
How to write an LLVM optimization pass

Albert Mikó (xmikoa00), Štefan Martiček (xmarti62) @stud.fit.vutbr.cz

November 6, 2015

The LLVM framework is an open source, easy-to-extend, modular compiler framework. It offers a wide
array of frontends and backends together with a powerful optimizer. LLVM is probably the best choice when
you want to write a production-quality compiler for a new language, a new target architecture, or just to try out
new optimization techniques. For example when writing a new language, by implementing a frontend outputting
LLVM IR, you can leverage the optimizator and the existing backends.

Introducing new optimizations to LLVM is made simple by several factors. First, the LLVM Intermediate
Representation (LLVM IR), a powerful language capable of storing all information about the compiled program
without additional data structures. Second, the Pass Manager allowing to add user-written passes. Third, all opt
passes can access the results of various analysis passes, such as alias analysis and others.

LLVM IR is a strongly typed intermediate language using SSA (Static Single Assignment) form [1]. It has
3 equally powerful representations: textual form, bitcode and in-memory. The textual form is human-readable
with its primary objective being to aid debugging. The bitcode representation is a memory efficient form for
longer-term storage and transfer between different tools. For example when compiling for multiple targets, the
frontend and optimizer are run only once, producing a bitcode file which all the backends receive.

As writers of optimizations we are more interested in the in-memory representation, which is defined by
a class hierarchy. The optimization passes interact with the code using these classes. There are two tricky
instructions in LLVM IR: GEP and PHI.

The Pass Manager controls which optimization passes are called in what order. It keeps track of the validity
of the analysis passes and reruns invalidated analyses when needed by another pass. Each pass declares lists of
analyses whose result it requires and whose results it preserves.

All passes are divided by the scope which they work at. Basic block passes work at the lowest level, and can
only influence instructions in a single basic block. Function passes are allowed to delete or insert basic blocks
in a single function. Module passes work on whole translation units, and can analyse and change all functions in
any order, or add/remove functions at will. New passes should always use the most restricting category possible,
to enable better performance. [2]

User-written passes can be compiled into a dynamically linked library (.so or .dll) and run via
opt --load=MyPass.so --my-pass. Another possibility is writing a custom driver where more
passes (user-written or core LLVM) can be run in a predefined order.

In our talk, we describe the process of creating and running a custom optimization pass using a simple
example.

References

[1] http://llvm.org/docs/WritingAnLLVMPass.html Writing an LLVM Pass.

[2] http://llvm.org/docs/LangRef.html LLVM IR Language Reference.

1


