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Firewall

Any barrier that is intended to thwart the spread of a unwanted
(destructive, malicious, . . . ) agent.

First generation firewalls
I act by inspecting fields of packets,

I source address
I destination address
I protocol
I port
I . . .

I stateless (simple packet filters),
I packet can either pass or be dropped,
I described by “policy”.

We will not consider second and third generations.
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General policy model

A general policy is modeled as a four-tuple structure

P = 〈C,A, ρ, ω〉

I C n-dimensional domain specified by field values,
I A set of actions that can be taken when policy is applied,
I ρ : C → A, maps filter set conditions to actions (C ⊆ 2C),
I ω : C ×A → N ordering function, maps rule set to priority

level.
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Decision list

L = [(f1, v1), (f2, v2), . . . , (fn, vn)]

where
I fi – boolean function over “packet”,
I vi ∈ {pass,drop}.

It is boolean function. . .
it is learnable.

f1 0/1

f2 0/1

fn 0/1

0/1

no

yes

no

yes

no

yes
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Learnability—models of learning

Learning boolean functions.

Probably approximately correct (PAC) learning

Offline learning from examples. Aim is to find approximately
correct hypothesis after seeing random sample of classified
instances.

Mistake-bound (MB) learning

Adaptive learning. Sequence of trials. Learner enhances
hypothesis. Learning terminates after specific number of
mistakes. Better suited for interactive learning.
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Policy discovery

Techniques:
I Exhaustive search
I Basic heuristics

I Genetic algorithms
I Region growing
I Split-and-merge

I Hybrid heuristics
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Region growing

I “Deny all” assumed at the beginning.
I Sampling until positive match is found.
I Exponential search in every dimension.
I Binary search to pinpoint exact location.
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Split-and-merge

I Originally for image segmentation.
I Default “deny all”.
I Split given space into n non-overlapping regions such that

I
⋃n

i=1Ri = R,
I Ri is a connected region,
I Ri has rectangular shape (policy rule restriction),
I i 6= j ⇒ Ri ∩Rj = ∅,
I all “points” in Ri has same action,
I no two regions can be joined so that previous conditions

will be met.

12 / 22



Hybrid heuristic
I Split-and-merge with bound recursion depth.
I On Each resulting region run region growing to obtain

exact boundaries. 58
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Figure 2.13: Techniques comparison

2.9 Discussion and Counter Measures

2.9.1 Detectability Issues

A great effort was invested in the area of intrusion detection specially scanning activities [13,

54, 57, 60, 95]. This work can be viewed from a network administrator as a stealthy scan

over the firewall. According to [95], scanning activities are divided into three categories;

horizontal, vertical, and block scans. The presented policy learning technique falls in the

block scan type, where multiple fields are considered in generating scanning probes. Those

types of scans are harder to detect. Two scan detection approaches are discussed and the

possibility of the firewall scanning going undiscovered is explored.

Statistical scan detectors depend mainly on the assumption that the normal traffic

can be characterized by a known probability distribution. The Spice framework [95], also

known as SPADE detector uses information measure to detect anomalous traffic, then a

correlation analysis for detected events is performed to group similar scanning activities for

future reference. Following are the list of heuristics used for the correlation and how they

can be overcome:

• Feature Equality: If the features are equal, the relation between two detected events

Policy size vs. accuracy.
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Synthetic policy generation

Objective

Generate policies similar to those used in real world employing
readily available data as much as possible and requiring
minimal user intervention.

Applications

Packet classification algorithms, security devices testing, policy
and configuration analysis algorithms.

Available data:
I grammar for policy description,
I example policy rules (e.g. provided by Cisco),
I vague description (using terms like policy size, rule

complexity, . . . ).
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Policy grammar

Policy context free grammar defined by standard model:

G = (N,T, P, S)

I N – non-terminal symbols;
I T – terminal symbols;
I P – production rules;
I S – starting non-terminal.

Productions

% : A→ α;A ∈ N ;α ∈ (N ∪ T )+

But this is not probabilistic at all. . .
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Probabilistic grammar

To make grammar probabilistic, we need to add

p : P → (0,1〉

such that
∀A ∈ N :

∑
A→α∈P

p(A→ α) = 1

How do we obtain such probability function?

Learn it from available data. . .
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Estimation

Number of occurrences of rule in subtree f(A→ α, τ).

Number of occurrences of nonterminal in subtree f(A, τ).

Given n parse trees (τ1, . . . , τn), p can be approximated by

p̂(A→ α) =

∑n
i=1 f(A→ α, τi)∑n

i=1 f(A, τi)
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Better way

Let ω be subset of all possible parse trees such that every
production rule appears in ω.

A positive weight W (τ) is assigned to each tree τ ∈ ω such
that

∑
τ∈ωW (τ) = 1. The system production probabilities are

then defined by:

p(A→ α) =

∑
τ∈ω f(A→ α, τ)W (τ)∑

τ∈ω f(A, τ)W (τ)
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Even better way—Informed Mode

Observation
Position of a rule within the policy affects the rule structure.

Consider probability values within policy parts.
I Every rule single “part”,
I if there are two neighbouring parts similar up to threshold,

merge them,
I if there is nothing to merge, terminate.
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Conclusion

Make your policy as specific as possible.
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Thank you for your attention.
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