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An Introduction to the GPGPU
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| The Performance of Different Memory Types | EE

Memory type Latency [clocks] | Visibility Amount
Register aprox. 0 thread 128 B
Shared Memory aprox. 50 block | 64 KB (32 B)

Global Memory aprox. 200 global 8 GB




| Different Memory Types Usage Example | A

__global__ void MatrixAdd (A, B, C, stride)
{
__shared__ sB[blockDim.y] [blockDim.x];

int globallIdX = getGlobalIdX();
int globallIdY = getGlobalIdY ()

7

int localldX = getLocalldX();
int localldY = getLocalIdY();
float rA;
float rC;

rA = A[globalIdY x stride + globalIdX];
sB[localIdY] [localIdX] = B[globallIdY % stride + globalIdX];
rC = rA + sB[locallIdY][locallIdX];

ClglobalIdY % stride + globalldX] = rC;



| The Roofline Model | ERGE

« Modeling theoretical peak performance in relation with the
operational intensity
o Helpful in determination of a bottleneck

Performance [GFLOPS]
Bound based on bandwidth ,-

Bound based on peak performance

.
. App,
App,
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| The Roofline Model: Example | GG

__global__ void vectorAdd (A, B, C)
{
int globallIdX = getGlobalIdX();

ClglobalIdX] = A[globalIdx] + BlgloballIdx];
}

1 FLOP per 8 bytes loaded from the global memory
A memory bound problem

1/8 operational intensity with 320 GB/s memory throughput leads
to 40 GFLOPS instead of 8228 GFLOPS (Nvidia GTX 1080)

Considering addition of two vectors, each of size 1 GB, the
computation would take 25 ms (40 GFLOPS) compared to 0.12
ms (8228 GFLOPS)



| The Kernel Fusion | FlGH

__global__ void twoVectorAdd(A, B, C, D, E)
{

int globalIdX = getGlobalIdX();

float rA = A[globalldX];

D[globalIdX] = rA + B[globalIdX];
ElglobalIdX] = rA + C[globalIdX];
}
e 2 FLOP per 12 bytes loaded from global memory
o Still a memory bound problem

» 1/6 operational intensity with 320 GB/s memory throughput leads
to 53 GFLOPS

e Considering addition of three vectors each of size 1 GB. The
computation would take 37.5 ms. However two consecutive calls
to the vectoradd () would take 50 ms.

e By fusing two kernels into one we are able to cut the runtime by
25%



| Fusion Candidates |

o Two constructions are suitable for the fusion

kernell<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inA, outC);

o Aforementioned example

kernell<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inB, outC);
kernel3<<<grid,block>>>(inC, outD);

» Kernels creating "chain” or "pipeline”
o Data dependencies implies the order of execution



The Kernel Fusion



| Demonstration Example |

int main ()
{

//preprocessing

kernell<<<grid,block>>>(inA, outB);
kernel2<<<grid, block>>> (inA, outC);
kernel3<<<grid,block>>>(inB, inC, outD);
kerneld<<<grid,block>>>(inA, outE);
kernel5<<<grid,block>>> (inF, outG);
kernel6<<<grid,block>>> (inF, outH);
kernel7<<<grid,block>>>(inH, inI, outdJ);
kernel8<<<grid,block>>>(inI, outK);
kernel9<<<grid,block>>>(inK, inJ, outL);

//postprocessing



| The Data Dependency Graph | FEE

The data dependency graph

It is a DAG Gu4,(V,E) where K C V and D C V represents kernels and
data arrays respectively. E is a set of edges composed of two types of
edges:

e (x,y) €E;x € D,y € K and x is input array of the kernel y
e (y,x) € E;x € D,y € K and x is output array of the kernel y



| The Data Dependency Graph of Example

c:a




| The Order-of-Execution Graph | G

The Order-of-execution graph

It is a DAG G,..(K, O) where K represents kernels and O is a set of
edges defined as follows:

o Vx,z €K,y €D;(x,y) EEV (y,2) €EE < (x,2) €O



| The Order-of-Execution Graph of Example | EE

ORNORONORC:

| 15/30




| An General Combinatorial Optimization Problem | EGH

General definition of an combinatorial optimization problem

The goal is to find y € f(x), such that

m(x,y) = g{m(x,y")ly’ € f(x)}
where x € I and [ is a set of instances, f(x) is a set of feasible
solutions. Function m is a measure of y which for every tuple
(x,y);x € I,y € f(x) returns positive integer and g is goal function,
which is either max or min.



