
Approximate Computing
in Formal Languages

Petr Dvořáček

Brno University of Technology, Faculty of Information Technology
Božetěchova 1/2, 612 66 Brno - Královo Pole

idvoracek@fit.vutbr.cz

10th December 2015

Content

Approximate computing

• Motivation

• Usage

Approximate computing in formal languages

• Cover languages and automata

• Regular expression approximation

• FSM covering L2, L1, and languages beyond L0

• Solving NP-complete problem with DTM in polynomial time

Conclusion

2

Approximate Computing – motivation

Definition

• Tradeoff between quality of result and efficiency.

• A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient

3

Approximate Computing – motivation

Definition

• Tradeoff between quality of result and efficiency.

• A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient.

Kaushik Roy‘s energy task

Kaushik Roy, Approximate Computing: An Energy-Efficient Computing Technique for E.R. Apps., 2015 4

𝟗𝟐𝟑

𝟐𝟏
> 𝟏. 𝟕𝟓

𝟗𝟐𝟑

𝟐𝟏
> 𝟒𝟓. 𝟐𝟕

Approximate Computing – motivation

Definition

• Tradeoff between quality of result and efficiency.

• A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient.

Kaushik Roy‘s energy task

Approximations are natural!

Kaushik Roy, Approximate Computing: An Energy-Efficient Computing Technique for E.R. Apps., 2015 5

𝟗𝟐𝟑

𝟐𝟏
> 𝟏. 𝟕𝟓

𝟗𝟐𝟑

𝟐𝟏
> 𝟒𝟓. 𝟐𝟕

Approximate Computing – usage

• Signal and image processing

• Text search

• Clustering

• Data analysis

• Robotics

• Classification

• Neural networks

• Probabilistic computing

• Networking

• Hardware (cache)

The list is endless.

6

Approximate Computing – usage

• Signal and image processing – human perception is limited

• Text search

• Clustering

• Data analysis

• Robotics

• Classification

• Neural networks

• Probabilistic computing

• Networking

• Hardware (cache)

The list is endless.

7

Approximate Computing – usage

• Signal and image processing – human perception is limited

• Text search

• Clustering No golden result

• Data analysis

• Robotics

• Classification

• Neural networks

• Probabilistic computing

• Networking

• Hardware (cache)

The list is endless.

8

Approximate Computing – usage

• Signal and image processing – human perception is limited

• Text search

• Clustering No golden result

• Data analysis

• Robotics

• Classification

• Neural networks

• Probabilistic computing Perfect result is not always possible

• Networking

• Hardware (cache)

The list is endless.

9

Approximate Computing in Formal Languages

Reference Language – L

Approximate Language – LA such as 𝐿𝐴 ∩ 𝐿 ≥ 1

10

Approximate Computing in Formal Languages

Reference Language – L

Approximate Language – LA such as 𝐿𝐴 ∩ 𝐿 ≥ 1

Error Language

Lets have two languages L and LA.

𝐸 = 𝐿 𝑥𝑜𝑟 𝐿𝐴 = 𝐿 − 𝐿𝐴 ∪ 𝐿𝐴 − 𝐿

Error language contains only unique strings.

11

Approximate Computing in Formal Languages

Reference Language – L

Approximate Language – LA such as 𝐿𝐴 ∩ 𝐿 ≥ 1

Error Language

Lets have two languages L and LA.

𝐸 = 𝐿 𝑥𝑜𝑟 𝐿𝐴 = 𝐿 − 𝐿𝐴 ∪ 𝐿𝐴 − 𝐿

Error language contains only unique strings.

Cover Languages

We can create LA to accept all words from language L and other
strings. Thus we say LA covers L.

Because 𝐿 − 𝐿𝐴 = ∅ then |𝐿| < |𝐿𝐴|.

12

Approximate Computing in Formal Languages

Reference Language – L

Approximate Language – LA such as 𝐿𝐴 ∩ 𝐿 ≥ 1

Error Language

Lets have two languages L and LA.

𝐸 = 𝐿 𝑥𝑜𝑟 𝐿𝐴 = 𝐿 − 𝐿𝐴 ∪ 𝐿𝐴 − 𝐿

Error language contains only unique strings.

