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Motivation

● Network intrusion detection systems (NIDS) 
use rules described with regular expressions 
(RE)
● Significant state transition redundancy

● Implementation of equivalent computational 
machine — finite automaton (FA) — in hardware 
is used to achieve high performance / 
throughput on high-speed network links 
through massive parallelism

● FPGA technology is used for ability to change 
the configuration (implement different FAs)
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Implementation in FPGA:
DFA vs. NFA I

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and LUTs 
(computation of a hash function)

● FA parameters of interest:
● Number of states

● Maximum number of concurrently active states
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Implementation in FPGA:
DFA vs. NFA II

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and LUTs 
(computation of a hash function)
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Implementation in FPGA:
DFA vs. NFA III

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and LUTs 
(computation of a hash function)

● FA parameters of interest:
● Number of states

● Maximum number of concurrently active states
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Implementation in FPGA:
DFA vs. NFA IV

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and 
LUTs (computation of a hash function)
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Implementation in FPGA:
DFA vs. NFA V

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and 
LUTs (computation of a hash function)

● FA parameters of interest:
● Number of states

● Maximum number of concurrently active states
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Typical Form of Rules Used in NIDS

● Example:
● a part of IMAP ruleset of Snort (https://www.snort.org/)

and corresponding NFA:

\sCREATE\s*\{

\sLIST\s[^\n]*?\s\{

\sPARTIAL.*BODY\[[^\]]{1024}
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https://www.snort.org/
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Problematic NFA Constructions I

● Parts of REs that cause 
state explosion during 
NFA determinization

● Mainly “dot-star” 
constructions

● Example:

1. ab.*cd

2. efgh

● Corresponding NFA:

● Transitions to 0 omitted

0 1 2 3 4

5 6 7 8
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Problematic NFA Constructions II

● Parts of REs that cause 
state explosion during 
NFA determinization

● Mainly “dot-star” 
constructions

● Example:

1. ab.*cd

2. efgh

● Corresponding NFA:

● Transitions to 0 omitted

0 1 2 3 4

5 6 7 8
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Problematic NFA Constructions III

● Parts of REs that cause 
state explosion during 
NFA determinization

● Mainly “dot-star” 
constructions

● Example:

1. ab.*cd

2. efgh

● Corresponding NFA
(from [1]):
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Approach #1:
Hybrid FA

● Introduced by Michaela Becchi [1]
● Partial transformation of an NFA to a DFA

● Interruption of subset construction algorithm at problematic 
states

From [1]
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Approach #2:
System of Parallel Automaton Parts

● Introduced by Jan Kořenek [2]
● Formalism to describe division of a single NFA 
into several parts

● Based on analysis of concurrency of an NFA
● Each part is either NFA, or DFA

● DFA parts deal with states of the original NFA that cannot be 
active concurrently

● NFA parts deal with the other states
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Analysis of NFA Concurrency:
Practical cases

● Number of concurrently active states in L7 
decoder (from [3])
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System of Parallel Automaton Parts:
States without Collision
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System of Parallel Automaton Parts:
Set of States without Collision I
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System of Parallel Automaton Parts:
Set of States without Collision II
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System of Parallel Automaton Parts:
Set of States without Collision III

● The complexity is exponential
● Transformation of NFA to DFA in the step 1.

● The state to be removed in the step 4. (a) is 
selected based on the number of collision 
states (heuristic)
● States with the most collisions are removed first.

● Multiple sets of states without collision can be 
found by recursive application of the algorithm 
●
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System of Parallel Automaton Parts:
Set of States without Collision IV

● Improved algorithm to find all pairs of 
simultaneously active states [4]

● Does not require transformation of original NFA 
to corresponding DFA

● Better complexity
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System of Parallel Automaton Parts:
Set of States without Collision V
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System of Parallel Automaton Parts:
Part of the Automaton Determined
by a Set of States I
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System of Parallel Automaton Parts:
Part of the Automaton Determined
by a Set of States II
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System of Parallel Automaton Parts
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System of Parallel Automaton Parts:
Communication Models

● Without central part (a)
● Significant communication overhead

● With central part (b)
● Simpler communication through central part

Number of bidirectional 
connections

From [3]
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System of Parallel Automaton Parts:
Centralised System of Automaton Parts
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System of Parallel Automaton Parts:
Tranformation to Centralised System

● The algorithm moves all output states of all 
parts to the central part.
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System of Parallel Automaton Parts:
Issues I

● The algorithm to find a set of states without 
collision is applied recursively

● The issue is that the set of states obtained with 
the first application of the algorithm:
● contains much more states than the sets of states obtained 

by another applications of the algorithm,

● has many isolated groups of states, which causes significant 
communication overhead.
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System of Parallel Automaton Parts:
Issues II

communication 
overhead

automaton part 
(DFA)

(NFA)
automaton part 
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