Descriptional Complexity of Some Regulated Rewriting Grammars

Dr. Lakshmanan Kuppusamy
School of Comp. Sci. & Engg., VIT Vellore, INDIA.

email: klakshma@vit.ac.in

18th Nov 2019

Outline of the Talk

- Introduction
- Motivation and Objective
- 3 Semi-Conditional Grammars (SCG)
 - Variants of SCG
- Geffert Normal Form
 - Variants of Geffert Normal Form
- Describing RE
 - Describing RE with SCG
 - Describing RE with Simple SCG
- **6** Generalized Forbidding Grammars
 - Describing RE with GFG
- Conclusion

Introduction

Motivation and Objective Semi-Conditional Grammars (SCG) Geffert Normal Form Describing RE Generalized Forbidding Grammars Conclusion

Chomsky hierarchy

Class	Grammars	Languages	Automaton
Type-0	Unrestricted	Recursive Enumerable	Turing Machine
Type-1	Context Sensitive	Context Sensitive	Linear- Bound
Type-2	Context Free	Context Free	Pushdown
Type-3	Regular	Regular	Finite

Chomsky Hierarchy

Courtesy: Google Images

Motivation and Objective

- Can we describe a type-0 language using type-2 grammar?
 (i.e., context-free grammars) Obviously NO
- Can we generate recursively enumerable languages (RE) using context-free rules along with some tools Ans: Yes.
- What additional tool(s) can be used to achieve the above?

Motivation and Objective

- Can we describe a type-0 language using type-2 grammar? (i.e., context-free grammars) Obviously NO
- Can we generate recursively enumerable languages (RE) using context-free rules along with some tools Ans: Yes.
- What additional tool(s) can be used to achieve the above?
- One is context-based restriction and the other is rule based restriction.
 - Semi-conditional grammars, generalized forbidding grammars
 - Graph-controlled grammars, Matrix grammars, etc.

Motivation and Objective

- Can we describe a type-0 language using type-2 grammar? (i.e., context-free grammars) Obviously NO
- Can we generate recursively enumerable languages (RE) using context-free rules along with some tools Ans: Yes.
- What additional tool(s) can be used to achieve the above?
- One is context-based restriction and the other is rule based restriction.
 - Semi-conditional grammars, generalized forbidding grammars
 - Graph-controlled grammars, Matrix grammars, etc.
- Question: What and how much resources are required for grammars to generate RE? Is that optimal/succinct?
- resources meant the component size that require to describe the system, thus, called descriptional complexity measures.

Semi-conditional grammars

A semi-conditional grammar of degree (i,j) is G = (N, T, S, P), where P is a finite set of rules of the form $(A \rightarrow x, \alpha, \beta)$, where

- $A \rightarrow x$ is a context-free rule,
- $\alpha, \beta = \phi$ or $\alpha, \beta \in (N \cup T)^*$ and
- $|\alpha| \leq i$, $|\beta| \leq j$.

Semi-conditional grammars

A semi-conditional grammar of degree (i,j) is G = (N, T, S, P), where P is a finite set of rules of the form $(A \to x, \alpha, \beta)$, where

- $A \rightarrow x$ is a context-free rule,
- $\alpha, \beta = \phi$ or $\alpha, \beta \in (N \cup T)^*$ and
- $|\alpha| \leq i$, $|\beta| \leq j$.

A rule $(A \rightarrow x, \alpha, \beta)$ can be applied to a string w if and only if

- α (when $\alpha \neq \phi$) is a substring of w (permitting context) and
- β (when $\beta \neq \phi$) is not a substring of w (forbidding context).
- If $\alpha = \phi$, $\beta = \phi$, the rule is applied without any restriction.

Semi-conditional grammars

A semi-conditional grammar of degree (i,j) is G = (N, T, S, P), where P is a finite set of rules of the form $(A \rightarrow x, \alpha, \beta)$, where

- $A \rightarrow x$ is a context-free rule,
- $\alpha, \beta = \phi$ or $\alpha, \beta \in (N \cup T)^*$ and
- $|\alpha| \leq i$, $|\beta| \leq j$.

A rule $(A \rightarrow x, \alpha, \beta)$ can be applied to a string w if and only if

- α (when $\alpha \neq \phi$) is a substring of w (permitting context) and
- β (when $\beta \neq \phi$) is not a substring of w (forbidding context).
- If $\alpha = \phi$, $\beta = \phi$, the rule is applied without any restriction.
- A rule is applied based on the presence of the permitting string and the absence of the forbidden string in the current sentencial form.
- As usual, $w \in T^*$ is collected for languages.

Variants of Semi-conditional grammars

A semi-conditional grammar is called

- Random Context Grammar: if degree (i,j) = (1,1).
- Simple: If either $\alpha = \phi$ or $\beta = \phi$ in every rule of P.
- Permitting Grammar: if degree = (i, 0)Here $\beta = \phi$ in every rule of P.
- Forbidding Grammar: if degree = (0,j)Here $\alpha = \phi$ in every rule of P.