Cover Languages

We can create LA to accept all words from language L and other
strings. Thus we say LA covers L.

Because 𝐿 − 𝐿𝐴 = ∅ then |𝐿| < |𝐿𝐴|.

Finite Languages

Creation of approximate finite language from the reference
language L which is infinite.

13

Cover Automata

A cover automaton for a finite language L is a FSM that
accepts all words in L and possibly other words that are
longer than any word in L.

𝐿 = 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑎𝑎, 𝑏𝑎𝑏

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages 14

Cover Automata

A cover automaton for a finite language L is a FSM that
accepts all words in L and possibly other words that are
longer than any word in L.

𝐿 = 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑎𝑎, 𝑏𝑎𝑏

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages 15

Cover Automata

A cover automaton for a finite language L is a FSM that
accepts all words in L and possibly other words that are
longer than any word in L.

𝐿 = 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑎𝑎, 𝑏𝑎𝑏
𝐿𝐴 = {𝑎𝑎∗, 𝑏, 𝑏𝑎𝑏𝑎∗}

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages 16

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

17

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

substrings string

18

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

substrings string

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

19

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

substrings string

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

Experiment Found Filtered

a) Fully functional RE 94 85

20

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

substrings string

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

(.{14}A..{1,3}G.{11,14}.T(...)[AG].{11,31}GTTC.A..C.{12}CCA)

|(TGG.{12}G..T.GAAC.{11,31}.(...)A..{11,14}C.{1,3}.T.{14})

Experiment Found Filtered

a) Fully functional RE 94 85

b) Let . replace all brackets 118 85

21

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

substrings string

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,21}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,21}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

Experiment Found Filtered

a) Fully functional RE 94 85

b) Let . replace all brackets 118 85

c) Let make var. loop shorter 80 70

22

Regular expression approximation

Task Find all the tRNA genes in DNA of bacterium e. coli.

substrings string

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

(.{14}A..{1,3}G.{11,14}.T(...)[AG].{11,21}GTTC.A..C.{12}CCA)

|(TGG.{12}G..T.GAAC.{11,21}.(...)A..{11,14}C.{1,3}.T.{14})

Experiment Found Filtered

a) Fully functional RE 94 85

b) Let . replace all brackets 118 85

c) Let make var. loop shorter 80 70

d) Combination of b, c 109 70

23

Covering L2 with FSM

Let have CFL 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus 24

Covering L2 with FSM

Let have CFL 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Approximating with a Finite-State Calculus (principle)

Construct a grammar 𝐺 of 𝐿.

𝑆 → 𝑎𝑆𝑏 1

→ ε [2]

In 𝐺 find all cycling rules (𝑆 → 𝑎𝑆, 𝑆 → 𝑆𝑏) by using right-
hand-rule, seven formulae, and dotted rules.

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus 25

Covering L2 with FSM

Let have CFL 𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Approximating with a Finite-State Calculus (principle)

Construct a grammar 𝐺 of 𝐿.

𝑆 → 𝑎𝑆𝑏 1

→ ε [2]

In 𝐺 find all cycling rules (𝑆 → 𝑎𝑆, 𝑆 → 𝑆𝑏) by using right-
hand-rule, seven formulae, and dotted rules.

Final cover language

𝐿𝐴 = 𝑎+𝑏+ ε}

Cons: We can find better approximation: 𝑎𝑎+𝑏𝑏+ 𝑎𝑏 | ε}

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus 26

Covering L2 with FSM – practical example

Syntax analysis

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

27

Covering L2 with FSM – practical example

Syntax analysis

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

Do we write programs like this?
a = (a+b)*c;

28

Covering L2 with FSM – practical example

Syntax analysis

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

Do we write programs like this?
a = (a+b)*c;

Or like this?
a = (((… (a + b) * c) …)));

29

Covering L2 with FSM – practical example

Syntax analysis

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

Do we write programs like this?
a = (a+b)*c;

Or like this?
a = (((… (a + b) * c) …)));

We don’t use infinite number of parenthesis.
30

Covering L2 with FSM – practical example

Syntax analysis

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

G1 can be covered with G2

𝐴 → (𝐵 𝐴 → + 𝐴 𝐵 → (𝐶 𝐵 → +𝐵 𝐶 → …

→ 𝑖𝐴 → ∗ 𝐴 → 𝑖)𝐴 → ∗ 𝐵

→ 𝜀 → 𝑖𝐵

Cons: Breaks syntax tree – no priorities given.

