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Outline of my previous talk

1 Can we simulate Type-0 grammars by Type-2 grammars if we regulate
the rule applications in some manner?

2 YES !! but with certain regulations on the contexts of application like

3 Semi-Conditional grammars

4 Simple Semi-Conditional grammars

5 Generalised Forbidding grammars

6 Matrix grammars (we did not discuss this)

7 Graph-Controlled grammars (we did not discuss this)
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Insertion-Deletion Systems

A counterpart of Rewriting Systems
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Theoretical meaning of ins-del

Insertion (Deletion) means appending (removing) a (sub)string to
(from) a given string with specific contexts.

This is not Rewriting and motivation comes from DNA.

If a string α is inserted between two parts w1 and w2 of a string w1w2

to get w1αw2, the operation is insertion.

Notation: (w1, α,w2)ins : means (w1w2 =⇒ w1αw2)

If a substring β is deleted from a string w1βw2 to get w1w2, the
operation is deletion.

Notation: (w1, β,w2)del : means (w1βw2 =⇒ w1w2 )

Suffixes of w1 and prefixes of w2 are called the left and right context
of α or β.

Starting with axioms and iterating the ins-del operations, we get a set
of terminal strings (language of ins-del system).
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Definition

An insertion-deletion system is a construct G = (V ,T ,A,R)

V is an alphabet, T ⊆ V , A ⊆ V ∗

R is a finite set of n rules of the form (ui , αi , vi )t

t ∈ {ins, del}, 1 ≤ i ≤ n, ui , vi ∈ V ∗, αi ∈ V+.

Size of an Ins-Del (ID) system

Notation: ( n, i ′, i ′′ ; m, j ′, j ′′ ) where

1 n = the maximal length of the insertion string

2 i ′ = maximal length of left contexts used in insertion rules

3 i ′′ = maximal length of right contexts used in insertion rules

4 m, j ′, j ′′ denote similar maximal lengths among deletion rules.
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Ins-del systems for {anbn | n ≥ 1}

G1 =
({a, b}, {a, b}, {ab},R)

r1 : (a, ab, b)ins

Size = (2, 1, 1; 0, 0, 0).

Can generate more grammars
for the same language?

G2 =
({a,X , b}, {a, b}, {ab},R)

r1 : (a,X , b)ins

r2 : (X , ab, b)ins

r3 : (λ,X , λ)del

Size = (2, 1, 1; 1, 0, 0).

G3 = ({a,C , b}, {a, b}, {ab},R)

r1 : (a, aC , b)ins

r2 : (a, b,C )ins

r3 : (b,C , b)del

Size = (2, 1, 1; 1, 1, 1).

G4 = ({a, $,Y , b}, {a, b}, {ab},R)

r1 : (a, aY , b)ins

r2 : (a, b$,Y )ins

r3 : (b, $Y , b)del

Size = (2, 1, 1; 2, 1, 1).

{anbn} ∈ ID(2, 1, 1; 0, 0, 0).
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Trivial yet important result

If L ∈ ID(s1, s2, s3; s4, s5, s6), then L ∈ ID(t1, t2, t3; t4, t5, t6) for every
ti ≥ si . Objective: Minimize the si ’s.

If L ∈ ID(s1, s2, s3; s4, s5, s6), then Lr ∈ ID(s1, s3, s2; s4, s6, s5).

If L is a language class that is closed under reversal and
L = ID(s1, s2, s3; s4, s5, s6), then L = ID(s1, s3, s2; s4, s6, s5).

Implication: If RE = ID(1, 1, 0; 1, 0, 1) implies
RE = ID(1, 0, 1; 1, 1, 0).
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With what sizes does an ID system (not known to) characterize RE ?

(1, 1, 1; 1, 1, 1)

(1, 1, 1; 2, 0, 0)

(2, 0, 0; 1, 1, 1)

(2, 0, 0; 3, 0, 0)

(3, 0, 0; 2, 0, 0)

Classic Result 2017

For i ′ + i ′′, j ′ + j ′′ 6= 0,
ID(2, i ′, i ′′; 2, j ′, j ′′)=RE

ID(2, 0, 0; 2, 0, 0) 6= RE

(1, 1, 0; 1, 1, 1)

(1, 1, 1; 1, 1, 0)

(1, 1, 0; 1, 1, 0)

(1, 1, 1; 1, 0, 0)

(1, 0, 0; 1, 1, 1)

(1, 1, 0; 2, 0, 0)

(2, 0, 0; 1, 1, 0)

and so on...
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Variants of ins-del system

Ins-del P systems by Krishna and Rama (2001)

Tissue P systems with ins-del rules by Lakshmanan and Rama (2003)

Graph-controlled ins-del systems by R Freund et al (2010).

Matrix ins-del systems by Lakshmanan and Anand Mahendran (2011)
and independently by I Petre and S Verlan (2012)

Semi-conditional and Random Context ins-del systems by S Ivanov
and S Verlan (2011)

Generalized forbidding ins-del systems by S Ivanov and S Verlan
(2011)

Common objective

To characterize recursively enumerable languages using any of the above
regulated system with as minimal size/resource as possible.
To do so, we use Special Geffert Normal Form of type-0 grammars.
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Special Geffert Normal Form (SGNF)

Definition

A type-0 grammar G = (N,T ,P,S) is in SGNF if

N is partitioned into N = N1 ∪ N2, where N2 = {A,B,C ,D} and N1

contains at least the two non-terminals S and S ′,

The rules in P are of the form :

p : X → bY , q : X → Yb, h : S ′ → λ, f : AB → λ, g : CD → λ. where
X ,Y ∈ N1, X 6= Y , b ∈ T ∪ N2 and p,q,h,f,g are labels.

In Phase I , the (linear-like) CF rules are applied and completed by
applying S ′ → λ.

Adv. At any instant of string in the sentential form, there is only
ONE variable from N1 (No confusion of twins!).