Variants of Semi-conditional grammars

A semi-conditional grammar is called

- Random Context Grammar: if degree (i,j) = (1,1).
- Simple: If either $\alpha = \phi$ or $\beta = \phi$ in every rule of P.
- Permitting Grammar: if degree = (i, 0)Here $\beta = \phi$ in every rule of P.
- Forbidding Grammar: if degree = (0,j)Here $\alpha = \phi$ in every rule of P.

A Forbidding Rule: $(A \rightarrow x, \beta)$

- $A \rightarrow x$ is a context-free rule,
- $\beta = \phi$ or $\beta \in (N \cup T)^* [\beta \text{ is a string}]$

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P)$$
 where P is : 1. $(S \to AC, \phi, \phi)$, 2. $(C \to Y, A, \phi)$, 3. $(A \to aXb, Y, \phi)$, 4. $(Y \to Cc, \phi, A)$, 5. $(X \to A, C, \phi)$ 6. $(A \to ab, Y, \phi)$, 7. $(Y \to c, \phi, A)$.

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P)$$
 where P is:

1.
$$(S \rightarrow AC, \phi, \phi)$$
, 2. $(C \rightarrow Y, A, \phi)$, 3. $(A \rightarrow aXb, Y, \phi)$,

4.
$$(Y \rightarrow Cc, \phi, A)$$
, 5. $(X \rightarrow A, C, \phi)$ 6. $(A \rightarrow ab, Y, \phi)$,

7.
$$(Y \rightarrow c, \phi, A)$$
.

$$S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc$$

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P)$$
 where P is:

1.
$$(S \rightarrow AC, \phi, \phi)$$
, 2. $(C \rightarrow Y, A, \phi)$, 3. $(A \rightarrow aXb, Y, \phi)$,

4.
$$(Y \rightarrow Cc, \phi, A)$$
, 5. $(X \rightarrow A, C, \phi)$ 6. $(A \rightarrow ab, Y, \phi)$,

7.
$$(Y \rightarrow c, \phi, A)$$
.

$$S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc \Rightarrow_{2,3,4,5}^{n-2}$$

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P)$$
 where P is : 1. $(S \to AC, \phi, \phi)$, 2. $(C \to Y, A, \phi)$, 3. $(A \to aXb, Y, \phi)$, 4. $(Y \to Cc, \phi, A)$, 5. $(X \to A, C, \phi)$ 6. $(A \to ab, Y, \phi)$, 7. $(Y \to c, \phi, A)$.

$$S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc \Rightarrow_{2,3,4,5}^{n-2} a^{n-1}Ab^{n-1}Cc^{n-1} \Rightarrow_2 a^nAb^nYc^{n-1} \Rightarrow_6 a^nb^nYc^{n-1} \Rightarrow_7 a^nb^nc^n.$$

Example

$$G = (\{S, A, X, C, Y, a, b, c\}, \{a, b, c\}, S, P)$$
 where P is :

1.
$$(S \rightarrow AC, \phi, \phi)$$
, 2. $(C \rightarrow Y, A, \phi)$, 3. $(A \rightarrow aXb, Y, \phi)$,

4.
$$(Y \rightarrow Cc, \phi, A)$$
, 5. $(X \rightarrow A, C, \phi)$ 6. $(A \rightarrow ab, Y, \phi)$,

7.
$$(Y \rightarrow c, \phi, A)$$
.

$$S \Rightarrow_1 AC \Rightarrow_2 AY \Rightarrow_3 aXbY \Rightarrow_4 aXbCc \Rightarrow_5 aAbCc \Rightarrow_{2,3,4,5}^{n-2} a^{n-1}Ab^{n-1}Cc^{n-1} \Rightarrow_2 a^nAb^nYc^{n-1} \Rightarrow_6 a^nb^nYc^{n-1} \Rightarrow_7 a^nb^nc^n.$$

Language and Degree

- $L(G) = \{a^n b^n c^n \mid n \ge 1\}$: a context-sensitive language.
- #Conditional Productions =6.
- #Non-terminals=5, Degree = (1,1).

Semi-Conditional Grammars and RE

Degree	# Non-	# Conditional	References
(i,j)	Terminals <i>n</i>	Productions c	
(2, 1)	7	6	Okubo, IPL, 2009
	6	$7 + P_{cf} $	We @ CiE 2018
(2, 2)	6	7	We @ CiE 2018
(3, 1)	6	13	We @ CiE 2018

Usual ambition: How small the four parameters (i, j, n, c) could be for a semi-conditional grammar to describe RE?

Semi-Conditional Grammars and RE

Degree	# Non-	# Conditional	References
(i,j)	Terminals <i>n</i>	Productions <i>c</i>	
(2, 1)	7	6	Okubo, IPL, 2009
	6	$7 + P_{cf} $	We @ CiE 2018
(2, 2)	6	7	We @ CiE 2018
(3, 1)	6	13	We @ CiE 2018

Usual ambition: How small the four parameters (i, j, n, c) could be for a semi-conditional grammar to describe RE?

