33: Optimizations for Object-Oriented

Languages
Viliam Kasala (xkasal01), Jirka Lang (xlangj00)

The goal of this presentation is to describe basic optimizations for Object-Oriented
languages such as object layout, method invocation, devirtualization and escape analysis.

In the first part of the presentation, we will introduce the memory layout of an object for
single and multiple inheritance, and how this layout supports dynamic dispatch. Dynamic
dispatch is the process of selecting which implementation of polymorphic operation to call at
runtime. The purpose of dynamic dispatch is to support cases, where appropriate
implementation of a polymorphic operation can not be determined at compile time, because it
depends on the runtime type. For single inheritance there will be presented technique using
virtual method table for dispatch and for multiple inheritance, we will take a look at
embedding superclasses technique. Virtual method table, sometimes also called as dispatch
table or vtable, is mechanism used in a programming language to implement dynamic dispatch.
We will also take a look at Bidirectional object layout and example of simple Java class
layout and its method invocation. Bidirectional object layout can give us less indirection
and smaller memory usage.

In the second part of the presentation, we will speak about fast-type inclusion tests,
and related algorithms such as relative numbering or hierarchical encoding. Then we will take a
look at devirtualization, the technique for reduce overhead of virtual method invocations.
Different ways how to analyze program, and perform devirtualization will be discussed. Then we
will present escape analysis, that is used to determine object lifetime in order to space
allocation. There will be introduced three object states, to describe whether object escapes from
a method and from a thread.