In Phase II , only AB → λ, CD → λ rules are applied.
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Graph-Controlled Insertion-Deletion (GCID)

Definition

A GCID system is Π = (k,V ,T ,A,H, i0, if ,R)

k is the number of components

V is an alphabet, T ⊆ V , A is an axiom set, H is a label set.

i0 is the initial component and if is the final component.

A rule in R is of the form ` : (i , (w1, α,w2)t , j), t ∈ {I ,D}.
` ∈ H is a label for the ins-del rule,
i : current component, j : target component

Starting with #$ we generate {ww | w ∈ {a, b}∗} /∈ CF

r11 : (1, (#, a, λ)ins , 2) r21 : (2, ($, a, λ)ins , 1) Size is (3; 1, 1, 0; 1, 0, 0)
r12 : (1, (#, b, λ)ins , 3) r22 : (2, (λ,#, λ)del , 1)

r13 : (1, (λ, $, λ)del , 2) r31 : (3, ($, b, λ)ins , 1)
C1C2 C3
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Size of GCID

The size of a GCID system is given by (k ; n, i ′, i ′′;m, j ′, j ′′) where

k : Number of Components (k ≥ 1)

n : Maximal length of the insertion string

i ′ : Maximal length of the left context used in insertion rules

i ′′ : Maximal length of the right context used in insertion rules

m : Maximal length of the deletion string

j ′ : Maximal length of the left context used in deletion rules

j ′′ : Maximal length of the right context used in deletion rules

Objective

1 With what size does a GCID system (with n + m ∈ {2, 3})
characterize RE?

2 Is the underlying control graph, a path?
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5

Computational completeness of GCID for n = 1, m = 1

No. Size of the system (k ; 1, i ′, i ′′; 1, j ′, j ′′) No.of
Comps

Control
graph type

1. (k; 1, 0, 0; 1, 1, 1) or (k; 1, 1, 1; 1, 0, 0) 5 path

2. (k; 1, 1, 0; 1, 1, 0) or (k; 1, 0, 1; 1, 0, 1) 4 Non− tree
3 Non − tree
4 path

3. (k; 1, 1, 0; 1, 0, 1) or (k; 1, 0, 1; 1, 1, 0) 4 Non− tree
3 Non − tree
4 path

4. (k; 1, 1, 0; 1, 1, 1) or (k; 1, 0, 1; 1, 1, 1) 3 path

5. (k; 1, 1, 1; 1, 1, 0) or (k; 1, 1, 1; 1, 0, 1) 3 path

6. (k; 1, 1, 1; 1, 1, 1) 1 Null
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Computational completeness of GCID for n + m = 3

No. Size (k ; 1, i ′, i ′′; 2, j ′, j ′′) No.
of
Comps

Graph
type

1. (k; 1, 0, 0; 2, 1, 1) or (k; 2, 1, 1; 1, 0, 0) 5 path
2. (k; 1, 1, 0; 2, 0, 0) or (k; 1, 0, 1; 2, 0, 0) or 3 Non − tree

(k; 1, 1, 0; 2, 1, 0) or (k; 1, 0, 1; 2, 0, 1) or 4 path
(k; 1, 1, 0; 2, 0, 1) or (k; 1, 0, 1; 2, 1, 0)

3. (k; 2, 0, 0; 1, 1, 0) or (k; 2, 0, 0; 1, 0, 1) 3 Non− tree
3 path

4. (k; 2, 1, 0; 1, 1, 0) or (k; 2, 0, 1; 1, 0, 1) or 3 path
(k; 2, 1, 0; 1, 0, 1) or (k; 2, 0, 1; 1, 1, 0) or
(k; 2, 1, 1; 1, 1, 0) or (k; 2, 1, 1; 1, 0, 1) or
(k; 1, 1, 0; 2, 1, 1) or (k; 1, 0, 1; 2, 1, 1)

5. (k; 1, 1, 1; 2, 0, 0) or (k; 1, 1, 1; 2, 1, 0) or 1 Null
(k; 1, 1, 1; 2, 0, 1) or (k; 1, 1, 1; 2, 1, 1) or
(k; 2, 0, 0; 1, 1, 1) or (k; 2, 1, 0; 1, 1, 1) or
(k; 2, 0, 1; 1, 1, 1) or (k; 2, 1, 1; 1, 1, 1)
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RE = GCIDP(3;1,1,0;1,1,1) Axiom = κSκ′

We simulate r : X → Y1Y2, f : AB → λ | CD → λ, h : S ′ → λ as:

Lesson learnt

More contexts does not
imply simple simulation

Component 1

r1.1 : (1, (X , r , λ)I , 2)
r1.2 : (1, (r ,∆, λ)I , 1)
r1.3 : (1, (r ,Y2, λ)I , 2)
f 1.1 : (1, (λ, f , λ)I , 2)
h1.1 : (1, (λ, S ′, λ)D , 1)
κ1.1 : (1, (λ, κ, λ)D , 1)
κ′1.1 : (1, (λ, κ′, λ)D , 1)

Component 2

r2.1 : (2, (λ,X , r)D , 1)
r2.2c : (2, (Y2,∆, c)D , 3),c 6= ∆
r2.3c ′ : (2, (c ′, r ,Y1)D , 1)
f 2.1 : (2, (f ,A,B)D , 3)
f 2.2 : (2, (λ, f , λ)D , 1)

Component 3

r3.1 : (3, (r ,Y1, λ)I , 2)
r3.2 : (3, (f ,B, λ)D , 2)
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Why we prefer path?

It has applications in Membrane Computing.
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Bridging the gap between LIN and CFL

The systems GCID(k;1,1,0;1,0,0) and GCID(k;2,1,0;1,0,0) are not
known to characterize RE (not even CFL) for any k ≥ 1.

However the systems GCID(k;1,1,0;1,0,0) and GCID(k;2,1,0;1,0,0)
characterize LIN for k ≥ 3.

We aim to show that these systems characterize several classes
between LIN and CFL for k ≥ 5.

To do so, we first introduce/look into some closure classes of LIN and
we term them as super-linear languages.
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Closure classes of linear Languages

Note: LIN is not closed under Kleene star and concatenation.

