
Partial Determinization of Finite 
Automata

Denis Matoušek
LTA, 2015



Dec 15, 20152

Outline

● Motivation
● NFA vs. DFA in FPGA
● Hybrid FA
● System of Parallel Automatons Parts



Dec 15, 20153

Motivation

● Network intrusion detection systems (NIDS) 
use rules described with regular expressions 
(RE)
● Significant state transition redundancy

● Implementation of equivalent computational 
machine — finite automaton (FA) — in hardware 
is used to achieve high performance / 
throughput on high-speed network links 
through massive parallelism

● FPGA technology is used for ability to change 
the configuration (implement different FAs)



Dec 15, 20154

Implementation in FPGA:
DFA vs. NFA I

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and LUTs 
(computation of a hash function)

● FA parameters of interest:
● Number of states

● Maximum number of concurrently active states



Dec 15, 20155

Implementation in FPGA:
DFA vs. NFA II

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and LUTs 
(computation of a hash function)

FF
LUT
&

a

FF
LUT
&

FF
LUT
&

shared
character
decoder

b
input symbol

state

next-state logic



Dec 15, 20156

Implementation in FPGA:
DFA vs. NFA III

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and LUTs 
(computation of a hash function)

● FA parameters of interest:
● Number of states

● Maximum number of concurrently active states



Dec 15, 20157

Implementation in FPGA:
DFA vs. NFA IV

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and 
LUTs (computation of a hash function)

transition
table

(BlockRAM)

hash
function

collision
detection

input symbol

next-state
& state



Dec 15, 20158

Implementation in FPGA:
DFA vs. NFA V

● Tradeoff between DFA and NFA:
● NFA using FF registers (states) and LUTs (transitions)

● DFA using BlockRAMs (storage of a hash table) and 
LUTs (computation of a hash function)

● FA parameters of interest:
● Number of states

● Maximum number of concurrently active states



Dec 15, 20159

Typical Form of Rules Used in NIDS

● Example:
● a part of IMAP ruleset of Snort (https://www.snort.org/)

and corresponding NFA:

\sCREATE\s*\{

\sLIST\s[^\n]*?\s\{

\sPARTIAL.*BODY\[[^\]]{1024}

0

10

20

30

11 12 13

21

37 38

https://www.snort.org/


Dec 15, 201510

Problematic NFA Constructions I

● Parts of REs that cause 
state explosion during 
NFA determinization

● Mainly “dot-star” 
constructions

● Example:

1. ab.*cd

2. efgh

● Corresponding NFA:

● Transitions to 0 omitted

0 1 2 3 4

5 6 7 8



Dec 15, 201511

Problematic NFA Constructions II

● Parts of REs that cause 
state explosion during 
NFA determinization

● Mainly “dot-star” 
constructions

● Example:

1. ab.*cd

2. efgh

● Corresponding NFA:

● Transitions to 0 omitted

0 1 2 3 4

5 6 7 8



Dec 15, 201512

Problematic NFA Constructions III

● Parts of REs that cause 
state explosion during 
NFA determinization

● Mainly “dot-star” 
constructions

● Example:

1. ab.*cd

2. efgh

● Corresponding NFA
(from [1]):



Dec 15, 201513

Approach #1:
Hybrid FA

● Introduced by Michaela Becchi [1]
● Partial transformation of an NFA to a DFA

● Interruption of subset construction algorithm at problematic 
states

From [1]



Dec 15, 201514

Approach #2:
System of Parallel Automaton Parts

● Introduced by Jan Kořenek [2]
● Formalism to describe division of a single NFA 
into several parts

● Based on analysis of concurrency of an NFA
● Each part is either NFA, or DFA

● DFA parts deal with states of the original NFA that cannot be 
active concurrently

● NFA parts deal with the other states



Dec 15, 201515

Analysis of NFA Concurrency:
Practical cases

● Number of concurrently active states in L7 
decoder (from [3])



Dec 15, 201516

System of Parallel Automaton Parts:
States without Collision

 



Dec 15, 201517

System of Parallel Automaton Parts:
Set of States without Collision I



Dec 15, 201518

System of Parallel Automaton Parts:
Set of States without Collision II



Dec 15, 201519

System of Parallel Automaton Parts:
Set of States without Collision III

● The complexity is exponential
● Transformation of NFA to DFA in the step 1.

● The state to be removed in the step 4. (a) is 
selected based on the number of collision 
states (heuristic)
● States with the most collisions are removed first.

● Multiple sets of states without collision can be 
found by recursive application of the algorithm 
●



Dec 15, 201520

System of Parallel Automaton Parts:
Set of States without Collision IV

● Improved algorithm to find all pairs of 
simultaneously active states [4]

● Does not require transformation of original NFA 
to corresponding DFA

● Better complexity



Dec 15, 201521

System of Parallel Automaton Parts:
Set of States without Collision V



Dec 15, 201522

System of Parallel Automaton Parts:
Part of the Automaton Determined
by a Set of States I



Dec 15, 201523

System of Parallel Automaton Parts:
Part of the Automaton Determined
by a Set of States II



Dec 15, 201524

System of Parallel Automaton Parts



Dec 15, 201525

System of Parallel Automaton Parts:
Communication Models

● Without central part (a)
● Significant communication overhead

● With central part (b)
● Simpler communication through central part

Number of bidirectional 
connections

From [3]



Dec 15, 201526

System of Parallel Automaton Parts:
Centralised System of Automaton Parts



Dec 15, 201527

System of Parallel Automaton Parts:
Tranformation to Centralised System

● The algorithm moves all output states of all 
parts to the central part.



Dec 15, 201528

System of Parallel Automaton Parts:
Issues I

● The algorithm to find a set of states without 
collision is applied recursively

● The issue is that the set of states obtained with 
the first application of the algorithm:
● contains much more states than the sets of states obtained 

by another applications of the algorithm,

● has many isolated groups of states, which causes significant 
communication overhead.



Dec 15, 201529

System of Parallel Automaton Parts:
Issues II

communication 
overhead

automaton part 
(DFA)

(NFA)
automaton part 



Dec 15, 201530

References

[1] Michela Becchi and Patrick Crowley. A Hybrid Finite Automaton 
for Practical Deep Packet Inspection. In Proceedings of the 
International Conference on emerging Networking Experiments 
and Technologies (CoNEXT), New York, NY, December 2007. ACM.

[2] Jan Kořenek. Rychlé vyhledávání regulárních výrazů s využitím 
technologie FPGA, disertační práce, Brno, FIT VUT v Brně, 2010

[3] Jan Kořenek. Fast Regular Expression Matching Using FPGA. 
Information Sciences and Technologies Bulletin of the ACM 
Slovakia. Bratislava: Vydavateľstvo STU, 2010, vol. 2, no. 2, pp. 
103-111. ISSN 1338-1237.

[4] KOŠAŘ Vlastimil and KOŘENEK Jan. Multi-Stride NFA-Split 
Architecture for Regular Expression Matching Using FPGA. In: 
Proceedings of the 9th Doctoral Workshop on Mathematical and 
Engineering Methods in Computer Science. Brno: NOVPRESS s.r.o., 
2014, s. 77-88. ISBN 978-80-214-5022-6.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

