Approximate Computing
in Formal Languages

Petr Dvoracek

Brno University of Technology, Faculty of Information Technology
BozZetéchova 1/2, 612 66 Brno - Kralovo Pole
idvoracek@fit.vutbr.cz

BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

10t December 2015

| Content |

Approximate computing
e Motivation

e Usage

Approximate computing in formal languages
e Cover languages and automata

e Regular expression approximation
e FSM covering L2, L1, and languages beyond LO

e Solving NP-complete problem with DTM in polynomial time
Conclusion

| Approximate Computing — motivation |

Definition

e Tradeoff between quality of result and efficiency.

e A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient

| Approximate Computing — motivation |

Definition
e Tradeoff between quality of result and efficiency.

e A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient.

Kaushik Roy’s energy task

923

2225175 023 . 45.27
21~ 21~

& &

Kaushik Roy, Approximate Computing: An Energy-Efficient Computing Technique for E.R. Apps., 2015 I 4

| Approximate Computing — motivation |

Definition
e Tradeoff between quality of result and efficiency.

e A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient.

Kaushik Roy’s energy task

923

2225175 023 . 45.27
21~ 21~

& &

Approximations are natural!

Kaushik Roy, Approximate Computing: An Energy-Efficient Computing Technique for E.R. Apps., 2015 I 5

| Approximate Computing — usage

e Signal and image processing
e Text search

e (Clustering

e Data analysis

e Robotics

e (lassification

e Neural networks

e Probabilistic computing

e Networking

e Hardware (cache)

The list is endless.

| Approximate Computing — usage |

e Signal and image processing — human perception is limited
e Text search

e (Clustering

e Data analysis

e Robotics

e (lassification

e Neural networks

e Probabilistic computing

e Networking

e Hardware (cache) o | ND | N

The list is endless. 4 i /

| Approximate Computing — usage |

e Signal and image processing — human perception is limited

e Text search
e (Clustering — No golden result

e Data analysis —
e Robotics

e (lassification

e Neural networks

e Probabilistic computing

e Networking

e Hardware (cache) (D [N

The list is endless. 4 : / i /

| Approximate Computing — usage |

e Signal and image processing — human perception is limited

e Text search
e (Clustering — No golden result

e Data analysis —
e Robotics

e (lassification

e Neural networks

e Probabilistic computing — Perfect result is not always possible
e Networking

e Hardware (cache) = . Lo N [N

The list is endless. 4 74 4

| Approximate Computing in Formal Languages

Reference Language — L

Approximate Language — LA suchas |[LA NL| > 1

| Approximate Computing in Formal Languages

Reference Language — L
Approximate Language — LA suchas |[LA NL| > 1
Error Language

Lets have two languages L and LA.
E =LxorLA= (L —LA)U (LA — L)
Error language contains only unique strings.

| Approximate Computing in Formal Languages

Reference Language — L
Approximate Language — LA suchas |[LA NL| > 1
Error Language

Lets have two languages L and LA.

E =LxorLA= (L —LA)U (LA — L)

Error language contains only unique strings.
Cover Languages

We can create LA to accept all words from language L and other
strings. Thus we say LA covers L.

Because L — LA = @ then |L| < |LA]|.

| Approximate Computing in Formal Languages

Reference Language — L
Approximate Language — LA suchas |[LA NL| > 1
Error Language

Lets have two languages L and LA.

E =LxorLA= (L —LA)U (LA — L)

Error language contains only unique strings.
Cover Languages

We can create LA to accept all words from language L and other
strings. Thus we say LA covers L.

Because L — LA = @ then |L| < |LA]|.
Finite Languages

Creation of approximate finite language from the reference
language L which is infinite.

|13

| Cover Automata |

A cover automaton for a finite language L is a FSM that
accepts all words in L and possibly other words that are
longer than any word in L.

L = {a,b,aa,aaa, bab}

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages I 14

| Cover Automata |

A cover automaton for a finite language L is a FSM that
accepts all words in L and possibly other words that are
longer than any word in L.

