
Compiler Design in C – Chapter 6.3 (Code generation: Symbol Table)

Marek Kotásek (xkotas02), Filip Kozák (xkozak12)

Abstract

Symbol table is a structure similar to database which contains information about subroutines, varia-
bles, etc. The table is indexed by a key field (here a subroutine or variable’s name) and each record
contains information about that item such as the variable’s type or subroutine’s return value. The
symbol table can also be used to communicate with the lexical analyzer (for example when we use the
typedef keyword). In implementation, many problems such as duplicate entries support may occur.
The symbol table has two layers – database layer and maintenance layer. The database layer holds

information needed for compilation and performs operations like inserting new entries in the table,
finding them, deleting them, and so forth. The maintenance layer is used for managing the table at
a higher level, creating systems of data structures to represent specific symbols and inserting these
structures into the table using the low-level insert function.
Several data structures can by used for the symbol table: stack, tree or a hash table. Each of them

has advantages and disadvantages and is appropriate in specific situations. In this book the author
describes hash-based symbol table where the record contains about a dozen items.
A C variable’s type must be represented by a system of data structures working in concert. Variable

declarations have two parts: a specifier part which is a list od various keywords and a declarator
part that consists of the variable’s name and an arbitrary number of stars, array-size specifiers and
parentheses.
A complete implementation of the symbol table (including source code) can be found in Compiler

design in C book, chapter 6.3.

1


