output of each phase is the input to the next one.

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — pn. 3/12

Given an undirected grapgh = (V, £)
Given a set of colour§’ (|C| = k)
Find a mappingf : V — C

Such that(u,v) € E : f(u) # f(v)

O
O—@ Gﬁlc
b

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — p. 4/12

Register Allocation | Graph Colouring
Registers Colours
Variables Vertices

Variable Interferences Edges

Two variableganterfere if they are both live at any
point in the program. Such a pair of variables cannot
share a single register.

Interfering variables have an edge between the
corresponding nodes, thus the nodes are not
assigned the same colour.

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — pn. 5/12

Sample function

inline int max(int a, int b)

{

return (a >b ? a: b);

Int greatest(int x, I1nt y, int 2)

{

[/ max calls wmll be 1 nlined here
return max(max(x, y), z);

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) = . 6/12

greatest(x, vy, 2):
W <- gt xXvy
cjnmp %d -> thenl / elsel
thenl: %2 <- nov X

jnmp -> endl

0

1

2

3

4

5 el sel: 92 <- nov y
6 endl: 98 <- gt R z

7 cijnmp %3 -> then2 / el se2
8 t hen2: % <- nmov 9@

9 jnmp endif2

10 el se2: % <- nov z

11 end2: ret %l

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — p. 7/12

|nterference Graph

Task: Assign 3 reqisters (red, green, blue) to these e
variables

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) - p. 8/12

Heuristic: fork-colouring, remove a node with the
degree of at most — 1

If the rest of the graph is-colourable, then the
graph with the removed node is alsacolourable.

If there Is no such node, pick a different one,
guessing which can be coloured despite having the

degree> k
Add nodes back in reverse order, assigning colours

If no colour can be assigned, the variable has to be
stored in memory (generakead/st or e
Instruction as appropriate)

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) — p. 9/12

Algorithm Demonstration

STACK:

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

STACK: %3

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1

X

Step #3

STACK: %3, %2

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1

%4

Step #4

STACK: %3, %2, %4
Heuristics fails!

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1 Z

%4

Step #5
STACK: %3, %2, %4, z

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1 /4

Step #6
STACK: %3, %2, %4, z, %l

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1 /4

Step #/
STACK: %3, %2, %4, z, %1, X

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1 /4

%4
y

Step #8
STACK: %3, %2, %4, z, %1, X,y

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1 /4

Step #9
STACK: %3, %2, %4, z, %1, X

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2
%1 /4

Step #10
STACK: %3, %2, %4, z, %l

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%3

%2

%4

Step #11
STACK: %3, %2, %4, z

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

%1

Step #12

STACK: %3, %2, %4
Optimistic colouring fails, have to spill variabke

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) = p. 10/12

Algorithm Demonstration

%3

%2
%1

X

Step #13

STACK: %3, %2

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Algorithm Demonstration

Step #14

STACK: %3

Reaqister Allocation via Granh Colourina — Lukas Kuklkne- (2012) = p. 10/12

Algorithm Demonstration

Step #15

STACK:

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —= p. 10/12

Both problems, graph colouring and optimal register
allocation, are NP-complete, hence the heuristics

Heuristics on many levels

Colouring algorithm adjusted for the register
allocation use-case: spilling, pre-coloured nodes

Widely adopted approach (GCC, LLVM)

References:

Michael Matz.Design and Implementation of a
Graph Coloring Register Allocator for GCC. 2003.

Reaister Allocation via Granh Colourina — Lukas Kuklkne- (2012) —=p. 11/12

The End

Thank you!

Questions?

as Kuklkne- (2012) = p. 12/12

	Motivation
	Motivation

	Register allocation
	k-Graph Colouring
	Register Allocation correspondence
	Sample function
	Function IR
	Interference Graph
	Algorithm overview
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration
	Algorithm Demonstration

	Final Remarks & Conclusion
	The End

