OPTIMIZATION
STRATEGIES

Odalos Matej, Bc. xodalo00@stud.fit.vutbr.cz
Polesny Ondfej, Bc. xpoles01@stud.fit.vutbr.cz

December 13, 2012

mailto:xodalo00@stud.fit.vutbr.cz
mailto:xpoles01@stud.fit.vutbr.cz

Introduction

- Optimizer makes a more efficient version of the
itermediate or target code

- Local optimization vs global optimization
- Optimization for speed vs optimization for size

Optimization categories

- Parser optimizations
- Linear peephole optimizations
- Structural optimizations

Parser optimizations

- Can be done by the parser itself
- Generate good code to begin with

Technigques

- Using logical Ivalues rather than physical ones
- Minimizing the number of goto branches
- Instrinsic functions (i.e. math functions — sin, cos, sqrt)

Linear Peephole Optimizations

- Cannot be done by the parser itself
- Necessary to examine several blocks of code (peephole)
- Performed over small set of instructions (window)

Strength Reduction

- Replaces operation with a more efficient one

- Main objective is to save machine clock cycles
- x * 8 can be done with x « 3

- x/8 can be done with x > 3

- Multiplication by small numbers replaced by multiple
additions

- Multiplication by larger numbers
- t0 *= 9 can be replaced by t0 * 8 + t0 = t0 < 3 4+ t0

- Modification of jump or goto instructions to match
machine specific version that is more efficient

Constant folding and propagation

- Can be done by parser in a limited way
-x+2+3Istreated like x + 6
- a+ 1+ 3 parser ® independent optimizer ©

- Multiplication by 1, addition and subtraction of zero and
shift by zero eliminated

-y =5;x = y replaced with y = 5;x =5
- Assignment of a constant is more efficient than memory to
memory copy

- Optimizer keeps track of the contents of all variables that
contain constants

- t0 =1;t0+=5;t1 = to replaced with t0 = 1;t1 = 6

Dead Variables and Dead Code

-t0 =1;t04+=5;tl1 = to replaced with t0 = 1;t1 = 6

- After replacement, tO is dead variable

- Variable considered dead from the last usage till its’
reinitialization

cx=5y=xx+=1Lx=2z

- Dead assignment, variable is never used or modified

- Elimination of code, that cannot be reached or does
nothing useful

- if (0) do_something();

Hardware problems

- while(* port)

{
* port = 1; //pulse the low bit of the outer port
* port = 0;
delay();

}

- Keyword volatile suppresses these optimizations

Structural optimizations

- Series of instructions ® parse or syntax tree ©
- Parser generates intermediate language
- Intermediate code is processed by the optimizer

Common-Subexpression Elimination

- A+ B + A * B — subexpression eliminated twice (+>
- Replaced by t0 = A4;t1 = B; tl *=t0; tl +=t1 /\

Loop Unwinding

- Replaces the entire loop with the code that comprises the
loop body, duplicated the number of times that the loop
would execute