31

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

32

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

33

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

34

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

35

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

36

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

37

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

𝐿11 = {𝑎11} 𝐿11 = {𝑎11 𝑎11 +}

38

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

𝐿11 = {𝑎11} 𝐿11 = {𝑎11 𝑎11 +}

𝐿13 = {𝑎13} 𝐿13 = {𝑎13 𝑎13 +}

39

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

𝐿11 = {𝑎11} 𝐿11 = {𝑎11 𝑎11 +}

𝐿13 = {𝑎13} 𝐿13 = {𝑎13 𝑎13 +}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

We can construct FSM that accept approximated language.
40

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

41

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

Experiment 8-bit numbers

Maximal number is 255. Then 255 = 16. LA covers all
primes to 16. Thus LA covers all primes to 255.

42

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

Experiment 8-bit numbers

Maximal number is 255. Then 255 = 16. LA covers all
primes to 16. Thus LA covers all primes to 255.

Experiment 16-bit numbers

Maximal number is 65 535 and there is 6 542 primes.
LA covers them all. It also contains 6 032 numbers which
are not primes. The rest is rejected.

43

Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

Experiment 8-bit numbers 100% accuracy

Maximal number is 255. Then 255 = 16. LA covers all
primes to 16. Thus LA covers all primes to 255.

Experiment 16-bit numbers 90% accuracy

Maximal number is 65 535 and there is 6 542 primes.
LA covers them all. It also contains 6 032 numbers which
are not primes. The rest is rejects correctly.

44

Covering languages beyond L0

Theorem

We can build FSM that covers every language.

(Even the languages beyond L0.)

45

Covering languages beyond L0

Theorem

We can build FSM that covers every language.

(Even the languages beyond L0.)

Proof

Let have Σ = 𝑎0, 𝑎1, … , 𝑎𝑛 .

Then we can build FSM from RE: (𝑎0
∗𝑎1

∗ …𝑎𝑛
∗) ∗

This FSM accepts all strings – accepts everything.

46

Covering languages beyond L0

Theorem

We can build FSM that covers every language.

(Even the languages beyond L0.)

Proof

Let have Σ = 𝑎0, 𝑎1, … , 𝑎𝑛 .

Then we can build FSM from RE: (𝑎0
∗𝑎1

∗ …𝑎𝑛
∗) ∗

This FSM accepts all strings – accepts everything.

However the error language can be really large.

47

Covering NP complete problem with DTM

Bin-packing problem

• Pack all the stuff into as few bins as possible.

• NP complete problem

L. Liu, Practicality of the Vector Packing Problem 48

Covering NP complete problem with DTM in poly. time

Bin-packing problem

• Pack all the stuff into as few bins as possible.

• NP complete problem

Approximation – principle

• Put an item into the first bin where is space.

L. Liu, Practicality of the Vector Packing Problem 49

Conclusion

Approximation

• is natural

• makes our brains and machines faster

• can be used in text search (tRNA genes in DNA)

Less powerful machines can be used for approximation of more
complex problems

• FSM can cover CFL 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

• FSM can cover CSL 𝑎𝑛 𝑛 is prime}

• FSM can cover all languages (but it is not wise)

• DTM solving NP-complete problem

50

Záhlaví (01.01.2016) 51

Thank You For Your Attention !

References

• L. Liu, Practicality of the Vector Packing Problem

• Edmund Grimley Evans, Approximating Context-Free
Grammars with a Finite-State Calculus, ACL 98

• K. Roy, Approximate Computing: An Energy-Efficient
Computing Technique for Error Resilient Applications, 2015
IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

• C. Campenau, N. Santean, S. Yu, Minimal cover-automata
for finite languages, Workshop on Implementing Automata
'98

52

