The design and semantics of COOL

Matej Minarik (xminar29@stud.fit.vutbr.cz)
Petr Nechvatal (xnechv05@stud.fit.vutbr.cz)
06. 11. 2015

Compiler course is taken every year by many undergraduate students around the
world. A substantial project, where students write a compiler, is typically part of every
compiler course. This project teaches students some basics of language design, but also
gives them a chance to implement a complex program. It is very time consuming and labour
intensive for students to implement a compiler from scratch in one semester.

It is challenging also for course staff to make moderate changes every year,
implement and test a reference program. It is very surprising that there is no framework to
speed up creation and implementation of compiler project assignments as it is for example in
teaching operating systems the nachos project.

Here comes the Cool, free available, portable compiler project. It has been used at
Berkley for several years and now it can be used freely by others as well. Cool is also a
programming language, which is object-oriented, statically typed with automatic memory
management, similar to Java. Cool was designed to be easily compiled, rather than easily
used by programmers, which is exactly what is needed. It is extremely modular, so that
students that do a poor job on one assignment are not at disadvantage on other ones. Cool
compiler is structured in 4 modules: lexical analyzer, parser, semantic analyzer and code
generator. Students can implement, for example, their own parser and compile the whole
compiler with reference modules and their parser, if they respect defined interfaces.

Cool project can be used on any Unix machine with standard gnu tools (flex, bison,
gmake). Generated MIPS assembly code can run on a spim simulator included in the
project. There is also supporting code with memory management and data structures that
provides some level of abstraction, so students can focus on compiler implementation
instead of investigating and fixing bugs not related to compiler construction. The whole
project is well documented. Documentation has a formal part of the language and informal
part. Supporting code with its interfaces and examples is also documented.



