TID — Modern Theoretical Computer Science
Type Systems, Their Models and Usage in Decompilation

Peter Matula
xmatul01[at|stud.fit.vutbr.cz

October 12, 2013

Keywords

type system, lambda calculus, simply typed lambda calculus, type inference, decompilation, type recovery

Abstract

Data type information is one of the key characteristics that distinguish low-level machine code from high-level
source code. Types are important for expression of the program in high-level terms — they partition the domain
of program semantics and partition the data into distinct objects.

This presentation introduces the concept of the type system, which assigns type property to program con-
structs. It allows construction of type-checking algorithms implementing data type inference — conclusion about
the types of the objects based on how they are used. Formal system of lambda calculus is used as a notation for
stating the semantic properties of the programming languages. To incorporate type laws, extended system called
simply typed lambda calculus is introduced and described in depth. Other possible extensions like System F
introducing subtype polymorphism characteristic for object-oriented languages are mentioned.

Even though type inference is typical for functional programming languages, the same principles can be
used for type recovery by the decompiler. Decompilation is a process of transforming a machine code into a
higher-level programming language. It consists of series of analysis, one of which is the type analysis, that tries
to associate each piece of data with a high-level type. Because there are no type information in input machine
code, type inference from the context of objects usage similar to type-checking can be exploited.

References

[1] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse engineering of types in
binary programs. In NDSS. The Internet Society, 2011.

[2] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.

[3] David A. Schmidt. The structure of typed programming languages. Foundations of computing series. MIT
Press, 1994.