Lop(LIN) = smallest class containing linear languages and is closed
under the operation op (Kutrib, Malcher (2007))

MLIN := L◦(LIN) (Metalinear languages)

SLIN := L∗(LIN) (Starlinear languages)

SMLIN := L∗(MLIN) = L∗(L◦(LIN)) (containing MLIN...)

MSLIN := L◦(SLIN) = L◦(L∗(LIN))

SMSLIN := L∗(MSLIN) = L∗(L◦(L∗(LIN)))

MSMLIN := L◦(SMLIN) = L◦(L∗(L◦(LIN)))

RATLIN := L◦,∗,∪(LIN)
The smallest class containing LIN and is closed under the 3 regular
operations: concatenation, Kleene star and union.
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Languages in closure classes

L ∈ MLIN iff L = L1L2 . . . Lk for some k ≥ 1 and Li ∈ LIN.

L ∈ SLIN iff L = L∗1 for L1 ∈ LIN.

L ∈ MSLIN iff L = L∗1L
∗
2 . . . L

∗
k for some k ≥ 1 and Li ∈ LIN.

L ∈ SMLIN iff L = (L1L2 . . . Lk)∗ for k ≥ 1 and Li ∈ LIN.

L ∈ SMSLIN iff L = (M)∗ for some M = L∗1 . . . L
∗
k ∈ MSLIN.

L ∈ MSMLIN iff L = M1M2 . . .Mk for each Mi ∈ SMLIN,
Mi = (Li ,1Li ,2 . . . Li ,ti )

∗ where Li ,j ∈ LIN.
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Closure under reversal

The classes MLIN, SLIN, MSLIN, SMLIN, MSMLIN and SMSLIN are
all closed under reversal.
We use the fact that LIN is closed under reversal

MLIN: (L1L2 . . . Lk)R = LRk L
R
k−1 . . . L

R
1 .

SLIN: (L∗1)R = (LR1 )∗.

SMLIN: ((L1L2 . . . Lk)∗)R = ((L1 . . . Lk)R)∗ = (LRk . . . L
R
2 L

R
1 )∗.

MSLIN: (L∗1L
∗
2 . . . L

∗
k)R = (LRk )∗(LRk−1)∗ . . . (LR2 )∗(LR1 )∗.

Similarly we can extend to MSMLIN and SMSLIN.
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Inter-relationship

LIN

MLIN SLIN

SMLIN MSLIN

MSMLIN SMSLIN

CF

Solid arrow from A to B indicates A ⊆
B. Dashed line between A and B indi-
cates A and B are incomparable.

1 SLIN ⊆ MSLIN ∩ SMLIN.

2 MLIN ⊆ MSLIN ∩ SMLIN.

3 MSLIN ⊆ MSMLIN ∩ SMSLIN.

4 SMLIN ⊆ MSMLIN ∩ SMSLIN.
5 Incomparable

MLIN and SLIN.
MSLIN and SMLIN.
MSMLIN and SMSLIN.
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Sa(i)mple proofs

MSLIN ⊆ SMSLIN ∩MSMLIN

MSLIN ⊆ SMSLIN and
since LIN ⊆ MLIN, MSLIN ⊆ MSMLIN.

MSLIN and SMLIN are incomparable

Let L1 = {anbn | n ≥ 0} and L2 = {cmdm | m ≥ 0}
(L1L2)∗ ∈ SMLIN \MSLIN

1 L = L1L2 ∈ MLIN implies L∗ = (L1L2)∗ ∈ SMLIN.
2 L = L1L2 6∈ LIN implies L∗ 6∈ SLIN and hence L∗ 6∈ MSLIN.

L∗1L
∗
2 ∈ MSLIN \ SMLIN

Important: (L1L2)∗ 6= L∗1L
∗
2 (check yourself!!)
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Rewriting grammar for SLIN

Recall: L ∈ SLIN iff L = (L1)∗

1 Let G1 = (N1,T ,S1,P1) be linear grammar for L1.
2 A language of SLIN is generated by a grammar G = (N,T , S ,P)

where

N = N1 ∪ {S}
P includes the conventional LIN rules of P1 and
X → Ya, X → aY , X → λ
The additional CF rules : S → SS1 | λ.
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Rewriting grammar for MLIN and SMLIN

Recall: L ∈ MLIN iff L = L1L2 . . . Lk
1 Let Gi = (Ni ,T , Si ,Pi ) be linear grammar for Li .
2 A language of MLIN is generated by a grammar G = (N,T , S ,P)

where

N =
k⋃

i=1

Ni ∪ {S ,S ′2,S ′3, . . .S ′k+1}

P includes the conventional LIN rules of Pi and
X → Ya, X → aY , X → λ
The additional following CF rules.
S → S1S

′
2

S ′i → SiS
′
i+1 for 2 ≤ i ≤ k

S ′k+1 → λ

| S1S ′2 (Additional rule for SMLIN)

Sample derivation for MLIN is

S =⇒ S1S
′
2 =⇒∗ L1S ′2 =⇒ L1S2S

′
3 =⇒∗ L1L2S ′3 =⇒∗ L1L2L3S ′4
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Rewriting grammar for MSLIN

Recall: L ∈ MSLIN iff L = L∗1L
∗
2 . . . L

∗
k

1 Let Gi = (Ni ,T , Si ,Pi ) be linear grammar for Li .
2 A language of MSLIN is generated by a grammar G = (N,T ,S ,P)

where

N =
k⋃

i=1

Ni ∪ {S ,S ′2,S ′3, . . .S ′k+1}

P includes the conventional LIN rules of Pi and
X → Ya, X → aY , X → λ,Si → λ
The additional following CF rules.
S → S1S

′
2

S ′i+1 → SiS
′
i+1 | Si+1S

′
i+2 for 1 ≤ i ≤ k − 1

The first rule to stay in Li and second rule to pass to Li+1

S ′k+1 → λ

| S1S ′2, S → λ (Additional rule for SMSLIN)
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Rewriting grammar for MSLIN
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2 . . . L

∗
k
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Rewriting grammar for MSMLIN

Recall: L ∈ MSMLIN iff L = M1M2 . . .Mk for each Mi ∈ SMLIN.
Mi = (Li ,1Li ,2 . . . Li ,ti )

∗ where Li ,j ∈ LIN.