L = {a,b,aa,aaa, bab}

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages I 15

| Cover Automata |

A cover automaton for a finite language L is a FSM that
accepts all words in L and possibly other words that are
longer than any word in L.

L = {a,b,aa,aaa, bab}
LA = {aa”,b,baba"}

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages I 16

| Regular expression approximation ITFIT

Task Find all the tRNA genes in DNA of bacterium e. coli.

3
- (ﬁ)

il
e L NP

- .\?‘;“--*"

¥

| Regular expression approximation ITFIT

Task Find all the tRNA-genes in BNA-efbacterium-e—coli.

substrings string o

| Regular expression approximation

| G

Task Find all the tRNA-genes in BNA-efbacterium-e—coli.

substrings

Substrings can be found by the RE:

string

({14}A[AG].{1,3}G.{11,14}[ATC]T(...)]AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)
|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

3
.t_lrﬁ;]

| Regular expression approximation

| G

Task Find all the tRNA-genes in BNA-efbacterium-e—coli.

substrings

Substrings can be found by the RE:

string

({14}A[AG].{1,3)G.{11,14}[ATC]T(...JAG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)
|(TGG.{12}G[AG].T[TCIGAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}{TC]T.{14})

Experiment Found
a) Fully functional RE 94

3
= — fﬁ:l

]

fzl
TN
s

fd)

N
et J
ht

h,

L S

¥

\Z

g

Filtered
85

| Regular expression approximation ITFIT

Task Find all the tRNA-genes in BNA-efbacterium-e—coli.

substrings string a
rfj‘:-i T
: b Nl
Substrings can be found by the RE: (o, U
({14}A[AG].{1,3)G.{11,14}[ATC]T(..)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA) E .\"“w
| (TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14}) {Eﬁh
-
({14}A..{1,3)}G.{11,14}.T(...)[AG].{11,31}GTTC.A..C.{12}CCA)
|(TGG.{12)G..T.GAAC.{11,31}.(...)A..{11,14}C.{1,3}.T.{14})
Experiment Found Filtered
a) Fully functional RE 94 85

b) Let. replace all brackets 118 85

| Regular expression approximation ITFIT

Task Find all the tRNA-genes in BNA-efbacterium-e—coli.

substrings string o
rfj‘:-i i\f‘?
. e -
Substrings can be found by the RE: - U
({14}A[AG].{1,3)G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA) E i\)w
|(TGG.{12)}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14}) {ng \
-
({14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,21}GTTC[AG]A.[TC]C.{12}CCA)
|(TGG.{12)}G[AG].T[TC]GAAC.{11,21}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})
Experiment Found Filtered
a) Fully functional RE 94 85
b) Let. replace all brackets 118 85

c) Let make var.loop shorter 80 70

| Regular expression approximation ITFIT

Task Find all the tRNA-genes in BNA-efbacterium-e—coli.

substrings string o
. f":?-": =\-fczt"."_'f'
Substrings can be found by the RE: N
({14}A[AG].{1,3)G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA) E i\)w
|(TGG.{12)}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14}) {-{g\b \
-
({14}A..{1,3)G.{11,14}.T(...)[AG].{11,21}GTTC.A..C.{12}CCA)
|(TGG.{12)G..T.GAAC.{11,21}.(...)A..{11,14}C.{1,3}.T.{14})
Experiment Found Filtered
a) Fully functional RE 94 85
b) Let. replace all brackets 118 85
c) Let make var.loop shorter 80 70

d) Combination of b, c 109 70

| Covering L2 with FSM

Let have CFL L = {a"b™| n = 0}

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus I 24

| Covering L2 with FSM IrFAT

Let have CFL L = {a"b™| n = 0}

Approximating with a Finite-State Calculus (principle)
Construct a grammar G of L.
S - aSb |[1]
- € |2]
In G find all cycling rules (S — aS, S — Sb) by using right-
hand-rule, seven formulae, and dotted rules.