Usual Technique to show SC(i,j;n;c)=RE: Consider a type-0 grammar for RE in one of the variants of Geffert Normal Form; produce SCG rules of prescribed size to simulate the assumed GNF.

Geffert Normal Form: (5, 2)-GNF

A type-0 grammar *G* is said to be in Geffert Normal Form if all of its production rules are of the form

- $S \rightarrow uSa, S \rightarrow uSv,$ $S \rightarrow uv.$
- $AB \rightarrow \lambda$, $CD \rightarrow \lambda$.

where S is the initial nonterminal and A, B, C, D are nonterminals and $u \in \{A, C\}$, $v \in \{B, D\}^*$. Only 5 nonterminals are used But no control on the length of the RHS of S.

Geffert Normal Form: (5,2)-GNF

A type-0 grammar *G* is said to be in Geffert Normal Form if all of its production rules are of the form

- $S \rightarrow uSa, S \rightarrow uSv,$ $S \rightarrow uv.$
- $AB \rightarrow \lambda$, $CD \rightarrow \lambda$.

where S is the initial nonterminal and A, B, C, D are nonterminals and $u \in \{A, C\}$, $v \in \{B, D\}^*$. Only 5 nonterminals are used But no control on the length of the RHS of S.

A type-0 grammar *G* is said to be in Special Geffert Normal Form if all of its production rules are of the form

$$ullet$$
 $X o bY$, $X o Yb$, $S' o \lambda$,

•
$$AB \rightarrow \lambda$$
, $CD \rightarrow \lambda$.

where
$$N=N_1\cup N_2$$
, $\{X,Y,S,S'\}\subseteq N_1$, $\{A,B,C,D\}=N_2$ and $b\in N_2\cup T$. control on the length of the RHS of CF rule; length is 2 only.

Variants of GNF($S \rightarrow v$, $AB \rightarrow \lambda$, $CD \rightarrow \lambda$)

(4, 1)-GNF

If
$$\phi_1(A) = AB$$
, $\phi_1(B) = C$, $\phi_1(C) = A$, $\phi_1(D) = BC$, then

- $S \rightarrow v$.
- $ABC \rightarrow \lambda$.

(4, 2)-GNF

If
$$\phi_2(A) = CAA$$
, $\phi_2(B) = BBC$, $\phi_2(C) = CA$, $\phi_2(D) = BC$, then

- $S \rightarrow v$,
- $AB \rightarrow \lambda$, $CC \rightarrow \lambda$.

Variants of GNF($S \rightarrow v$, $AB \rightarrow \lambda$, $CD \rightarrow \lambda$)

(4,1)-GNF

If $\phi_1(A) = AB$, $\phi_1(B) = C$, $\phi_1(C) = A$, $\phi_1(D) = BC$, then

- $S \rightarrow v$.
- $ABC \rightarrow \lambda$.

(4, 2)-GNF

If $\phi_2(A) = CAA$, $\phi_2(B) = BBC$, $\phi_2(C) = CA$, $\phi_2(D) = BC$, then

- $S \rightarrow v$,
- $AB \rightarrow \lambda$, $CC \rightarrow \lambda$.

(3, 1)-GNF

If $\phi_3(A) = ABB$, $\phi_3(B) = BA$, $\phi_3(C) = AB$, $\phi_3(D) = BBA$, then

- $S \rightarrow v$,
- $ABBBA \rightarrow \lambda$.

(3, 2)-GNF

- $S \rightarrow v$,
- $AA \rightarrow \lambda$, $BBB \rightarrow \lambda$.

Describing RE with SCG Describing RE with Simple SCG

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

 $S \rightarrow w$ is simulated by $S \rightarrow w, 0, 0$

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

S o w is simulated by

$$S \rightarrow w, 0, 0$$

$$\bullet$$
 $A \rightarrow \$,AB,\$$

$$\bullet$$
 $C \rightarrow \$$, CD , $\$$

$$\bullet$$
 \$ $\rightarrow \lambda$, \$#, λ

$$N = \{S, A, B, C, D, \$, \#\}$$

Normal Form is (5,2)-GNF

$$(AB \rightarrow \lambda, CD \rightarrow \lambda)$$

SC(2, 1; 7, 6)=RE : Okubo, IPL, 2009

 $S \rightarrow w$ is simulated by $S \rightarrow w$, 0, 0

2
$$B \to \#, \$B, \#$$

$$\bullet$$
 $C \rightarrow \$$, CD , $\$$

$$\bullet$$
 \$ $\rightarrow \lambda$, \$#, λ

$$\bullet$$
 # $\rightarrow \lambda$, 0, \$

N={
$$S$$
, A , B , C , D , \$, #}
Normal Form is (5,2)-GNF
($AB \rightarrow \lambda$, $CD \rightarrow \lambda$)

Sample Simulation for $AB \rightarrow \lambda$

$$AB \Rightarrow_1 \$B \Rightarrow_2 \$\# \Rightarrow_5 \# \Rightarrow_6 \lambda$$

SC(2, 1; 7, 6)=RE: Okubo, IPL, 2009

S o w is simulated by

$$S \rightarrow w, 0, 0$$

- \bullet $A \rightarrow \$,AB,\$$
- **2** $B \to \#, \$B, \#$
- \bullet $C \rightarrow \$$, CD, \$
- $0 D \rightarrow \#, \$D, \#$
- \bullet \$ $\rightarrow \lambda$, \$#, λ
- \bullet # $\rightarrow \lambda$, 0, \$

N={S, A, B, C, D, \$, #} Normal Form is (5,2)-GNF ($AB \rightarrow \lambda$, $CD \rightarrow \lambda$)

Sample Simulation for $AB \rightarrow \lambda$

$$AB \Rightarrow_1 \$B \Rightarrow_2 \$\# \Rightarrow_5 \# \Rightarrow_6 \lambda$$

Sample Simulation for $CD \rightarrow \lambda$

$$CD \Rightarrow_3 \$D \Rightarrow_4 \$\# \Rightarrow_5 \# \Rightarrow_6 \lambda$$

$SC(2,1;6,7+|P_{cf}|)=RE: CiE 2018$

S o w is simulated by

 $P_{cf}: S \rightarrow w, 0,$ \$ plus

- **②** *B* → #, \$*S*, #
- **3** $S \to \$$, S #, 0
- \bullet $C \rightarrow \$\$$, CC, \$
- **5** $C \to \#$, \$\$, #
- **6** \$ $\rightarrow \lambda$, \$#, 0

$$N = \{S, A, B, C, \$, \#\}$$

NF:
$$AB \rightarrow \lambda$$
, $CC \rightarrow \lambda$

$SC(2,1;6,7+|P_{cf}|)=RE: CiE 2018$

 $S \rightarrow w$ is simulated by $P_{cf}: S \rightarrow w, 0, \$$ plus

- \bullet $A \rightarrow \$5$, AB,
- **2** $B \to \#, \$S, \#$
- **3** $S \to \$$, S #, 0
- \bullet $C \rightarrow \$\$$, CC, \$
- **5** $C \to \#$, \$\$, #
- **6** \$ $\rightarrow \lambda$, \$#, 0

 $N = \{S, A, B, C, \$, \#\}$

NF: $AB \rightarrow \lambda$, $CC \rightarrow \lambda$

Sample Simulation for $AB \rightarrow \lambda$

$$AB \Rightarrow_1 \$SB \Rightarrow_2 \$S\# \Rightarrow_3 \$\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$$

$SC(2, 1; 6, 7 + |P_{cf}|) = RE : CiE 2018$

 $S \rightarrow w$ is simulated by $P_{cf}: S \rightarrow w, 0, \$$ plus

- \bullet $A \rightarrow \$5$, AB,
- **2** $B \to \#, \$S, \#$
- **3** $S \to \$$, S #, 0
- \bullet $C \rightarrow \$\$$, CC, \$
- **5** $C \to \#$, \$\$, #
- **6** \$ $\rightarrow \lambda$, \$#, 0

 $N = \{S, A, B, C, \$, \#\}$

NF: $AB \rightarrow \lambda$, $CC \rightarrow \lambda$

Sample Simulation for $AB \rightarrow \lambda$

$$AB \Rightarrow_1 \$SB \Rightarrow_2 \$S\# \Rightarrow_3 \$\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$$

Sample Simulation for $CC \rightarrow \lambda$

$$CC \Rightarrow_4 \$\$C \Rightarrow_5 \$\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$$

SC(2,2;6,7)=RE : CiE 2018

 $S \rightarrow w$ is simulated by

$$S \rightarrow w, 0, 0$$

$$\bullet$$
 $A \rightarrow \$,AB,\$$

2 \$
$$\rightarrow$$
 \$\$, \$B, **C**#

3
$$B \to \#$$
, \$\$, #

$$lacktriangledown$$
 $C o \#\$$, CC , $\#$

6
$$C \to \#\#$$
, $C, \#\#$

$$N = \{S, A, B, C, \$, \#\}$$

$$AB \rightarrow \lambda, CC \rightarrow \lambda$$

SC(2, 2; 6, 7) = RE : CiE 2018

 $S \rightarrow w$ is simulated by

$$S \rightarrow w, 0, 0$$

$$\bullet$$
 $A \rightarrow \$,AB,\$$

3
$$B \to \#$$
, \$\$, #

$$O$$
 $C \rightarrow \#\$$, CC , $\#$

5
$$C \to \#\#$$
, $C, \#\#$

$$N = \{S, A, B, C, \$, \#\}$$

NF is (4,2)-GNF:

$$AB \rightarrow \lambda, CC \rightarrow \lambda$$

Sample Simulation for $AB \rightarrow \lambda$

$$AB \Rightarrow_1 \$B \Rightarrow_2 \$\$B \Rightarrow_3 \$\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$$

SC(2, 2; 6, 7) = RE : CiE 2018

 $S \rightarrow w$ is simulated by

$$S \rightarrow w, 0, 0$$

$$\bullet$$
 $A \rightarrow \$,AB,\$$

3
$$B \to \#, \$\$, \#$$

$$\bullet$$
 $C \rightarrow \#\$$, CC , $\#$

5
$$C \to \#\#$$
, $C, \#\#$

$$N = \{S, A, B, C, \$, \#\}$$

NF is (4,2)-GNF:

$$AB \rightarrow \lambda, CC \rightarrow \lambda$$

Sample Simulation for $AB \rightarrow \lambda$

$$AB \Rightarrow_1 \$B \Rightarrow_2 \$\$B \Rightarrow_3 \$\$\# \Rightarrow_6 \$\# \Rightarrow_6 \# \Rightarrow_7 \lambda$$

Sample Simulation for $CC \rightarrow \lambda$

$$CC \Rightarrow_4 \#\$C \Rightarrow_5 \#\$\#\# \Rightarrow_6$$

 $\#\#\# \Rightarrow_7^3 \lambda$

Simple Semi-Conditional Grammars and RE

Degree	# Non-	# Conditional	References
(i,j)	Terminals <i>n</i>	Productions c	
(2,1)	10	9	T. Masopust, 2007
	9	9	MCU'18
(3, 1)	9	8	Okubo, IPL, 2009
	7	7	MCU'18, submitted to FI
(4,1)	7	6	MCU'18, submitted to FI
	6	8	We, submitted to FI

SSC(2,1;9,9) = RE : MCU 2018

 $S \rightarrow w$ is simulated by

$$S \rightarrow w, 0, 0$$

1
$$A \to \#\$A', 0, A'$$

3
$$C \rightarrow C'$$
\$#, 0, #

$$\bigcirc$$
 $A' \rightarrow B'$, $A'B'$, 0

$$C' \rightarrow \lambda, B'B', 0$$

o
$$B'$$
 → λ , B' \$,0

$$\$ \to \#, \#\#, 0$$

$$\bullet$$
 # $\rightarrow \lambda$, 0, \$

$$N = \{S. A. B. C. A'. B'. C'. \$. \#\}$$

SSC(2,1;9,9) = RE : MCU 2018

 $S \rightarrow w$ is simulated by

$$S \rightarrow w, 0, 0$$

1
$$A \to \#\$A', 0, A'$$

$$alg B \rightarrow B'$$
, 0, B'

3
$$C \rightarrow C'$$
\$#, 0, #

$$\bigcirc$$
 $A' \rightarrow B'$, $A'B'$, 0

$$C' \rightarrow \lambda, B'B', 0$$

⑤
$$B'$$
 → λ , B' \$,0

$$0$$
 \$ \rightarrow #, \$\$,0

$$\$ \to \#, \#\#, 0$$

$$N = \{S. A. B. C. A'. B'. C'. \$. \#\}$$

Sample Simulation for $ABC \rightarrow \lambda$

$$ABC \Rightarrow_1 \#\$A'BC \Rightarrow_2$$

 $\$\#\$A'B'C \Rightarrow_3 \#\$A'B'C'\$\#$
 $\Rightarrow_4 \#\$B'B'C'\$\# \Rightarrow_5$
 $\#\$B'B'B'\$\# \Rightarrow_6^3 \#\$\$\#$
 $\Rightarrow_7 \#\$\#\# \Rightarrow_8 \#^4 \Rightarrow_9^4 \lambda$

SSC(3, 1; 9, 8)=RE: Okubo, IPL, 2009

Okubo's rules

- $arr B \rightarrow B', 0, B'$
- $A' \rightarrow \$$, A'B'C', 0
- **6** $C' \to \#, \$B'C', 0$
- **o** B' → λ , \$B'#, 0
- **0** \$ $\rightarrow \lambda$, \$#, 0
- \bullet # \rightarrow λ , 0, #

NF: (4,1)-GNF

Generalized Forbidding Grammars

SSC(3, 1; 9, 8)=RE: Okubo, IPL, 2009

Okubo's rules

- \bigcirc $A \rightarrow A', 0, A'$
- $B \rightarrow B', 0, B'$
- \bullet $A' \rightarrow \$$, A'B'C', \bullet
- **⑤** C' → #, \$B'C', 0
- **o** B' → λ , \$B'#, 0
- **3** \$ $\rightarrow \lambda$, \$#, 0
- \bullet # $\rightarrow \lambda$, 0, #

NF: (4,1)-GNF

Aim: to avoid #,\$

- $B \rightarrow B', 0, B'$

Describing RE with SCG
Describing RE with Simple SCG

SSC(3, 1; 9, 8)=RE: Okubo, IPL, 2009

Okubo's rules

- \bullet $A \rightarrow A', 0, A'$
- $arr B \rightarrow B', 0, B'$
- $A' \rightarrow \$$, A'B'C', 0
- **⑤** C' → #, \$B'C', 0
- **o** B' → λ , \$B'#, 0
- **0** \$ $\rightarrow \lambda$, \$#, 0
- \bullet $\# \rightarrow \lambda$, 0, #