1 Let Gi ,j = (Ni ,j ,T ,Si ,j ,Pi ,j) be linear grammar for Li ,j .

2 The grammar rules of MSMLIN include the conventional LIN rules of
Pi ,j and P ′.

Recalling SMLIN

S → S1S
′
2

for 2 ≤ j ≤ t
S ′j → SjS

′
j+1

S ′t+1 → λ | S1S ′2

Rules of P ′ for MSMLIN

S → S1,1S
′
1,2

For 1 ≤ i ≤ k and 2 ≤ j ≤ ti
S ′i ,j → Si ,jS

′
i ,j+1

S ′i ,ti+1 → Si ,1S
′
i ,2 | Si+1,1S

′
i+1,2︸ ︷︷ ︸

for i 6=k

| λ︸︷︷︸
if i=k
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LIN ( GCID(3; 1, 1, 0; 1, 0, 0)

We simulate the rules p : X → Ya, q : X → aY and h : X → λ as:

Component 1

p1.1 : (1, (X , p, λ)ins , 3)
p1.2: (1, (p, a, λ)ins , 2)
p1.3: (1, (p′,Y , λ)ins , 2)
q1.1 : (1, (X , q, λ)ins , 3)
q1.2 : (1, (q, q′, λ)ins , 2)
q1.3 : (1, (q′,Y , λ)ins , 2)
h1.1 : (1, (λ,X , λ)ins , 1)

Component 2

p2.1 : (2, (p, p′, λ)ins , 3)
p2.2 : (2, (λ, p′, λ)del , 1)
q2.1 : (2, (q, a, λ)ins , 3)
q2.2 : (2, (λ, q′, λ)del , 1)

Component 3

p3.1 : (3, (λ,X , λ)del , 1)
p3.2 : (3, (λ, p, λ)del , 1)
q3.1 : (3, (λ,X , λ)del , 1)
q3.2 : (3, (λ, q, λ)del , 1)

C2C1 C3
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LIN ( GCID(3; 2, 1, 0; 1, 0, 0)

We simulate the rules p : X → aY , q : X → Ya, h : X → λ as:

Component 1

p1.1 : (1, (X , p, λ)ins , 2)
p1.2: (1, (p, aY , λ)ins , 3)
q1.1 : (1, (X , q, λ)ins , 2)
q1.2 : (1, (q,Ya, λ)ins , 3)
h1.1 : (1, (λ,X , λ)del , 1)

Component 2
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C1C2 C3
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Simulating Transition rules of MLIN

Recall: S ′i+1 → Si+1Si+2 for 1 ≤ i ≤ k − 1 and S ′k+1 → λ
MLIN ⊆ GCID(5; 2, 1, 0; 1, 0, 0). For each 1 ≤ i ≤ k ,

Component 1
pi1.1 : (1, (Xi , pi , λ)ins , 2)
pi1.2 : (1, (pi , aYi , λ)ins , 3)
qi1.1 : (1, (Xi , qi , λ)ins , 2)
qi1.2 : (1, (qi ,Yia, λ)ins , 3)
hi1.1 : (1, (λ,Xi , λ)del , 4)

Component 2
pi2.1 : (2, (λ,Xi , λ)del , 1)
qi2.1 : (2, (λ,Xi , λ)del , 1)

Component 4
For i 6= k
ri4.1 : (4, (S ′

i+1, Si+1, λ)ins , 5)

ri4.2 : (4, (Si+1, S
′
i+2, λ)ins , 1)

For i = k
ri4.1 : (4, (λ,S ′

i+1, λ)del , 1)

Component 3
pi3.1 : (3, (λ, pi , λ)del , 1)
qi3.1 : (3, (λ, qi , λ)del , 1)

Component 5
For i 6= k
ri5.1 : (5, (λ,S ′

i+1, λ)del , 4)

(S1S
′
2)1 =⇒∗ (L1S

′
2)4 =⇒ (L1S

′
2S2)5 =⇒ (L1S2)4 =⇒ (L1S2S

′
3)1

Lakshmanan K Power of Regulated ID 29 / 52 December 2, 2019 29 / 52
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MSLIN ⊆ GCID(5; 2, 1, 0; 1, 0, 0)

Recall: S ′i+1 → Si+1S
′
i+1 | Si+1S

′
i+2 for 1 ≤ i ≤ k − 1 and S ′k+1 → λ.

For each 1 ≤ i ≤ k ,

Component 1
pi1.1 : (1, (Xi , pi , λ)ins , 2)
pi1.2 : (1, (pi , aYi , λ)ins , 3)
qi1.1 : (1, (Xi , qi , λ)ins , 2)
qi1.2 : (1, (qi ,Yia, λ)ins , 3)
hi1.1 : (1, (λ,Xi , λ)del , 4)

Component 2
pi2.1 : (2, (λ,Xi , λ)del , 1)
qi2.1 : (2, (λ,Xi , λ)del , 1)

Component 4
For i 6= k
ri4.1 : (4, (S ′

i+1, Si+1, λ)ins , 5)

ri4.2 : (4, (Si+1, S
′
i+2, λ)ins , 1)

ri4.3 : (4, (Si+1, S
′
i+1, λ)ins , 1)

For i = k
ri4.1 : (4, (λ,S ′

i+1, λ)del , 1)

Component 3
pi3.1 : (3, (λ, pi , λ)del , 1)
qi3.1 : (3, (λ, qi , λ)del , 1)

Component 5
For i 6= k
ri5.1 : (5, (λ,S ′

i+1, λ)del , 4)
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Summary of the results

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of
each of the following.

GCID(5;2,1,0;1,0,0) with tree as a control graph

GCID(5;1,1,0;1,0,0) with non-tree as a control graph

The obtained results can be stated as a general theorem.

Generic Theorem

For integers t, n,m ≥ 1 and i ′, i ′′, j ′, j ′′ ≥ 0 with i ′ + i ′′ ≥ 1 and
X ∈ {NTr ,Tr}, if LIN ⊆ GCIDX (t; n, i ′, i ′′;m, j ′, j ′′), then
F ⊆ GCIDX (t + 2; n, i ′, i ′′;m, j ′, j ′′) where F ∈ {SLIN, MLIN, SMLIN,
MSLIN, SMSLIN, MSMLIN}.
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Extending the results

RATLIN: smallest family containing LIN and closed under union,
concatenation and Kleene star.

Let L = (L1L2)∗L∗3L4L
∗
5

Continuation points

i = 1 2 3 4 5

cont(i) 2 1, 3, 4 3, 4 5 5, 6

Assumption: i + 1 ∈ cont(i)

Transition rules: Axiom = S ′1
S ′i → SiS

′
c for all c ∈ cont(i) and 1 ≤ i ≤ k

S ′k+1 → λ
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Matrix Ins-del system

Definition

A matrix insertion-deletion system is a construct Γ = (V ,T ,A,R)

V is an alphabet, T ⊆ V , A is a finite language over V

R is a finite set of matrices {m1,m2, . . .ml}
mi = [(u1, α1, v1)t1 , (u2, α2, v2)t2 , . . . , (uk , αk , vk)tk ]

Notes to remember:

On choosing a matrix mi , all rules in mi are applied in order.

If a rule in mi cannot be applied, then mi itself is not applied.

Size

Size of a matrix ins-del system is (k ; n, i ′, i ′′;m, j ′, j ′′) where

k : Maximum number of ins-del rules in a matrix
n, i ′, i ′′;m, j ′, j ′′ are same as in ID size.
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Examples

Language generated by the following matrix ins-del systems?

Axiom: #$

r1 = [(#, a, λ)ins , ($, a, λ)ins ]
r2 = [(#, b, λ)ins , ($, b, λ)ins ]
r3 = [(λ,#, λ)del , (λ, $, λ)del ]

Language = {ww | w ∈ {a, b}∗}
Size of the system is
(2; 1, 1, 0; 1, 0, 0).

Axiom: #

r1 = [(λ, a,#)ins , (#, b, λ)ins ]
r2 = [(λ,#, λ)del ]

Language = {anbn | n ≥ 0}
Size of the system is
(2; 1, 1, 1; 1, 0, 0).

Helpful Results

MAT (k ; n, i ′, i ′′;m, j ′, j ′′) = [MAT (k ; n, i ′′, i ′;m, j ′′, j ′)]R

Since RE is closed under reversal,
MAT (k ; n, i ′, i ′′;m, j ′, j ′′) = RE = MAT (k; n, i ′′, i ′;m, j ′′, j ′).
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MAT (k ; n, i ′, i ′′;m, j ′, j ′′) = [MAT (k ; n, i ′′, i ′;m, j ′′, j ′)]R

Since RE is closed under reversal,
MAT (k ; n, i ′, i ′′;m, j ′, j ′′) = RE = MAT (k; n, i ′′, i ′;m, j ′′, j ′).
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Exhaustive Analysis for n = |Ins| = 1, m = |Del | = 1

Size (k ; 1, i ′, i ′′; 1, j ′, j ′′); Reference k Language
i ′, i ′′, j ′, j ′′ ∈ {0, 1} Family Rela-

tion

(k ; 1, 0, 0; 1, 0, 0) S.Verlan 2007 1 ⊂ REG

(k ; 1, 0, 0; 1, 1, 0), (k ; 1, 0, 0; 1, 0, 1) ≥ 1 OPEN

(k ; 1, 0, 0; 1, 1, 1) HLI 2018 3 = RE
HLI 2019 2 = RE

(k ; 1, 1, 0; 1, 0, 0), (k; 1, 0, 0; 1, 0, 0) HLI 2019 3 ⊃ Lreg (LIN)

(k ; 1, 1, 1; 1, 0, 0) HLI 2018 3 = RE
HLI 2019 2 ⊃ Lreg (LIN)

(k ; 1, 1, 0; 1, 1, 0), (k; 1, 1, 0; 1, 0, 1) S.Verlan 2012 3 = RE
(k ; 1, 0, 1; 1, 0, 1), (k; 1, 0, 1; 1, 1, 0) HLI 2019 2 = RE

(k ; 1, 1, 0; 1, 1, 1), (k; 1, 0, 1; 1, 1, 1) HLI 2018 2 = RE

(k ; 1, 1, 1; 1, 1, 0), (k; 1, 1, 1; 1, 0, 1) HLI 2018 2 = RE

(k ; 1, 1, 1; 1, 1, 1) Takahari 2003 1 = RE

Power of MID systems of size (k; 1, i ′, i ′′; 1, j ′, j ′′)

HLI 2018: H Fernau, Lakshmanan, Indhumathi, Investigations on the Power of Matrix
Insertion-Deletion Systems of Small Sizes, Natural Computing, 2018, 17(2), 249 - 269.

HLI 2019: -do-, On Matrix Ins-Del Systems of Small Sum-Norm, SOFSEM 2019, LNCS 11376,

192-205.
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Exhaustive Analysis for n + m = 3

Size (k; 1, i ′, i ′′; 2, j ′, j ′′); i ′, i ′′, j ′, j ′′ ∈ {0, 1} Reference k Language
or (k ; 2, i ′, i ′′; 1, j ′, j ′′); i ′, i ′′, j ′, j ′′ ∈ {0, 1} Family Rela-

tion

(k ; 1, 0, 0; 2, 0, 0), (k; 2, 0, 0; 1, 0, 0) Verlan 2007 1 ⊂ REG

(k ; 1, 0, 0; 2, 1, 0), (k; 1, 0, 0; 2, 0, 1) ≥ 1 OPEN

(k ; 1, 1, 0; 2, 0, 0), (k ; 1, 1, 0; 2, 1, 0), (k; 1, 1, 0; 2, 0, 1) Verlan 2012 2 = RE
(k ; 2, 0, 0; 1, 1, 0), (k ; 2, 1, 0; 1, 1, 0), (k; 2, 0, 1; 1, 1, 0)

(k ; 1, 0, 0; 2, 1, 1), (k ; 2, 1, 1; 1, 0, 0) HLI 2018 3 = RE

(k ; 1, 1, 0; 2, 1, 1), (k ; 1, 0, 1; 2, 0, 0), (k; 1, 0, 1; 2, 1, 1) HLI 2018 2 = RE
(k ; 1, 0, 1; 2, 1, 0), (k; 1, 0, 1; 2, 0, 1)

(k ; 2, 0, 0; 1, 0, 1), (k ; 2, 1, 0; 1, 0, 1), (k; 2, 0, 1; 1, 0, 1) HLI 2018 2 = RE
(k ; 2, 1, 1; 1, 1, 0), (k; 2, 1, 1; 1, 0, 1)

(k ; 2, 1, 0; 1, 0, 0), (k; 2, 0, 1; 1, 0, 0) HLI 2019 2 ⊃ Lreg (LIN)

(k ; 2, 0, 0; 1, 1, 1), (k ; 2, 1, 0; 1, 1, 1), (k; 2, 0, 1; 1, 1, 1) Krassovitskiy 2008 1 = RE

(k ; 1, 1, 1; 2, 0, 0), (k ; 1, 1, 1; 2, 1, 0), (k; 1, 1, 1; 2, 0, 1) Paun 1998 1 = RE

(k ; 1, 1, 1; 2, 1, 1), (k; 2, 1, 1; 1, 1, 1) Takahari 2003 1 = RE

Power of MID systems of size (k; 1, i ′, i ′′; 2, j ′, j ′′) or (k; 2, i ′, i ′′; 1, j ′, j ′′)
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MAT(3;1,0,0;1,1,1) = RE

Consider a type-0 grammar G = (N,T ,P,S) in SGNF.

Simulating p: X → bY

p1 = [(λ, p, λ)ins , (λ, p′, λ)ins , (p
′,X , p)del ]

p2 = [(λ, b, λ)ins , (λ,Y , λ)ins , (b, p,Y )del ]
p3 = [(λ, p′, b)del ] (right context is required to ensure p3 is applied after p2)

Simulating q: X → Yb

q1 = [(λ, q, λ)ins , (λ, q′, λ)ins , (q
′,X , q)del ]

q2 = [(λ, b, λ)ins , (λ,Y , λ)ins , (Y , q′, b)del ]
q3 = [(b, q, λ)del ] (left context is required to ensure p3 is applied after p2)

Simulating f : AB → λ

f 1 = [(λ, f , λ)ins , (λ, f
′, λ)ins , (f ,A,B)del ]

f 2 = [(f ,B, f ′)del , (λ, f
′, λ)del , (λ, f , λ)del ]
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MAT(2;1,1,0;1,1,1) = RE

Simulating p: X → bY : Axiom= S#$

p1 = [(X , p, λ)ins , (#, p′, λ)ins ] p4 = [(p, b, λ)ins , (p′′′, p′′, p′)del ]
p2 = [(λ,X , p)del , (#, p′′, λ)ins ] p5 = [(λ, p, b)del , (p′′′, p′, $)del ]
p3 = [(p,Y , λ)ins , (#, p′′′, λ)ins ] p6 = [(#, p′′′, $)del ]

Simulating f : AB → λ

f 1 = [(B, f , λ)ins , (#, f ′, λ)ins ] f 1′ = [(B, f , λ)ins ]
f 2 = [(λ,B, f )del , (λ,A, f )del ] f 2′ = [(λ,B, f )del , (λ,A, f )del ]
f 3 = [(λ, f , λ)del , (#, f ′, $)del ] f 3′ = [(λ, f , λ)del ]

Malicious derivation for f : AB → λ

AABδB#$⇒2
f 1′ AABf δBf #$⇒2

f 2′

AABf δBf #f ′f ′$ = f δf #$⇒f 3′ δ#$

Note: [(λ,#, λ), (λ, $, λ)] is applied at the end of the derivation.
Lakshmanan K Power of Regulated ID 38 / 52 December 2, 2019 38 / 52



MAT(2;1,1,0;1,1,0) = RE

Simulating p: X → bY

p1 = [(X , p, λ)ins , (λ, p′, λ)ins ] p4 = [(p′, b, λ)ins , (b, p′′, λ)del ]
p2 = [(p′,X , λ)del , (p′, p′′, λ)ins ] p5 = [(λ, p′, λ)del ]
p3 = [(p′′, p, λ)del , (p′′,Y , λ)ins ]

Applying p1 twice??

X ⇒p1 p
′Xpp . . . p′ ⇒p2 p

′p′′pp . . . p′ ⇒p3 p
′p′′Yp . . . p′ ⇒p4

p′bYp . . . p′ ⇒2
p5 bYp . Cannot reapply p3 to get rid of the second p.

Simulating f : AB → λ

A new idea of moving in a Z .

h1 = [(λ,S ′, λ)del , (λ,Z , λ)ins ] moveZ = [(λ,Z , λ)del , (λ,Z , λ)ins ]
f 1 = [(Z ,A, λ)del , (Z ,B, λ)del ] delZ = [(λ,Z , λ)del ]
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MAT rules for Super-linear grammars

Each of SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN is a subset of
each of the following.

MAT(3;1,1,0;1,0,0)

MAT(2;2,1,0;1,0,0)

MAT(2;1,1,1;1,0,0)

Generic Theorem

For integers t, n,m ≥ 1 and i ′, i ′′, j ′, j ′′ ≥ 0 with i ′ + i ′′ ≥ 1, if
LIN ⊆ MAT(t; n, i ′, i ′′;m, j ′, j ′′), then F ⊆ MAT(t; n, i ′, i ′′;m, j ′, j ′′)
where F ∈ {SLIN, MLIN, SMLIN, MSLIN, SMSLIN, MSMLIN, RATLIN}.
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Simulation of MLIN

Recall: Apart from the usual LIN rules, the transition rules in MLIN are
S ′i+1 → Si+1Si+2 for 1 ≤ i ≤ k − 1 and S ′k+1 → λ, for each 1 ≤ i ≤ k,

MLIN ⊆ MAT(3; 1, 1, 0; 1, 0, 0): Axiom = S1S
′
2

p1 = [(Xi , pi , λ)ins , (pi , p
′
i , λ)ins , (λ,Xi , λ)del ]

p2 = [(pi , ai , λ)ins , (p
′
i ,Yi , λ)ins , (λ, pi , λ)del ]

p3 = [(λ, p′i , λ)del ]
p4 = [(S ′i+1,S

′
i+2, λ)ins , (S

′
i+1,Si+1, λ)ins , (λ,S ′i+1, λ)del ] (for each 1 ≤ i ≤ k − 1)

p5 = [(λ,S ′k+1, λ)del ]

MLIN ⊆ MAT(2; 1, 1, 1; 1, 0, 0): Axiom = S1S
′
2

p1 = [(Xi , pi , λ)ins , (λ,Xi , λ)del ]
p2 = [(pi , p

′
i , λ)ins , (pi , ai , p

′
i )ins ] (cannot reuse due to second rule)

p3 = [(ai ,Yi , p
′
i )ins , (λ, pi , λ)del ]

p4 = [(λ, p′i , λ)del ]
p5 = [(S ′

i+1,S
′
i+2, λ)ins , (S

′
i+1, Si+1, S

′
i+2)ins ] (for each 1 ≤ i ≤ k − 1)

p5 = [(λ,S ′
i+1, λ)del ](for each 1 ≤ i ≤ k)
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Simulation of MLIN
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′
i , λ)ins , (pi , ai , p

′
i )ins ] (cannot reuse due to second rule)

p3 = [(ai ,Yi , p
′
i )ins , (λ, pi , λ)del ]

p4 = [(λ, p′i , λ)del ]
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i+1,S
′
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′
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′
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Semi-conditional ins-del system

Definition

A semi-conditional ins-del system (SCID) of degree (i , j) is
G = (V ,T ,A,P), where P is a finite set of rules of the form
((u, x , v)t , α, β), where

(u, x , v)t is an ins-del rule, t ∈ {ins, del},
α, β = φ or α, β ⊂ (N ∪ T )∗ (finite languages) and

|αr | ≤ i for αr ∈ α, and |βs | ≤ j for βs ∈ β.

Rule application in derivation

((u, x , v)t , α, β) is applied to a string w iff every string in

[Permitting set] α (when α 6= φ) is a substring of w and

[Forbidding set] β (when β 6= φ) is not a substring of w .

If α = φ, β = φ, the rule is applied without any restriction.
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SSCID and an Example

Variants

A semi-conditional grammar is called

Random Context: if degree (i , j) = (1, 1).

Simple: If either α = φ or β = φ in every rule of P.

Example:L1 = {anbncn | n ≥ 1} /∈ CF

Consider G1 = ({a, b, c ,A,B}, {a, b, c}, abc,R) where R is

[(a, aAb, b)ins , ∅,B]

[(b,Bc, c)ins ,A, ∅]
[(λ,A, λ)del ,B, ∅]
[(λ,B, λ)del , ∅,A]

Simple and Random Context

Size = (3, 1, 1; 1, 0, 0)

Degree = (1, 1)
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Existing vs Our Results

Semi-conditional Ins-del systems of following sizes (do not) describe the
class of RE languages

Existing Results (S.Ivanov,
S.Verlan, Fund.Inf., 2012)

SCID2,2(1, 0, 0; 1, 0, 0)

SCID1,1(2, 0, 0; 1, 1, 0)

SCID1,1(1, 1, 0; 1, 1, 1)

SCID1,1(1, 1, 0; 2, 0, 0)

None is simple

Results of UCNC 2018

SSCID2,1(2, 0, 0; 2, 0, 0)

SSCID3,1(1, 1, 0; 1, 1, 0)

SSCID2,1(1, 1, 0; 1, 1, 1)

SSCID2,1(1, 1, 0; 2, 0, 0)

All are simple

Lakshmanan K Power of Regulated ID 44 / 52 December 2, 2019 44 / 52



SSCID2,1(2, 0, 0; 2, 0, 0)=RE

Simulation of f : AB → λ by (λ,AB, λ, φ, φ) is direct.

Simulations of p : X → bY and q : X → Yb are similar.

Simulating q : X → Yb

q1 : [(λ, qq′, λ)ins , ∅, {q, q′, q′′, q′′′}]
q2 : [(λ, q′X , λ)del , {qq′}, ∅]
q3 : [(λ, q′′b, λ)ins , ∅, {q′, q′′, q′′′}]
q4 : [(λ, q′′′Y , λ)ins , ∅,N ′ ∪ {q′, q′′′}]
q5 : [(λ, q′′′, λ)del , {q′′q′′′}, ∅]
q6 : [(λ, qq′′, λ)del , {Yb}, ∅]

Another simulation?

q1 : [(λ, qq′, λ)ins , ∅, {q, q′′, q′′′}]
q2 : [(λ, q′X , λ)del , {qq′}, ∅]
q̂3 : [(λ,Yq′′, λ)ins , ∅,N ′ ∪ {q′′, q′′′}]
q̂4 : [(λ, bq′′′, λ)ins , ∅,N ′ ∪ {q′, q′′′}]
q̂5 : [(λ, q′′q, λ)del , {q′′′q′′}, ∅]
q̂6 : [(λ, q′′′, λ)del , ∅, {q, q′′}]

Suppose we have a terminal string α,
α⇒q̂4 αbq

′′′ ⇒q̂6 αb = α′ ∈ T ∗

We get another terminal string without any reason.
(ERROR with right side rules!!)
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Suppose we have a terminal string α,
α⇒q̂4 αbq

′′′ ⇒q̂6 αb = α′ ∈ T ∗

We get another terminal string without any reason.
(ERROR with right side rules!!)

Lakshmanan K Power of Regulated ID 45 / 52 December 2, 2019 45 / 52



SSCID2,1(2, 0, 0; 2, 0, 0)=RE
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′′′ ⇒q̂6 αb = α′ ∈ T ∗

We get another terminal string without any reason.
(ERROR with right side rules!!)
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Forbidding Ins-del systems

Definition

A forbidding ins-del system (FID) of degree k is G = (V ,T ,A,P), where
P is a finite set of rules of the form ((u, x , v)t ,F ), where

(u, x , v)t is an ins-del rule, t ∈ {ins, del},
F = φ or F ⊂ (N ∪ T )∗ (finite languages) and

|fr | ≤ k for fr ∈ F .

Points to note

((u, x , v)t ,F ) is applied to a string w iff every string in [Forbidding
set] F ( 6= φ) is not a substring of w .

If F = φ, then the rule ((u, x , v)t , φ) can be applied without any
restriction.

(S)SCID0,k(s)=FIDk(s).

Lakshmanan K Power of Regulated ID 46 / 52 December 2, 2019 46 / 52



Forbidding Ins-del systems

Definition

A forbidding ins-del system (FID) of degree k is G = (V ,T ,A,P), where
P is a finite set of rules of the form ((u, x , v)t ,F ), where

(u, x , v)t is an ins-del rule, t ∈ {ins, del},
F = φ or F ⊂ (N ∪ T )∗ (finite languages) and

|fr | ≤ k for fr ∈ F .

Points to note

((u, x , v)t ,F ) is applied to a string w iff every string in [Forbidding
set] F ( 6= φ) is not a substring of w .

If F = φ, then the rule ((u, x , v)t , φ) can be applied without any
restriction.

(S)SCID0,k(s)=FIDk(s).

Lakshmanan K Power of Regulated ID 46 / 52 December 2, 2019 46 / 52



Computational Completeness

Recall: (S)SCID results ( = RE)

SSCID2,1(2, 0, 0; 2, 0, 0)

SSCID2,1(1, 1, 0; 2, 0, 0)

SSCID2,1(1, 1, 0; 1, 1, 1)

SSCID3,1(1, 1, 0; 1, 1, 0)

SSCID3,1(1, 1, 0; 1, 0, 1)

Following systems = RE

FID2(2, 0, 0; 2, 0, 0)

FID2(1, 1, 0; 2, 0, 0),
FID2(1, 0, 1; 2, 0, 0)

FID2(2, 0, 0; 1, 1, 0),
FID2(2, 0, 0; 1, 0, 1)

FID2(1, 1, 0; 1, 1, 0),
FID2(1, 0, 1; 1, 0, 1)

FID2(1, 1, 0; 1, 0, 1),
FID2(1, 0, 1; 1, 1, 0)
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FID2(2, 0, 0; 2, 0, 0)=RE

Simulating X → Yb by FID2(2, 0, 0; 2, 0, 0)

q1 = [(qq′)ins , {M∪ (N ′ \ {X})}]
q2 = [(q′X )del , {M \ {q, q′} ∪ (N ′ \ {X})}]
q3 = [(q′′b)ins , {M \ {q} ∪ N ′}]
q4 = [(q′′′Y )ins , (M\ {q, q′′}) ∪ N ′ ∪ {Zq′′ | Z 6= q} ∪ {qZ | Z 6= q′′}]
q5 = [(qivqv )ins , (M\{q, q′′, q′′′})∪ (N ′ \ {Y })∪{q′′b}∪ {qZ | Z 6= q′′}]
q6 = [(q′′′qiv )del , {M{q, q′′, q′′′, qiv , qv}∪(N ′\{Y })∪{q′′′Y , q′′b}∪{Zq′′′ |
Z 6= q′′} ∪ {qZ | Z 6= q′′}]
q7 = [(q′′)del , {M{q, q′′, qv}∪(N ′\{Y })∪{q′′′Y , q′′b}∪{q′′Z | Z 6= qv}]
q8 = [(qqv )del , {M{q, qv} ∪ (N ′ \ {Y })]

X ⇒q1 qq
′X ⇒q2 q ⇒q3 qq

′′b ⇒q4 qq
′′q′′′Yb ⇒q5 qq

′′q′′′qivqvYb ⇒q6

qq′′qvYb ⇒q7 qq
vYb ⇒q8 Yb
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FID2(2, 0, 0; 2, 0, 0)=RE
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FID2(1, 1, 0; 1, 0, 1) = RE

Simulating X → bY by FID2(1, 1, 0; 1, 0, 1)

p1 = [(X , p, λ)ins ,M∪ (N ′ \ {X})]
p2 = [(λ,X , p)del , (M\ {p}) ∪ (N ′ \ {X})]
p3 = [(p,Y , λ)ins , (M\ {p}) ∪ N ′]
p4 = [(p, p′, λ)ins , (M\ {p}) ∪ (N ′ \ {Y }) ∪ ({pZ | Z 6= Y })]
p5 = [(p′, b, λ)ins , (M\ {p, p′}) ∪ (N ′ \ {Y }) ∪ ({p′Z | Z 6= Y })]
p6 = [(λ, p, p′)del , {p′Y }]
p7 = [(λ, p′, λ)del , {p}]

Optimizing the rules - Does the following work?? WHY??

p1 = [(X , p, λ)ins ,M∪ (N ′ \ {X})]
p2 = [(λ,X , p)del , (M\ {p}) ∪ (N ′ \ {X})]
p3 = [(p,Y , λ)ins , (M\ {p}) ∪ N ′]
p5 = [(p, b, λ)ins , (M\ {p}) ∪ (N ′ \ {Y }) ∪ ({pZ | Z 6= Y })]
p7 = [(λ, p, λ)del , {αY | α 6= b}]
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Summary

Outcome of the talk

Defined Insertion-Deletion systems

Variants of Ins-del systems
1 Matrix
2 Graph-Controlled
3 (Simple) Semi-conditional
4 Forbidding

Showed how these systems can simulate RE with certain sizes.
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THANK YOU
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