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Approximate Computing – motivation

Definition

• Tradeoff between quality of result and efficiency.

• A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient
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Approximate Computing – motivation

Definition

• Tradeoff between quality of result and efficiency.

• A common characteristic: a perfect result is not necessary and an
approximate or less-than-optimal result is sufficient.

Kaushik Roy‘s energy task

Approximations are natural!

Kaushik Roy, Approximate Computing: An Energy-Efficient Computing Technique for E.R. Apps., 2015 5
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Approximate Computing – usage

• Signal and image processing

• Text search

• Clustering

• Data analysis

• Robotics

• Classification

• Neural networks

• Probabilistic computing

• Networking

• Hardware (cache)

The list is endless.
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Approximate Computing – usage

• Signal and image processing – human perception is limited

• Text search

• Clustering No golden result

• Data analysis

• Robotics

• Classification

• Neural networks

• Probabilistic computing Perfect result is not always possible

• Networking

• Hardware (cache)

The list is endless.
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Approximate Computing in Formal Languages

Reference Language – L

Approximate Language – LA such as 𝐿𝐴 ∩ 𝐿 ≥ 1
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We can create LA to accept all words from language L and other 
strings. Thus we say LA covers L.

Because 𝐿 − 𝐿𝐴 = ∅ then  |𝐿| < |𝐿𝐴|.

12



Approximate Computing in Formal Languages

Reference Language – L

Approximate Language – LA such as 𝐿𝐴 ∩ 𝐿 ≥ 1

Error Language

Lets have two languages L and LA.

𝐸 = 𝐿 𝑥𝑜𝑟 𝐿𝐴 = 𝐿 − 𝐿𝐴 ∪ 𝐿𝐴 − 𝐿

Error language contains only unique strings.

Cover Languages

We can create LA to accept all words from language L and other 
strings. Thus we say LA covers L.

Because 𝐿 − 𝐿𝐴 = ∅ then  |𝐿| < |𝐿𝐴|.

Finite Languages

Creation of approximate finite language from the reference 
language L which is infinite.
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Cover Automata

A cover automaton for a finite language L is a FSM that 
accepts all words in L and possibly other words that are 
longer than any word in L. 

𝐿 = 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑎𝑎, 𝑏𝑎𝑏

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages 14
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Cover Automata

A cover automaton for a finite language L is a FSM that 
accepts all words in L and possibly other words that are 
longer than any word in L. 

𝐿 = 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑎𝑎, 𝑏𝑎𝑏
𝐿𝐴 = {𝑎𝑎∗, 𝑏, 𝑏𝑎𝑏𝑎∗}

C. Campenau, N. Santean, S. Yu, Minimal cover-automata for finite languages 16



Regular expression approximation

Task  Find all the tRNA genes in DNA of bacterium e. coli.
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Regular expression approximation

Task  Find all the tRNA genes in DNA of bacterium e. coli.

substrings string 

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})
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a) Fully functional RE 94 85

20



Regular expression approximation

Task  Find all the tRNA genes in DNA of bacterium e. coli.

substrings string 

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)
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Regular expression approximation

Task  Find all the tRNA genes in DNA of bacterium e. coli.

substrings string 

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)
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Regular expression approximation

Task  Find all the tRNA genes in DNA of bacterium e. coli.

substrings string 

Substrings can be found by the RE:
(.{14}A[AG].{1,3}G.{11,14}[ATC]T(...)[AG].{11,31}GTTC[AG]A.[TC]C.{12}CCA)

|(TGG.{12}G[AG].T[TC]GAAC.{11,31}[TC](...)A[ATG].{11,14}C.{1,3}[TC]T.{14})

(.{14}A..{1,3}G.{11,14}.T(...)[AG].{11,21}GTTC.A..C.{12}CCA)

|(TGG.{12}G..T.GAAC.{11,21}.(...)A..{11,14}C.{1,3}.T.{14})

Experiment Found Filtered

a) Fully functional RE 94 85

b) Let . replace all brackets 118 85

c) Let make var. loop shorter 80 70

d) Combination of b, c 109 70
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Covering L2 with FSM

Let have CFL  𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus 24



Covering L2 with FSM

Let have CFL  𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Approximating with a Finite-State Calculus (principle)

Construct a grammar 𝐺 of 𝐿.

𝑆 → 𝑎𝑆𝑏 1

→ ε [2]

In 𝐺 find all cycling rules (𝑆 → 𝑎𝑆, 𝑆 → 𝑆𝑏) by using right-
hand-rule, seven formulae, and dotted rules. 

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus 25



Covering L2 with FSM

Let have CFL  𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

Approximating with a Finite-State Calculus (principle)

Construct a grammar 𝐺 of 𝐿.

𝑆 → 𝑎𝑆𝑏 1

→ ε [2]

In 𝐺 find all cycling rules (𝑆 → 𝑎𝑆, 𝑆 → 𝑆𝑏) by using right-
hand-rule, seven formulae, and dotted rules. 