NF: (4,1)-GNF

Aim: to avoid #,\$

- $B \rightarrow B', 0, B'$

Unintended Simulation for

$$AC \rightarrow \lambda$$

$$AC \Rightarrow_{1,3} A'C' \Rightarrow_5 C' \Rightarrow_6 \lambda$$

Generalized Forbidding Grammars

Describing RE with SCG
Describing RE with Simple SCG

SSC(3, 1; 7, 7) = RE

Recall Okubo's rules

- $arr B \rightarrow B'.0. B'$
- $A' \rightarrow \$$, A'B'C', 0
- **⑤** C' → #, \$B'C', 0
- \bullet $B' \rightarrow \lambda$, B' #, 0
- **1** \$ $\rightarrow \lambda$, \$#, 0
- $3 \# \rightarrow \lambda, 0, \#$

Avoiding B', \$ (MCU'18)

- **1** $A \to \#A', 0, \#$
- $B \rightarrow A', 0, A'$
- **1** $C' \to \#$, A'A'C', 0

SSC(3, 1; 7, 7) = RE

Recall Okubo's rules

- $A \rightarrow A', 0, A'$
- $aabla B \rightarrow B'.0. B'$
- \bullet $C \rightarrow C'$. 0. C'
- $A' \rightarrow \$$. A'B'C'.0
- **5** $C' \to \#, \$B'C', 0$
- \bullet $B' \rightarrow \lambda$. B' #. 0
- **1** \$ $\rightarrow \lambda$. \$#. 0
- 0 # $\rightarrow \lambda$, 0, #

Avoiding B', \$ (MCU'18)

- **1** $A \to \#A', 0, \#$
- $\mathbf{a} B \rightarrow A'.0. A'$
- \bullet $C \rightarrow C'$ \bullet \bullet C'
- O $C' \rightarrow \#$, A'A'C', O
- \bullet $A' \rightarrow \lambda$. A'A' # .0
- \bullet $A' \rightarrow \lambda$. #A' #. \bullet
 - \emptyset # $\rightarrow \lambda$, 0, A'

Intended Simulation for $ABC \rightarrow \lambda$

$$ABC \Rightarrow_2 AA'C \Rightarrow_{1.3} \#A'A'C' \Rightarrow_4$$

Generalized Forbidding Grammar

- Introduced by Meduna in 1990. Its a context-free rule, where each rule is regulated with finitely many forbidding strings.
- A nonterminal is rewritten by a rule only if none of the forbidding strings of the rule occur in the sentential form.
- GFG is a quadruple G = (V, T, P, S) where
 - ullet V is the total alphabet, $\mathcal{T}\subset V$ is the terminal alphabet,
 - $S \in V \setminus T$ is the start symbol and P is a set of rules
 - Rule Form: $(A \to x, F)$, where $A \in V \setminus T$, $x \in V^*$, $F \subseteq (N \cup T)^+ \to a$ finite set of forbidding words
- Every RE language can be generated by some GF grammar whose forbidding strings have length (degree) at most two but not one.
- i.e., GF(2)=RE but, GF(1) = Fordibben random context gr.
 = ⊊ RE.

GF(d, i, n, c): The resources

The language family GF(d, i, n, c) is defined as follows:

 $L \in GF(d, i, n, c)$ iff there is a GFG, G = (V, T, P, S) such that:

- ② $d \ge d(G) := \max_{(A \to x, F) \in P} \max_{f \in F} |f|$,
 Informally: d is maximum length of

Informally: *d* is maximum length of the strings in a forbidding set, called degree

- 3 $i \ge i(G) := \max_{(A \to x, F) \in P} |F|$,
 Informally: i is maximum number of elements of a forbidding set, called index
- 0 $n \ge |V \setminus T|$, the number or nonterminals in G,
- **5** $c \ge |P_c|$, the number of conditional rules in G.

Describing RE by GF(d, i, n, c)

Generalized Forbidding Grammars and RE

(d,i)	# Non-	# Conditional	References
	Terminals <i>n</i>	Productions <i>c</i>	
(2,6)	9	10	Masopust, Meduna, 2007
	8	6	We, submitted to DAM
(2,5)	8	8	We, @ CALDAM 2019
	9	7	We, submitted to DAM
(2,4)	10	11	Masopust, Meduna, 2007
	9	9	We, @ CALDAM 2019
	8	8	We, submitted to DAM
(2,3)	20	18	We, submitted to DAM

Simulation technique

- Consider a type-0 grammar (in some GNF) starting with S.
- Consider a new starting variable S' (in G') such that $S' \to \sigma S \sigma$
- $S \rightarrow g(x)$ whenever $S \rightarrow x$ (unconditional rules).

