Automated GPU Kernel Transformation
as an Optimization Problem

Kristian Kadlubiak

Brno University of Technology, Faculty of Information Technology
BozZetéchova 1/2. 612 66 Brno - Krélovo Pole

ikadlubiak@fit.vutbr.cz

- BRNO | FACULTY
r UNIVERSITY OF INFORMATION
OF TECHNOLOGY A TECHNOLOGY

1/30

An Introduction to the GPGPU

Dispatch Unit

Instruction Buffer

Warp Scheduler

Core

Dispatch Unit

Register File (32,768 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Texture / L1 Cache

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32,768 x 32-bit)

0
g
H

Core

LoisT

Core

Core

Core

Core

Core

Core

Core

3/30

| The Performance of Different Memory Types | EE

Memory type Latency [clocks] | Visibility Amount
Register aprox. 0 thread 128 B
Shared Memory aprox. 50 block | 64 KB (32 B)

Global Memory aprox. 200 global 8 GB

| Different Memory Types Usage Example | A

__global__ void MatrixAdd (A, B, C, stride)
{
__shared__ sB[blockDim.y] [blockDim.x];

int globallIdX = getGlobalIdX();
int globallIdY = getGlobalIdY ()

7

int localldX = getLocalldX();
int localldY = getLocalIdY();
float rA;
float rC;

rA = A[globalIdY x stride + globalIdX];
sB[localIdY] [localIdX] = B[globallIdY % stride + globalIdX];
rC = rA + sB[locallIdY][locallIdX];

ClglobalIdY % stride + globalldX] = rC;

| The Roofline Model | ERGE

« Modeling theoretical peak performance in relation with the
operational intensity
o Helpful in determination of a bottleneck

Performance [GFLOPS]
Bound based on bandwidth ,-

Bound based on peak performance

.
. App,
App,

1/4 12 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]

| The Roofline Model: Example | GG

__global__ void vectorAdd (A, B, C)
{
int globallIdX = getGlobalIdX();

ClglobalIdX] = A[globalIdx] + BlgloballIdx];
}

1 FLOP per 8 bytes loaded from the global memory
A memory bound problem

1/8 operational intensity with 320 GB/s memory throughput leads
to 40 GFLOPS instead of 8228 GFLOPS (Nvidia GTX 1080)

Considering addition of two vectors, each of size 1 GB, the
computation would take 25 ms (40 GFLOPS) compared to 0.12
ms (8228 GFLOPS)

| The Kernel Fusion | FlGH

__global__ void twoVectorAdd(A, B, C, D, E)
{

int globalIdX = getGlobalIdX();

float rA = A[globalldX];

D[globalIdX] = rA + B[globalIdX];
ElglobalIdX] = rA + C[globalIdX];
}
e 2 FLOP per 12 bytes loaded from global memory
o Still a memory bound problem

» 1/6 operational intensity with 320 GB/s memory throughput leads
to 53 GFLOPS

e Considering addition of three vectors each of size 1 GB. The
computation would take 37.5 ms. However two consecutive calls
to the vectoradd () would take 50 ms.

e By fusing two kernels into one we are able to cut the runtime by
25%

| Fusion Candidates |

o Two constructions are suitable for the fusion

kernell<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inA, outC);

o Aforementioned example

kernell<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inB, outC);
kernel3<<<grid,block>>>(inC, outD);

» Kernels creating "chain” or "pipeline”
o Data dependencies implies the order of execution

The Kernel Fusion

| Demonstration Example |

int main ()
{

//preprocessing

kernell<<<grid,block>>>(inA, outB);
kernel2<<<grid, block>>> (inA, outC);
kernel3<<<grid,block>>>(inB, inC, outD);
kerneld<<<grid,block>>>(inA, outE);
kernel5<<<grid,block>>> (inF, outG);
kernel6<<<grid,block>>> (inF, outH);
kernel7<<<grid,block>>>(inH, inI, outdJ);
kernel8<<<grid,block>>>(inI, outK);
kernel9<<<grid,block>>>(inK, inJ, outL);

//postprocessing

| The Data Dependency Graph | FEE

The data dependency graph

It is a DAG Gu4,(V,E) where K C V and D C V represents kernels and
data arrays respectively. E is a set of edges composed of two types of
edges:

e (x,y) €E;x € D,y € K and x is input array of the kernel y
e (y,x) € E;x € D,y € K and x is output array of the kernel y

| The Data Dependency Graph of Example

c:a

| The Order-of-Execution Graph | G

The Order-of-execution graph

It is a DAG G,..(K, O) where K represents kernels and O is a set of
edges defined as follows:

o Vx,z €K,y €D;(x,y) EEV (y,2) €EE < (x,2) €O

| The Order-of-Execution Graph of Example | EE

ORNORONORC:

| 15/30

| An General Combinatorial Optimization Problem | EGH

General definition of an combinatorial optimization problem

The goal is to find y € f(x), such that

m(x,y) = g{m(x,y")ly’ € f(x)}
where x € I and [is a set of instances, f(x) is a set of feasible
solutions. Function m is a measure of y which for every tuple
(x,y);x € I,y € f(x) returns positive integer and g is goal function,
which is either max or min.