Final cover language

𝐿𝐴 = 𝑎+𝑏+ ε}

Cons: We can find better approximation: 𝑎𝑎+𝑏𝑏+ 𝑎𝑏 | ε}

Edmund Grimley Evans, Approximating Context-Free Grammars with a Finite-State Calculus 26



Covering L2 with FSM – practical example

Syntax analysis 

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖
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a = (a+b)*c; 
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Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

Do we write programs like this?
a = (a+b)*c; 

Or like this?
a = ((( … (a + b) * c ) … )));
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Covering L2 with FSM – practical example

Syntax analysis 

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

Do we write programs like this?
a = (a+b)*c; 

Or like this?
a = ((( … (a + b) * c ) … )));

We don’t use infinite number of parenthesis.
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Covering L2 with FSM – practical example

Syntax analysis 

Let have context free grammar G1
𝐸 → (𝐸)
→ 𝐸 ∗ 𝐸
→ 𝐸 + 𝐸
→ 𝑖

G1 can be covered with G2

𝐴 → (𝐵 𝐴 → + 𝐴 𝐵 → (𝐶 𝐵 → +𝐵 𝐶 → …

→ 𝑖𝐴 → ∗ 𝐴 → 𝑖)𝐴 → ∗ 𝐵

→ 𝜀 → 𝑖𝐵

Cons: Breaks syntax tree – no priorities given.
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}
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Approximation is based on sieve of Eratosthenes
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}
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𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

𝐿11 = {𝑎11} 𝐿11 = {𝑎11 𝑎11 +}
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

𝐿11 = {𝑎11} 𝐿11 = {𝑎11 𝑎11 +}

𝐿13 = {𝑎13} 𝐿13 = {𝑎13 𝑎13 +}
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

Approximation is based on sieve of Eratosthenes

Then we can construct approximate language such as:

𝐿2 = {𝑎𝑎} 𝐿2 = {𝑎𝑎 𝑎𝑎 +}

𝐿3 = {𝑎𝑎𝑎} 𝐿3 = {𝑎𝑎𝑎 𝑎𝑎𝑎 +}

𝐿5 = {𝑎𝑎𝑎𝑎𝑎} 𝐿5 = {𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 +}

𝐿7 = {𝑎7} 𝐿7 = {𝑎7 𝑎7 +}

𝐿11 = {𝑎11} 𝐿11 = {𝑎11 𝑎11 +}

𝐿13 = {𝑎13} 𝐿13 = {𝑎13 𝑎13 +}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

We can construct FSM that accept approximated language.
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

Experiment 8-bit numbers

Maximal number is 255.  Then 255 = 16. LA covers all 
primes to 16. Thus LA covers all primes to 255.
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

Experiment 8-bit numbers

Maximal number is 255.  Then 255 = 16. LA covers all 
primes to 16. Thus LA covers all primes to 255.

Experiment 16-bit numbers

Maximal number is 65 535 and there is 6 542 primes.  
LA covers them all. It also contains 6 032 numbers which 
are not primes. The rest is rejected. 
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Covering L1 with FSM

𝐿 = {𝑎𝑛 | 𝑛 is prime}

𝐿𝐴 = 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

∪ 𝑎𝑎+ \ 𝐿2 ∪ 𝐿3 ∪ 𝐿5 ∪ 𝐿7 ∪ 𝐿11 ∪ 𝐿13

Experiment 8-bit numbers 100% accuracy

Maximal number is 255.  Then 255 = 16. LA covers all 
primes to 16. Thus LA covers all primes to 255.

Experiment 16-bit numbers 90% accuracy

Maximal number is 65 535 and there is 6 542 primes.  
LA covers them all. It also contains 6 032 numbers which 
are not primes. The rest is rejects correctly. 
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Covering languages beyond L0

Theorem

We can build FSM that covers every language. 

(Even the languages beyond L0.)
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Covering languages beyond L0

Theorem

We can build FSM that covers every language. 

(Even the languages beyond L0.)

Proof

Let have Σ = 𝑎0, 𝑎1, … , 𝑎𝑛 . 

Then we can build FSM from RE: (𝑎0
∗𝑎1

∗ …𝑎𝑛
∗ ) ∗

This FSM accepts all strings – accepts everything.
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Covering languages beyond L0

Theorem

We can build FSM that covers every language. 

(Even the languages beyond L0.)

Proof

Let have Σ = 𝑎0, 𝑎1, … , 𝑎𝑛 . 

Then we can build FSM from RE: (𝑎0
∗𝑎1

∗ …𝑎𝑛
∗ ) ∗

This FSM accepts all strings – accepts everything.

However the error language can be really large. 
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Covering NP complete problem with DTM

Bin-packing problem

• Pack all the stuff into as few bins as possible.

• NP complete problem

L. Liu, Practicality of the Vector Packing Problem 48



Covering NP complete problem with DTM in poly. time

Bin-packing problem

• Pack all the stuff into as few bins as possible.

• NP complete problem

Approximation – principle

• Put an item into the first bin where is space.

L. Liu, Practicality of the Vector Packing Problem 49



Conclusion

Approximation

• is natural

• makes our brains and machines faster

• can be used in text search (tRNA genes in DNA)

Less powerful machines can be used for approximation of more 
complex problems

• FSM can cover CFL 𝑎𝑛𝑏𝑛 𝑛 ≥ 0}

• FSM can cover CSL  𝑎𝑛 𝑛 is prime}

• FSM can cover all languages  (but it is not wise)

• DTM solving NP-complete problem

50



Záhlaví  (01.01.2016) 51

Thank You For Your Attention !
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