Partial Determinization of Finite

Automata

Denis Matousek
LTA 2015

 Motivation

* NFA vs. DFA in FPGA

 Hybrid FA

« System of Parallel Automatons Parts

 Network intrusion detection systems (NIDS)
use rules described with regular expressions
(RE)

* Significant state transition redundancy

 Implementation of equivalent computational
machine — finite automaton (FA) — in hardware

is used to achieve high performance /
throughput on high-speed network links

through massive parallelism

 FPGA technology is used for ability to change
the configuration (implement different FAs)

Implementation in FPGA:

DFA vs. NFA I

« Tradeoff between DFA and NFA:

 NFA using FF reqgisters (states) and LUTs (transitions)

 DFA using BlockRAMs (storage of a hash table) and LUTs
(computation of a hash function)

 FA parameters of interest:

« Number of states
« Maximum number of concurrently active states

Implementation in FPGA:

DFA vs. NFA 1l

 Tradeoff between DFA and NFA:
* NFA using FF registers (states) and LUTs (transitions)

 DFA using BlockRAMs (storage of a hash table) and LUTs
(computation of a hash function)

. _...-w next-state logic

cee —JoT | ——oT |
& || FF 18]| FF
N SN
a —LET?:— - R
b E E
input symbol | shared |=— LD ;
character : N
decoder |* state

Implementation in FPGA:

DFA vs. NFA 1l

« Tradeoff between DFA and NFA:

* NFA using FF registers (states) and LUTs (transitions)

 DFA using BlockRAMs (storage of a hash table) and LUTs
(computation of a hash function)

 FA parameters of interest:

« Number of states
« Maximum number of concurrently active states

Implementation in FPGA:

DFA vs. NFA IV

« Tradeoff between DFA and NFA:

* NFA using FF registers (states) and LUTs (transitions)

 DFA using BlockRAMs (storage of a hash table) and
LUTs (computation of a hash function)

next-state
& State ? R il o J g S S
input symbol” hash transition collision
— . — table P)
function (BlockRAM) detection

Implementation in FPGA:

DFA vs. NFA V

« Tradeoff between DFA and NFA:

 NFA using FF reqgisters (states) and LUTs (transitions)

 DFA using BlockRAMs (storage of a hash table) and
LUTs (computation of a hash function)

 FA parameters of interest:

* Number of states
« Maximum number of concurrently active states

Typical Form of Rules Used in NIDS

« Example:

« a part of IMAP ruleset of Snort (https://www.snort.org/)
and corresponding NFA:

\SCREATE\s*\{ \'s

\sLIST\S[“\n]*¥?\s\{ @ 3£ L.
(30

\SPARTIAL *BODY\[[~\]]{ 1024} s\'] L@QQ”,

https://www.snort.org/

Problematic NFA Constructions |

 Parts of REs that cause
state explosion during . Corresponding NFA:
NFA determinization

 Mainly “dot-star”

constructions é@i@i@ﬁ@ﬁ

« Example: \

1. ab.*cd @ﬁ@g@ 1
*

2. efgh

e Transitions to O omitted

Problematic NFA Constructions Il

 Parts of REs that cause
state explosion during . Corresponding NFA:
NFA determinization

 Mainly “dot-star”
constructions

« Example:
1. ab.*cd
2. efgh

e Transitions to O omitted

Problematic NFA Constructions Il

« Parts of REs that cause
state explosion during
NFA determinization

 Mainly “dot-star”
constructions

« Example:
1. ab.*cd
2. efgh

« Corresponding NFA
(from [1]):

Figure 2: DFA representing (1) ab.*cd and (2) efgh.
In the accepting states, the number following the *“/”
represents the accepted regular expression.