| The Kernel Fusion as an Optimization Problem |EGH

The definition of combinatorial optimization problem in context of

kernel fusion

Consider K a set of n kernels.
The goal is to find K1, K>, ..., K, C K

o KiNK;=0;i#j;i,j€{0,1,...,m}
«Uki=k
i=0

such that } " 7,,(K;) where 7, : P(K) — R is minimized.
i=0

| The Kernel Fusion as an Optimization Problem |

The definition of an optimization problem with constrains

Consider K set of original kernels |K| = n and F set of new kernels
[Fl =m

The goal is to minimize Z T,(F;) which is subject to:
j=1

o > Tu(Ki) > T,(Fi),VF € F
i€Fy
o x; €{0,1},Vie {l,....n}Vje{l,... m}

m
° injz L,Vie{l,...,n}
j=1
® Xgr=1,Yq € Ky sp, Xar = 1, x5 = 1
e VF, € F,VK; € F,,3K; € F,, DegKin(K;, K;) > 0
o SHMEM(F;) < SHMEM,,.,%j € {1,...,m}
* REG(F;) < REGu,Vj € {1,...,m}

| The Kernel Fusion as an Optimization Problem || EEEd

Explanation

Where:
e T,(K;) is measured execution time of the kernel K; € K
 T,(F;) is execution time projection of new fused kernel F; € F
* x; = 1 when K; € K is fused into F;
e K, ., is set of all kernels in path in G,,. from kernel K, to K,

* DegKin(K;, K;) is number of common immediate ancestors in G,
for K; and K;

* DegKin(K;, K;) is n — 1, when there is path in G,,. consisting of n
nodes between K; and K;

» DegKin(K;, K;) is 0 otherwise
o SHMEM F;) is amount of shared memory required by new fused
kernel F;

e REG(F;) is number of registers required per thread by new fused
kernel F;

| The Line Requirement Explained | KRG

| 20/30

| The Degree of Kinship Explained I rlFiT]

| 21/30

| Feasible Solution |

| 22/30

| The Order-of-Execution Graph of Solution | KRG

The Order-of-execution graph of solution

It is @ DAG G,.e(F, O5) Where F represents new fused kernels and O;
is a set of edges defined as follows:

e VF,F, € F;F, # Fy;3K; € F,3K; € Fy; (K;,K;) € 0 <=
(Fy, Fy) € O

| The Order-of-Execution Graph of Solution: Examiii&Ei

int main ()

{

G //preprocessing
kernelA<<<grid, block>>>(inA, outD);

kernelB<<<grid,block>>>(inF, outG, outH);

kernelC<<<grid, block>>>(inH, inI, outL);
a //postprocessing

| 24s30

Application

| The Kernel Fusion Tool | EE

It is possible to automate almost entire process
Output of such process is a template of new kernels
Generation of graphs is straightforward

A modified version of GA can be used to solve combinatorial
optimization problem

| Proposed Algorithm |

The Kernel fusion algorithm

1 Gather metadata of original kernels K;,i = 1,...,n

Create the dependency graph

Create the order-of-execution graph

Gy < generate M feasible solutions as an initial population

For all M; € G;
o Estimate runtime of M;

6 G « select N < M individuals from G,_; according to selection
method

7 G>¢ + apply crossover and mutation
8 G, + replace N individuals with G5¢ according to selection policy
9 If termination criteria are not met go to step 5

10 Use values of the best solution as an template

a b~ W DN

| Results |

™ 2500 B Projected (New kernel)
E O Measured (New kernel)
5 20001 ® Sum of Original Kernels
8
% 1500
9]
>
© 1000
)
£
€ 500
=]
o
0- —Nm3mwhmmo—mmvmml\wmo—mmvmmr\m
o jvvliviv v v ivivieReRoRolvRoReRe il IR IV IV I VNN,
New Kernels in SCALE-LES
i 8001 m Projected (New kernel) 1
E O Measured (New kernel)
B Sum of Original Kernels
X 600 9
q
N4
Q400
o
[
'g 200
c
=]
o
0 T t T ' T
6\ g\ 8\ gl 3I 8\ B\ 8I 8I
x X X x x X X x

x
New Kernels in HOMME

| Feasible Solution |

| 29/30

| Reference I

Y. Lin G. Wang and W. Yi. “Kernel Fusion: An Effective Method
for Better Power Efficiency on Multithreaded GPU”. In: Physical
and Social Computing (CPSCom) 11 (2010), pp. 344-350.

M. Wahib and N. Maruyama. “Scalable Kernel Fusion for
Memory-Bound GPU Applications”. In: SC14: International
Conference for High Performance Computing, Networking,
Storage and Analysis. 2014, pp. 191-202.

Wikipedia: Optimization Problem. https:

//en.wikipedia.org/wiki/Optimization_problem.

Accessed: 2017-11-30.

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem

