
Automated GPU Kernel Transformation
as an Optimization Problem

Kristian Kadlubiak
Brno University of Technology, Faculty of Information Technology

Božetěchova 1/2. 612 66 Brno - Královo Pole

ikadlubiak@fit.vutbr.cz

1 / 30

An Introduction to the GPGPU

The Streaming Multiprocessor

3 / 30

The Performance of Different Memory Types

Memory type Latency [clocks] Visibility Amount
Register aprox. 0 thread 128 B

Shared Memory aprox. 50 block 64 KB (32 B)
Global Memory aprox. 200 global 8 GB

4 / 30

Different Memory Types Usage Example

__global__ void MatrixAdd(A, B, C, stride)
{
__shared__ sB[blockDim.y][blockDim.x];

int globalIdX = getGlobalIdX();
int globalIdY = getGlobalIdY();
int localIdX = getLocalIdX();
int localIdY = getLocalIdY();

float rA;
float rC;

rA = A[globalIdY * stride + globalIdX];

sB[localIdY][localIdX] = B[globalIdY * stride + globalIdX];

rC = rA + sB[localIdY][localIdX];

C[globalIdY * stride + globalIdX] = rC;

}

5 / 30

The Roofline Model

• Modeling theoretical peak performance in relation with the
operational intensity

• Helpful in determination of a bottleneck

6 / 30

The Roofline Model: Example

__global__ void vectorAdd(A, B, C)
{
int globalIdX = getGlobalIdX();

C[globalIdX] = A[globalIdX] + B[globalIdX];
}

• 1 FLOP per 8 bytes loaded from the global memory
• A memory bound problem
• 1/8 operational intensity with 320 GB/s memory throughput leads

to 40 GFLOPS instead of 8228 GFLOPS (Nvidia GTX 1080)
• Considering addition of two vectors, each of size 1 GB, the

computation would take 25 ms (40 GFLOPS) compared to 0.12
ms (8228 GFLOPS)

7 / 30

The Kernel Fusion

__global__ void twoVectorAdd(A, B, C, D, E)
{
int globalIdX = getGlobalIdX();

float rA = A[globalIdX];

D[globalIdX] = rA + B[globalIdX];
E[globalIdX] = rA + C[globalIdX];

}

• 2 FLOP per 12 bytes loaded from global memory
• Still a memory bound problem
• 1/6 operational intensity with 320 GB/s memory throughput leads

to 53 GFLOPS
• Considering addition of three vectors each of size 1 GB. The

computation would take 37.5 ms. However two consecutive calls
to the vectorAdd() would take 50 ms.

• By fusing two kernels into one we are able to cut the runtime by
25 %

8 / 30

Fusion Candidates

• Two constructions are suitable for the fusion

kernel1<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inA, outC);

• Aforementioned example

kernel1<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inB, outC);
kernel3<<<grid,block>>>(inC, outD);

• Kernels creating ”chain” or ”pipeline”
• Data dependencies implies the order of execution

9 / 30

The Kernel Fusion

Demonstration Example

int main()
{
//preprocessing

kernel1<<<grid,block>>>(inA, outB);
kernel2<<<grid,block>>>(inA, outC);
kernel3<<<grid,block>>>(inB, inC, outD);
kernel4<<<grid,block>>>(inA, outE);
kernel5<<<grid,block>>>(inF, outG);
kernel6<<<grid,block>>>(inF, outH);
kernel7<<<grid,block>>>(inH, inI, outJ);
kernel8<<<grid,block>>>(inI, outK);
kernel9<<<grid,block>>>(inK, inJ, outL);

//postprocessing
}

11 / 30

The Data Dependency Graph

The data dependency graph

It is a DAG Gddg(V,E) where K ⊆ V and D ⊆ V represents kernels and
data arrays respectively. E is a set of edges composed of two types of
edges:

• (x, y) ∈ E; x ∈ D, y ∈ K and x is input array of the kernel y
• (y, x) ∈ E; x ∈ D, y ∈ K and x is output array of the kernel y

12 / 30

The Data Dependency Graph of Example

13 / 30

The Order-of-Execution Graph

The Order-of-execution graph

It is a DAG Gooe(K,O) where K represents kernels and O is a set of
edges defined as follows:

• ∀x, z ∈ K, y ∈ D; (x, y) ∈ E ∨ (y, z) ∈ E ⇐⇒ (x, z) ∈ O

14 / 30

The Order-of-Execution Graph of Example

15 / 30

An General Combinatorial Optimization Problem

General definition of an combinatorial optimization problem

The goal is to find y ∈ f (x), such that
m(x, y) = g{m(x, y′)|y′ ∈ f (x)}

where x ∈ I and I is a set of instances, f (x) is a set of feasible
solutions. Function m is a measure of y which for every tuple
(x, y); x ∈ I, y ∈ f (x) returns positive integer and g is goal function,
which is either max or min.

