
Optimizing Object-Oriented Programs
November 1, 2016

Handlíř Jaroslav, ​xhandl05@stud.fit.vutbr.cz
Švestka Jakub, ​xsvest05@stud.fit.vutbr.cz

Object-oriented programming languages bring ​​programmers new opportunities for the
development of programs that the existing non-object-oriented languages did not support.
Encapsulation, class inheritance, polymorphism etc. allow to create programs or libraries that are
very readable, easily customizable, and extensible.

Unfortunately this advantages increased demands on translation and reduced the
performance of the resulting programs because of dynamic method lookup and a large number of
sending messages between objects. It is acceptable cost for many applications, but for
computationally sensitive programs such as mathematical or simulation libraries is any
performance degradation a big problem.

Compilers ​​use the same optimization techniques for object-oriented programming
languages as for the optimization procedural programming languages, but during compilation of a
code which uses class inheritance and dynamically-bound messages the compiler does not know
which instance of the class (or subclass even override dynamic methods) a message is delivered.

Conventional optimization methods, such as e.g. line expansion, fail in these cases and
optimization is not effective. Another problem is that the current computing machines can work
more efficiently with previously known (constant) addresses than the addresses fetched from
tables.

Thus arose new optimization techniques to support object-oriented languages. The most
important of them is the replacement of dynamic method calls by a static call. This requires class
hierarchy analysis in the code translation and use it to identify specific instances of classes which
are the messages receivers. On this basis and other useful techniques, dynamic method call can
be replaced by static method call and standard optimization techniques will deal with it.

References

[1] APPEL, Andrew W. a Jens. PALSBERG. ​Modern compiler implementation in Java

[online]. 2nd ed. New York, NY, USA: Cambridge University Press,
2002 [cit. 2016-10-01]. ISBN 05-218-2060-X.
Online: ​https://eden.dei.uc.pt/~amilcar/pdf/CompilerInJava.pdf

[2] DEAN, Jeffrey, David GROVE a Craig CHAMBERS, OLTHOFF, Walter. (ed.). ​9th
European Conference, Åarhus, Denmark, August 7-11, 1995 : proceedings: Optimization of
Object-Oriented Programs Using Static Class Hierarchy Analysis​ [online]. 1995-08-07. New York:
Springer, c1995 [cit. 2016-10-09]. ISBN 35-406-0160-0. Online:
http://web.cs.ucla.edu/~palsberg/tba/papers/dean-grove-chambers-ecoop95.pdf

[3] HÖLZLE, Urs a Ole AGESEN. Dynamic versus static optimization techniques for object-oriented

languages. ​Journal: Theory and Practice of Object Systems - Special issue: type systems​ [online].
New York, NY, USA: John Wiley & Sons, Inc., 1995, 1995 (Volume 1 Issue 3), 167 - 188 [cit.
2016-10-17]. ISSN 1074-3227. Online: ​http://hoelzle.org/publications/tapos96.pdf

mailto:xhandl05@stud.fit.vutbr.cz
mailto:xsvest05@stud.fit.vutbr.cz
https://eden.dei.uc.pt/~amilcar/pdf/CompilerInJava.pdf
http://web.cs.ucla.edu/~palsberg/tba/papers/dean-grove-chambers-ecoop95.pdf
http://hoelzle.org/publications/tapos96.pdf