•
$$g(\gamma) = \begin{cases} \sigma \gamma \sigma & \text{if } \gamma \in T \\ \gamma & \text{if } \gamma \in V \end{cases}$$

- By induction, $S' \Rightarrow^* \sigma u \alpha v \sigma t \sigma$ where $t \in (T \cup \{\sigma\})^*$ and
- If the grammar is in (4,1)-GNF, then
 - $u \in \{A, AB\}^*, v \in \{BC, C\}^*,$
 - $\alpha \in \{AC, ABBC, ABC\}$ (the central part),
- If the grammar is in (5,2)-GNF, then
 - $u \in \{A, C\}^*$, $v \in \{B, D\}^*$,
 - $\alpha \in \{AB, CD, AD, CB\}$ (the central part).

Describing RE with GFG

GF(2, 6, 8, 6) = RE

Simulating rules for $ABC \rightarrow \lambda$

```
1: (B \rightarrow \$ , \{S, AC, BB, \$, \#\})
```

2:
$$(A \rightarrow \#\$, \{S, AC, BB, \#\})$$

3:
$$(C \to \$\#, \{S, AC, BB, \$\#, C\#, \#C\})$$
 6: $(\sigma \to \lambda, \{A, B, C, \#, \$, S\})$

4: (\$
$$\rightarrow \lambda$$
 , {A\$,\$C,\$ σ , σ \$,B\$,\$B})

5:
$$(\# \to \lambda, \{\$, \#A, C\#\})$$

6:
$$(\sigma \to \lambda, \{A, B, C, \#, \$, S\})$$

GF(2,6,8,6) = RE

Simulating rules for $ABC \rightarrow \lambda$

- 1: $(B \to \$$, $\{S, AC, BB, \$, \#\}$)
 4: $(\$ \to \lambda, \{A\$, \$C, \$\sigma, \sigma\$, B\$, \$B\})$
- 2: $(A \to \#\$, \{S, AC, BB, \#\})$ 5: $(\# \to \lambda, \{\$, \#A, C\#\})$
- 3: $(C \to \$\#, \{S, AC, BB, \$\#, C\#, \#C\})$ 6: $(\sigma \to \lambda, \{A, B, C, \#, \$, S\})$

Simulating $ABC \rightarrow \lambda$

$$\sigma u \overset{\mathsf{ABC}}{\mathsf{V}} v \sigma t \sigma \Rightarrow_1 \sigma u \overset{\mathsf{A\$C}}{\mathsf{V}} v \sigma t \sigma \Rightarrow_2 \sigma u \overset{\mathsf{\$\$C}}{\mathsf{V}} v \sigma t \sigma \Rightarrow_3 \sigma u \overset{\mathsf{\$\$\$}}{\mathsf{V}} v \sigma t \sigma \Rightarrow_4^3 \sigma u \overset{\mathsf{\$\$}}{\mathsf{W}} v \sigma t \sigma \Rightarrow_5^2 \sigma u v \sigma t \sigma.$$

- $ABA \Rightarrow_1 A\$A \Rightarrow_2 \#\$\$A \Rightarrow_4^2 \#A \not\Rightarrow_5$
- $ABB \not\Rightarrow_{1,2,3}$
- $BBC \not\Rightarrow_{1,2,3}$
- $CBC \Rightarrow_1 C$C \Rightarrow_3 $\#$C \not\Rightarrow_4$

GF(2, 5, 9, 7) = RE

Recalling simulating rules of GF(2, 6, 8, 6) = RE

```
1: (B \to \$ , \{S, AC, BB, \$, \#\}) 4: (\$ \to \lambda , \{A\$, \$C, \$\sigma, \sigma\$, B\$, \$B\})
```

2:
$$(A \to \#\$, \{S, AC, BB, \#\})$$
 5: $(\# \to \lambda, \{\$, \#A, C\#\})$

3:
$$(C \rightarrow \$\#, \{S, AC, BB, \$\#, C\#, \#C\})$$
 6: $(\sigma \rightarrow \lambda, \{A, B, C, \#, \$, S\})$

Simulating rules of GF(2, 5, 9, 7) = RE

```
1: (B \to \dagger, \{S, AC, BB, \dagger, \#\}) 5: (\$ \to \lambda, \{\dagger, \$A, \$B, B\$, C\$\})
```

2:
$$(A \to \#\$, \{S, AC, BB, \#\})$$
 6: $(\# \to \lambda, \{\$, \dagger, \#\sigma, \sigma\#\})$

3:
$$(C \rightarrow \$\#, \{S, AC, BB, \$\#, \#C\})$$
 7: $(\sigma \rightarrow \lambda, \{A, B, C, \#, S\})$

4:
$$(\dagger \rightarrow \lambda , \{A\dagger, \dagger C, C\dagger, \dagger \sigma, \sigma\dagger\})$$