16 / 30

The Kernel Fusion as an Optimization Problem

The definition of combinatorial optimization problem in context of
kernel fusion
Consider K a set of n kernels.
The goal is to find K1,K2, . . . ,Km ⊆ K

• Ki ∩ Kj = ∅; i 6= j; i, j ∈ {0, 1, . . . ,m}

•
m⋃

i=0

Ki = K

such that
m∑

i=0

Tp(Ki) where Tp : P(K)→ R is minimized.

17 / 30

The Kernel Fusion as an Optimization Problem II

The definition of an optimization problem with constrains

Consider K set of original kernels |K| = n and F set of new kernels
|F| = m

The goal is to minimize
m∑

j=1

Tp(Fj) which is subject to:

•
∑
i∈Fk

Tm(Ki) > Tp(Fk),∀Fk ∈ F

• xij ∈ {0, 1},∀i ∈ {1, . . . , n}∀j ∈ {1, . . . ,m}

•
m∑

j=1

xij = 1,∀i ∈ {1, . . . , n}

• xqr = 1,∀q ∈ Ka→b, xar = 1, xbr = 1
• ∀Fx ∈ F,∀Ki ∈ Fx,∃Kj ∈ Fx,DegKin(Ki,Kj) > 0
• SHMEM(Fj) ≤ SHMEMmax,∀j ∈ {1, . . . ,m}
• REG(Fj) ≤ REGmax,∀j ∈ {1, . . . ,m}

18 / 30

The Kernel Fusion as an Optimization Problem III

Explanation

Where:
• Tm(Ki) is measured execution time of the kernel Ki ∈ K
• Tp(Fj) is execution time projection of new fused kernel Fj ∈ F
• xij = 1 when Ki ∈ K is fused into Fj

• Ka→b is set of all kernels in path in Gooe from kernel Ka to Kb

• DegKin(Ki,Kj) is number of common immediate ancestors in Gddg

for Ki and Kj

• DegKin(Ki,Kj) is n− 1, when there is path in Gooe consisting of n
nodes between Ki and Kj

• DegKin(Ki,Kj) is 0 otherwise
• SHMEM(Fj) is amount of shared memory required by new fused

kernel Fj

• REG(Fj) is number of registers required per thread by new fused
kernel Fj

19 / 30

The Line Requirement Explained

20 / 30

The Degree of Kinship Explained

21 / 30

Feasible Solution

22 / 30

The Order-of-Execution Graph of Solution

The Order-of-execution graph of solution

It is a DAG Gooefs(F,Os) where F represents new fused kernels and Os

is a set of edges defined as follows:
• ∀Fx,Fy ∈ F;Fx 6= Fy;∃Ki ∈ Fx∃Kj ∈ Fy; (Ki,Kj) ∈ O ⇐⇒
(Fx,Fy) ∈ Os

23 / 30

The Order-of-Execution Graph of Solution: Example

int main()
{
//preprocessing

kernelA<<<grid,block>>>(inA, outD);
kernelB<<<grid,block>>>(inF, outG, outH);
kernelC<<<grid,block>>>(inH, inI, outL);

//postprocessing
}

24 / 30

Application

The Kernel Fusion Tool

• It is possible to automate almost entire process
• Output of such process is a template of new kernels
• Generation of graphs is straightforward
• A modified version of GA can be used to solve combinatorial

optimization problem

26 / 30

Proposed Algorithm

The Kernel fusion algorithm

1 Gather metadata of original kernels Ki, i = 1, . . . , n

2 Create the dependency graph
3 Create the order-of-execution graph
4 G0 ← generate M feasible solutions as an initial population
5 For all Mi ∈ Gi

• Estimate runtime of Mi

6 GSe
t ← select N ≤ M individuals from Gt−1 according to selection

method
7 GSe

t ← apply crossover and mutation
8 Gt ← replace N individuals with GSe

t according to selection policy
9 If termination criteria are not met go to step 5

10 Use values of the best solution as an template

27 / 30

Results

28 / 30

Feasible Solution

29 / 30

Reference

Y. Lin G. Wang and W. Yi. “Kernel Fusion: An Effective Method
for Better Power Efficiency on Multithreaded GPU”. In: Physical
and Social Computing (CPSCom) 11 (2010), pp. 344–350.

M. Wahib and N. Maruyama. “Scalable Kernel Fusion for
Memory-Bound GPU Applications”. In: SC14: International
Conference for High Performance Computing, Networking,
Storage and Analysis. 2014, pp. 191–202.

Wikipedia: Optimization Problem. https:
//en.wikipedia.org/wiki/Optimization_problem.
Accessed: 2017-11-30.

30 / 30

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem

