
María José Moreno Serrano

morenoserranomariajose@gmail.com

Basic Implementation Techniques of Symbol Tables

 The first consideration of symbol table implementation is how to find a free

space and store a data in it. Depending on the number of names we wish to

accommodate and the performance we desire, a wide variety of implementations is

possible:

 Unordered List : is the simplest possible storage mechanism. The only data structure

required is an array, with insertions being performed by adding new names in the next

available location.

Ordered List :If a list of names in an array is kept ordered, it may be searched using a

binary search, which requires O(log(n)) time for a list of n entries. Insertion in an

ordered array is a relatively expensive operation, in general. Thus ordered lists are

typically used only when the entire set of names in a table is known in advance.

Binary Search Trees: are a data structure designed to combine the size flexibility and

insertion efficiency of a linked data structure with the search speed provided by a binary

search. On average, entering or searching for a name in a binary search tree built from

random inputs requires O(log(n)) time.

Hash Tables: are probably the most common means of implementing symbol tables in

production compilers and other system software. With a large enough table, a good hash

function, and the appropriate collision-handling technique, searching can be done in

essentially constant time regardless of the number of entries in the table.