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus I 25

| Covering L2 with FSM IrFAT

Let have CFL L = {a"b™| n = 0}

Approximating with a Finite-State Calculus (principle)
Construct a grammar G of L.
S - aSb |[1]
- € |2]
In G find all cycling rules (S — aS, S — Sb) by using right-
hand-rule, seven formulae, and dotted rules.

Final cover language
LA ={a*h* | €}
Cons: We can find better approximation: {aa*bb™ | ab | €}

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus I 26

| Covering L2 with FSM — practical example

Syntax analysis
Let have context free grammar G1
E - (E)
- F x E
- EF + F

=

| Covering L2 with FSM — practical example

Syntax analysis
Let have context free grammar G1
E - (E)
- F x E
- EF + F
-

Do we write programs like this?
a = (a+b)*c;

| Covering L2 with FSM — practical example

Syntax analysis
Let have context free grammar G1
E - (E)
- F x E
- EF + F
-

Do we write programs like this?
a = (a+b)*c;

Or like this?
a=(((..(@a+b)*c)..));

| Covering L2 with FSM — practical example

Syntax analysis
Let have context free grammar G1
E - (E)
- F x E
- EF + F
-

Do we write programs like this?
a = (a+b)*c;

Or like this?
a=(((..(@a+b)*c)..));

We don’t use infinite number of parenthesis.

| Covering L2 with FSM — practical example ITFIT

Syntax analysis
Let have context free grammar G1
E - (E)
- F x E
- EF + F
-

G1 can be covered with G2
A—- (B A->+A B-(C B- +B C-..
- iA —>* A - DA - *x B

- £ — B

Cons: Breaks syntax tree — no priorities given.

| Covering L1 with FSM

L = {a" | nis prime}

| Covering L1 with FSM

L = {a" | nis prime}

Approximation is based on sieve of Eratosthenes

| Covering L1 with FSM

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:
L, = {aa} L, = {aa(aa)*}

| Covering L1 with FSM

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

L, = {aa} L, = {aa(aa)*}
L; = {aaa} L; = {aaa(aaa)*}

| Covering L1 with FSM

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:
L, = {aa} L, = {aa(aa)*}
L; = {aaa} L; = {aaa(aaa)*}

Ls = {aaaaa} L: = {aaaaa(aaaaa)™}

| Covering L1 with FSM

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes
Then we can construct approximate language such as:

L, = {aa} L, = {aa(aa)*}
L; = {aaa} L; = {aaa(aaa)*}
L = {aaaaa} Ls = {aaaaa(aaaaa)™}

L; = {a’} L, = {a’(a”)*}

| Covering L1 with FSM

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes
Then we can construct approximate language such as:

L, = {aa} L, = {aa(aa)*}

L; = {aaa} L; = {aaa(aaa)™}

L = {aaaaa} Ls = {aaaaa(aaaaa)™}
L; = {a’} L, = {a’(a”)*)

Li; = {all} L_11 = {all(a11)+}

| Covering L1 with FSM

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes
Then we can construct approximate language such as:

L, = {aa} L, = {aa(aa)*}

L; = {aaa} L; = {aaa(aaa)™}

L = {aaaaa} Ls = {aaaaa(aaaaa)™}
L; = {a’} L, = {a’(a”)*)

Li; = {a''} Ly = {a**(a')*}

Lz = {a'’} Lz = {a"(a™)*)

| Covering L1 with FSM IrFAT

L = {a" | nis prime}
Approximation is based on sieve of Eratosthenes
Then we can construct approximate language such as:

L, = {aa} L, = {aa(aa)*}

L; = {aaa} L; = {aaa(aaa)™}

L = {aaaaa} Ls = {aaaaa(aaaaa)™}
L; = {a’} L, = {a’(a”)*)

Li; = {a''} Ly = {a**(a')*}

Lz = {a®’} Liz = {a®(a™)"}

LA:L2UL3UL5UL7UL11UL13
U ({aa*}\ (I; ULz ULs UL, ULy; ULy))

