
lex & yacc

Yacc Ambiguities and Con�icts
VYPe presentation abstract

Jan Pa£es (xpaces01), Petr Dvo°ák (xdvora64)

Using yacc to generate a parser based on provided grammar can bring problems with unambiguous
rules and con�icts within the grammar. These con�icts can lead to errors of two types: shift/reduce
and reduce/reduce errors. Understanding and handling these con�icts is necessary to generate a valid
and reliable parser.

Aim of this presentation is to propose few methods how these ambiguities can be localized and
solved and to present common examples of such con�icts. Also how to avoid these con�icts when
constructing a grammar.

To actually understand origin of the con�ict it is �rst necessary to understand the model of yacc`s
operation and how pointers move through the yacc grammar. At the beginning there is only one
pointer, however alternatives in the grammar can later create another pointers so there are multiple
pointers at the same time. If multiple pointers lead to di�erent reducing rules, a reduce/reduce
con�ict occurs. If one pointer leads to a reduction and another to a shifting rule, we talk about
shift/reduce con�ict.

To choose the next step yacc uses only one following token. This increases the chance of getting
into ambiguous situation. Although it might be di�cult to localize con�icts directly in the grammar,
yacc can provide us with a description of the generated state machine with markers in appropriate
states. Localizing reduce/reduce con�icts is not so di�cult as yacc o�ers numbers of rules involved
in the con�ict. Identifying shift/reduce con�icts can be bit more di�cult as it is necessary to �nd
the reduce rule as well as relevant shift rules and deduce the token stream which caused the con�ict.

Probably the three most common situations producing shift/reduce con�icts are expression gram-
mars, IF-THEN-ELSE and nested lists of items. Con�icts in expression grammars are mostly
shift/reduce con�icts that occur due to ambiguity in associativity and which can be easily resolved
by specifying left or right precedence. Resolving shift/reduce con�icts in IF-THEN-ELSE grammars
might be more di�cult and might require rewriting the grammar rules or suppressing the con�icts
by setting precedence to the token to shift. Finally, resolving shift/reduce con�icts in nested lists of
items usually requires grammar revision.

The goal of this presenatiton is to show how yacc`s operational model and output works, and how
to localize, �x and avoid possible ambiguities and con�icts in grammars.

1