| The Kernel Fusion as an Optimization Problem |EGH

The definition of combinatorial optimization problem in context of

kernel fusion

Consider K a set of n kernels.
The goal is to find K1, K>, ..., K, C K

o KiNK;=0;i#j;i,j€{0,1,...,m}
«Uki=k
i=0

such that } " 7,,(K;) where 7, : P(K) — R is minimized.
i=0



| The Kernel Fusion as an Optimization Problem |

The definition of an optimization problem with constrains

Consider K set of original kernels |K| = n and F set of new kernels
[Fl =m

The goal is to minimize Z T,(F;) which is subject to:
j=1

o > Tu(Ki) > T,(Fi),VF € F
i€Fy
o x; €{0,1},Vie {l,....n}Vje{l,... m}

m
° injz L,Vie{l,...,n}
j=1
® Xgr=1,Yq € Ky sp, Xar = 1, x5 = 1
e VF, € F,VK; € F,,3K; € F,, DegKin(K;, K;) > 0
o SHMEM(F;) < SHMEM,,.,%j € {1,...,m}
* REG(F;) < REGu,Vj € {1,...,m}



| The Kernel Fusion as an Optimization Problem || EEEd

Explanation

Where:
e T,(K;) is measured execution time of the kernel K; € K
 T,(F;) is execution time projection of new fused kernel F; € F
* x; = 1 when K; € K is fused into F;
e K, ., is set of all kernels in path in G,,. from kernel K, to K,

* DegKin(K;, K;) is number of common immediate ancestors in G,
for K; and K;

* DegKin(K;, K;) is n — 1, when there is path in G,,. consisting of n
nodes between K; and K;

» DegKin(K;, K;) is 0 otherwise
o SHMEM F;) is amount of shared memory required by new fused
kernel F;

e REG(F;) is number of registers required per thread by new fused
kernel F;



| The Line Requirement Explained | KRG
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| The Degree of Kinship Explained I rlFiT]
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| Feasible Solution |
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| The Order-of-Execution Graph of Solution | KRG

The Order-of-execution graph of solution

It is @ DAG G,.e(F, O5) Where F represents new fused kernels and O;
is a set of edges defined as follows:

e VF,F, € F;F, # Fy;3K; € F,3K; € Fy; (K;,K;) € 0 <=
(Fy, Fy) € O



| The Order-of-Execution Graph of Solution: Examiii&Ei

int main ()

{

G //preprocessing
kernelA<<<grid, block>>>(inA, outD);

kernelB<<<grid,block>>>(inF, outG, outH);

kernelC<<<grid, block>>>(inH, inI, outL);
a //postprocessing
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Application



| The Kernel Fusion Tool | EE

It is possible to automate almost entire process
Output of such process is a template of new kernels
Generation of graphs is straightforward

A modified version of GA can be used to solve combinatorial
optimization problem



| Proposed Algorithm |

The Kernel fusion algorithm

1 Gather metadata of original kernels K;,i = 1,...,n

Create the dependency graph

Create the order-of-execution graph

Gy < generate M feasible solutions as an initial population

For all M; € G;
o Estimate runtime of M;

6 G « select N < M individuals from G,_; according to selection
method

7 G>¢ + apply crossover and mutation
8 G, + replace N individuals with G5¢ according to selection policy
9 If termination criteria are not met go to step 5

10 Use values of the best solution as an template

a b~ W DN



| Results |
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| Feasible Solution |
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