Approach #1.:
Hybrid FA

* Introduced by Michaela Becchi [1]
 Partial transformation of an NFA to a DFA

o Interruption of subset construction algorithm at problematic
states

6-0@9@
">(o—~(e—-(

From [1]

Approach #2:

System of Parallel Automaton Parts

 Introduced by Jan Korenek [2]

 Formalism to describe division of a single NFA
into several parts

« Based on analysis of concurrency of an NFA

« Each part is either NFA, or DFA

 DFA parts deal with states of the original NFA that cannot be
active concurrently

 NFA parts deal with the other states

Analysis of NFA Concurrency:

Practical cases

 Number of concurrently active states in L7
decoder (from [3])

400

350

250

Active states in NFA

System of Parallel Automaton Parts:

States without Collision

Let A be an NFA A = (Q, X, 9,90, F). Two states ¢;,q; € Q,q; # g; are
called states without collisoin or non-collision states, if for any input string
w € X* does not exist a sequence of configurations

(qo,w) F* (g, €)

(QOa ’U)) = (Qja 8)

Example: i d~Ner~
. b# .
- collision states
b\ ¢ d e e
" —»> G (s I T

System of Parallel Automaton Parts:

Set of States without Collision |

3.

. Transform NFA A = (Q,X,6,qo, F') to DFA AP = (QP,%,6P, ¢, FP),

where Qp C 29.

. For all states g; €) create the set 5S¢ which contains collision states with

q;:
Sct ={q; € Qlai # q; A3¢” € Q7 : qi,q; € ¢°}

Let Q" = Q.

Continues on the next slide. . .

System of Parallel Automaton Parts:

Set of States without Collision |l

4. Keep removing collision states from the set ()™ until the set contains
only states without collisions:

(a) select a state gmar € Q" with the largest set of states Sg¢

Vg € QU]SS | > |8e

qmaa:

b) remove @ q, from Q™Y

c) for all states g; € Q™°* remove ¢q, from the set S;,“ and
d) if dg; € Q™" : Sg* # @ then go to (a).

(
(
5. Q™ is the set of states without collision.

System of Parallel Automaton Parts:

Set of States without Collision |1l

« The complexity is exponential
« Transformation of NFA to DFA In the step 1.

 The state to be removed in the step 4. (a) is
selected based on the number of collision
states (heuristic)

e States with the most collisions are removed first,

 Multiple sets of states without collision can be
found by recursive application of the algorithm

. QN _ Q\ana

System of Parallel Automaton Parts:

Set of States without Collision IV

 Improved algorithm to find all pairs of
simultaneously active states [4]

 Does not require transformation of original NFA
to corresponding DFA

 Better complexity

System of Parallel Automaton Parts:

Set of States without Collision V

1. normalize(q1,q2) = (¢1 < q2) 7 (q1,42) : (g2, q1);

2. concurrent = {(s, s) }; workplace = {(s, s)};

3. while 3(q1,q2) € workplace do
4. workplace = workplace\{(q1,q2)};
foreach ¢3 € §(¢q1,a) do
foreach ¢4 € 6(¢2,b) do
ifaNg b# (9,9,...,9) then

if ((g5,gs) = normalize(qs, qq)) & concurrent then

N S B g

concurrent = concurrent U {(gs, qs) };
10. workplace = workplace U { (g5, qs) };
11. return concurrent\{(p,p)|p € Q};

System of Parallel Automaton Parts:

Part of the Automaton Determined
by a Set of States |

Let A= (Q,%,0,q0, F) be an NFA and Q° C @ is a set of states. Then the
set of states (J° determines the part of the automaton A/gs, which is defined

by tuple A/QS — (Q87 Qina Qouta 27 587 qga FS)? where
e ()° C (is the set of internal states.
o Qin =1{qs|qgs € Q° Ngs € 0(q,a) A g € (Q\Q?)} is the set of input states.

o Qout = {q|lq € (Q\Q?)ANq € I(qs,a) A qs € Q°} is the set of output states.

e X is the input alphabet.

Continues on the next slide. . .

System of Parallel Automaton Parts:

Part of the Automaton Determined
by a Set of States Il

Let A= (Q,X,0,q0, F) be an NFA and Q° C @ is a set of states. Then the
set of states (Q° determines the part of the automaton A/gs, which is defined

by tuple A/QS — (Qsa Q’ina Qouta Za 587 C]Sa FS)7 where

e §°:(Q° x 2% is the state-transition function restricted to the set of states
QQ°. For a state g5 € @° and qqs+ € (Q and an input symbol a € X of

transition qqs; € 0°(qsre, @) is defined only if the transition qgst € 0(qsre, @)
1s defined.

e ¢; is the initial state of the automaton part which is defined as:

s _ qgo for qo € Q°
4o idle for qo & Q°

e ['° C F'is the set of final states restricted to QQ°: F* = F N Q*

System of Parallel Automaton Parts

Let A= (Q,%,6,q0, F) be an automaton and sets of states Q', Q?,..., Q" C
() determine £ different parts of the automaton A/g1, A/g2,..., A/gr. Sys-
tem of Parallel Automaton Parts A/[QI,QZ,_”,QI@] is defined by set of states

Q' Q%...,Q" if

Q=]

System of Parallel Automaton Parts:

Communication Models

Number of bidirectional
connections

* Without central part (a) k(k —1)
 Significant communication overhead 2

 With central part (b)
 Simpler communication through central part

/ \

\
@ From [3] ®

kE—1

i3

a

System of Parallel Automaton Parts:

Centralised System of Automaton Parts

Let A/io1,g2,... o+ is a System of Automaton Parts for NFA A = (Q, 3, 9, qo, F).
The System is called centralised if for any set of states Q7,j €< 1;k > it holds:

1.Vie<Lik>i#7:(Q'NQ)) =0
2. Vie<lik>,i#j:(Q. C@)

out

3. Vie<Lik>,i#j:(Q),, CQl)

out

Then A/ is called a central part or a central item of the centralised system
Al1g1.Q2....Q4)

System of Parallel Automaton Parts:

Tranformation to Centralised System

1. Let Vi € (1;k),i #r: Q% = QF"\Qr
2. Let Q°v = QN
3. For all i € (1;k),i # r do:

(@) @ = Q™ U QS

(b) Vj € (Lik),j #1r: Q9 \Quus

4. The system A/jgen Qe @ez,... @er 18 centralised and A/gen is the central

part.

.....

 The algorithm moves all output states of all
parts to the central part.

| Dec 13,2013

System of Parallel Automaton Parts:

Issues |

 The algorithm to find a set of states without
collision is applied recursively

 The issue is that the set of states obtained with
the first application of the algorithm:

e contains much more states than the sets of states obtained
by another applications of the algorithm,

 has many Isolated groups of states, which causes significant
communication overhead.

System of Parallel Automaton Parts:

Issues |l

automaton part
(@ (DFA)

7
%% / communication
overhead

7

(NFA)
automaton part

References

[1] Michela Becchi and Patrick Crowley. A Hybrid Finite Automaton
for Practical Deep Packet Inspection. In Proceedings of the
International Conference on emerging Networking Experiments
and Technologies (CONEXT), New York, NY, December 2007. ACM.

[2] Jan KofFenek. Rychlé vyhledavani regularnich vyrazu s vyuzitim
technologie FPGA, disertacni prace, Brno, FIT VUT v Brné, 2010

[3] Jan Korenek. Fast Regular Expression Matching Using FPGA.
Information Sciences and Technologies Bulletin of the ACM
Slovakia. Bratislava: Vydavatelstvo STU, 2010, vol. 2, no. 2, pp.
103-111. ISSN 1338-1237.

[4] KOSAR Vliastimil and KORENEK Jan. Multi-Stride NFA-Split
Architecture for Regular Expression Matching Using FPGA. In:
Proceedings of the 9th Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science. Brno: NOVPRESS s.r.o0.,

2014, s. 77-88. ISBN 978-80-214-5022-6.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