Describing RE with GFG

GF(2,5,9,7)=RE

Recalling simulating rules of GF(2, 6, 8, 6) = RE

```
1: (B \to \$ , \{S, AC, BB, \$, \#\}) 4: (\$ \to \lambda , \{A\$, \$C, \$\sigma, \sigma\$, B\$, \$B\})
```

2: $(A \to \#\$, \{S, AC, BB, \#\})$ 5: $(\# \to \lambda, \{\$, \#A, C\#\})$

3: $(C \to \$\#, \{S, AC, BB, \$\#, C\#, \#C\})$ 6: $(\sigma \to \lambda, \{A, B, C, \#, \$, S\})$

Simulating rules of GF(2, 5, 9, 7) = RE

- 1: $(B \to \dagger, \{S, AC, BB, \dagger, \#\})$ 5: $(\$ \to \lambda, \{\dagger, \$A, \$B, B\$, C\$\})$
- 2: $(A \to \#\$, \{S, AC, BB, \#\})$ 6: $(\# \to \lambda, \{\$, \dagger, \#\sigma, \sigma\#\})$
- 3: $(C \to \$\#, \{S, AC, BB, \$\#, \#C\})$ 7: $(\sigma \to \lambda, \{A, B, C, \#, S\})$
- 4: $(\dagger \rightarrow \lambda \quad , \{A\dagger, \dagger C, C\dagger, \dagger \sigma, \sigma\dagger\})$

Simulating $ABC \rightarrow \lambda$

$$\sigma uABCv\sigma t\sigma \Rightarrow_{1,2,3} \sigma u\#\$ \dagger \$\#v\sigma t\sigma \Rightarrow_4 \sigma u\#\$\$\#v\sigma t\sigma \Rightarrow_5^2 \sigma u\#\#v\sigma t\sigma \Rightarrow_5^2 \sigma u \#\pi\sigma t\sigma$$

GF(2, 5, 9, 7) = RE

A dooming set of rules of GF(2, 5, 9, 7) = RE

```
1: (B \to \$, \{AC, BB, \$, \#, \dagger\}) 5: (\# \to \lambda, \{\$, \#\sigma, \#B, \#A\})
```

2:
$$(A \rightarrow \#, \{S, AC, BB, \#, A\dagger\})$$
 6: $(\dagger \rightarrow \lambda, \{\$, \#, B\dagger, C\dagger\})$

3:
$$(C \rightarrow \dagger, \{S, AC, BB, \dagger, \sigma C\})$$
 7: $(\sigma \rightarrow \lambda, \{A, C, \dagger, \#, S\})$

4: (\$ $\rightarrow \lambda$, {S, A\$, \$ C, σ \$, \$ σ })

(Not) simulating $ABC \rightarrow \lambda$ but simulating $BC \rightarrow B$

 $\sigma uABCv\sigma t\sigma \Rightarrow_{1,2,3} \sigma u\#\$\dagger v\sigma t\sigma \Rightarrow_4 \sigma u\#\dagger v\sigma t\sigma \Rightarrow_5 \sigma u\dagger v\sigma t\sigma = \sigma u'B\dagger v\sigma t\sigma$ (if u=u'B) $\not\Rightarrow_6$ since $B\dagger$ is forbidden.

If B^{\dagger} is not there in rule 6, then

 $\sigma BC\sigma t\sigma \Rightarrow_3 \sigma B \dagger \sigma t\sigma \Rightarrow_6 \sigma B\sigma t\sigma.$

Masopust, Meduna Normal Form

Let G be a (5,2) – GNF.

Let $h: \{A, B, C, D\}^* \to \{0, 1\}^*$ be a homomorphism defined by

$$h(A) = 00, h(B) = 00,$$

$$h(C) = 01$$
, and $h(D) = 10$,

then the unconditional rules are

- $S \rightarrow h(u)Sa$, if $S \rightarrow uSa$,
- $S \rightarrow h(u)Sh(v)$, if $S \rightarrow uSv$,
- $S \rightarrow h(u) h(v)$, if $S \rightarrow uv$,

and the non-context-free rules are of the form

- $0\$0 \rightarrow \$$, $1\$1 \rightarrow \$$ and
- the context-free rule $\$ \to \lambda$.

Introduction
Motivation and Objective
Semi-Conditional Grammars (SCG)
Geffert Normal Form
Describing RE
Generalized Forbidding Grammars
Conclusion

Future Research

- Mathematical: Investigate further possibilities to shrink the resources
- We have given the upper bound and finding lower bound is open. Would it be $GF(2,2,*,*) \neq RE$? Recall, GF(2) = RE
- Impose the regulation of forbidding sets on
 - P systems (membrane Computing)
 - 2 Lindenmayer systems
 - Insertion-deletion system
 - and study the computational completeness of these systems.
- If not RE, then can we at least simulate regular grammars, or context-free grammars? especially, with d=1?

Introduction
Motivation and Objective
Semi-Conditional Grammars (SCG)
Geffert Normal Form
Describing RE
Generalized Forbidding Grammars
Conclusion

THANK YOU (Děkuji) Questions are welcome.