We can construct FSM that accept approximated language.

| Covering L1 with FSM

L = {a™ | nis prime}
LA:L2UL3UL5UL7UL11UL13

u({aa+}\(EuL3uL5uL_7uL_11uE))

| Covering L1 with FSM IrFAT

L = {a" | nis prime}
LA:L2UL3UL5UL7UL11UL13
U ({aa*}\ (I; ULz ULs UL, ULy ULyy))

Experiment 8-bit numbers

Maximal number is 255. Then v255 = 16. LA covers all
primes to 16. Thus LA covers all primes to 255.

| Covering L1 with FSM IrFAT

L = {a" | nis prime}
LA:L2UL3UL5UL7UL11UL13
U ({aa*}\ (I; ULz ULs UL, ULy ULyy))

Experiment 8-bit numbers

Maximal number is 255. Then v255 = 16. LA covers all
primes to 16. Thus LA covers all primes to 255.

Experiment 16-bit numbers

Maximal number is 65 535 and there is 6 542 primes.
LA covers them all. It also contains 6 032 numbers which
are not primes. The rest is rejected.

|43

| Covering L1 with FSM IrFAT

L = {a" | nis prime}
LA:L2UL3UL5UL7UL11UL13
U ({aa*}\ (I; ULz ULs UL, ULy ULyy))

Experiment 8-bit numbers 100% accuracy

Maximal number is 255. Then v255 = 16. LA covers all
primes to 16. Thus LA covers all primes to 255.

Experiment 16-bit numbers 90% accuracy

Maximal number is 65 535 and there is 6 542 primes.
LA covers them all. It also contains 6 032 numbers which
are not primes. The rest is rejects correctly.

|44

| Covering languages beyond LO

Theorem
We can build FSM that covers every language.

(Even the languages beyond LO.)

| Covering languages beyond LO

Theorem
We can build FSM that covers every language.
(Even the languages beyond LO.)

Proof
Let have X = {ay, aq, ..., a,}.
Then we can build FSM from RE: (agaj ... ay) *

This FSM accepts all strings — accepts everything.

| Covering languages beyond LO

Theorem
We can build FSM that covers every language.
(Even the languages beyond LO.)

Proof
Let have X = {ay, aq, ..., a,}.
Then we can build FSM from RE: (agay ... ay) *
This FSM accepts all strings — accepts everything.

However the error language can be really large.

| Covering NP complete problem with DTM

Bin-packing problem

e Pack all the stuff into as few bins as possible.
e NP complete problem

Bin Optimal

Objects sorted by size

4 4 4 4

3 3 3 3

L. Liu, Practicality of the Vector Packing Problem I 48

| Covering NP complete problem with DTM in poly. time | [i8lEii

Bin-packing problem
e Pack all the stuff into as few bins as possible.
e NP complete problem

Bin Optimal

Objects sorted by size

. - - S 3 3 3 3

Approximation — principle
e Put anitem into the first bin where is space.

First Fit (not optimal)

L. Liu, Practicality of the Vector Packing Problem I 49

| Conclusion IrFAT

Approximation

e is natural

e makes our brains and machines faster

e can be used in text search (tRNA genes in DNA)

Less powerful machines can be used for approximation of more
complex problems

e FSM can cover CFL {a"b" | n = 0}
 FSM can cover CSL {a" | n is prime}
e FSM can cover all languages (but it is not wise)

e DTM solving NP-complete problem

Thank You For Your Attention !

| References |

e L. Liu, Practicality of the Vector Packing Problem

e Edmund Grimley Evans, Approximating Context-Free
Grammars with a Finite-State Calculus, ACL 98

e K. Roy, Approximate Computing: An Energy-Efficient
Computing Technique for Error Resilient Applications, 2015
IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

e C. Campenau, N. Santean, S. Yu, Minimal cover-automata
for finite languages, Workshop on Implementing Automata
'98

