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Motivation: Jumping Automata



Jumping Finite Automata
> M=(Q,%,R,s, F) - all with the same meaning as an

ordinary finite automaton;

» The jumping relation:
xpaz ~y X' qz'
where pa — g € R and xz = x'Z/;
» L(M)={uv|uveXuvny, ffefF}

» The order of symbols in the input string essentially does not
matter.?

!The situation is different in a general jumping finite automaton



Basic Terminology



Informally: unordered strings;

Formally, a bag over an alphabet V is a finite multiset of
elements in V;
The set of all bags over V is denoted by *V/;
The empty bag is denoted by ¢, TV =*V \ {¢}
» *V can be defined as the free commutative monoid generated
by V;
Let V ={a1,...,ak}. Any w € *V can be written as

Y R
W—al ak

where i € Ng for 1 < j < k



Parikh Mapping

| 2

v

A function that maps a string to the number of occurences of
each symbol;

Let V ={a1,...,ak}, where k =|V/|:

Wy o V* — N§

Vy(w) = (#a(w), ..., #a(w))

» The subscript V can be omitted when not necessary.
Can also be defined for bags: W(aj - a}) = (i1, .., ik)?
Can be generalized to sets of strings / bags
Can also be defined as W : V* — *V

2Note that this is a bijection.



Commutative Grammars: Definition



Commutative Grammars

» A commutative grammar is a 4-tuple G¢ = (N, T, S, P°)
where
» N, T are disjoint finite alphabets, V =NU T,
> S € N is a start symbol,
» pPcC TN x *V is a finite set of production rules;

> L(GS) = {w e T|S =% w)
> A commutative grammar G°€ is
» of type 0 with no additional restrictions on P°¢,
> context-sensitive if « — 3 € P implies |a| < |S
> context-free if P€ C N x *V,
» regularif P C N x *T(NU{e}).




Comparing bags and strings: W-equivalence

» Let G be a phrase-structure grammar and G a commutative
grammar;

» G and G°€ are V-equivalent iff

V(L(G)) = W(L(GT))

» Given G = (N, T,S,P)and G° = (N, T,S, P°), and for each
a — € P¢arule u— v e P such that ¥(a) = W(u) and
V(3) = W(v) does not imply that the grammars are
V-equivalent;

» Counterexample: Consider the rules {S — BaC, BC — b}

» The implication does hold for context-free grammars.



Related models: Petri nets

» Petri nets — a bag can represent the marking of a Petri net:

» Each nonterminal represents a place
» Each production rule represents a transition

P2 P4

T1

Image source: Wikimedia Commons


https://upload.wikimedia.org/wikipedia/commons/f/fe/Detailed_petri_net.png

Related models: vector addition systems

» An n-dimensional vector addition system is a pair (r, W),
where
» r e Nj is a vector of nonnegative integers,
» W C Z" is a finite set of integer vectors.
» The set R(r, W) of reachable states:
» Vectors of the form r + 27:1 ¢, ¢; € W, such that
> r+ Y geNgforall1<k<g



Relation to Matrix Grammars

» For any commutative grammar G°€, there exists a
W-equivalent matrix grammar G, and conversely.



Permutation Grammars



Permutation Grammars: Definition

» A permutation grammar is a grammar G = (N, X, P, S),
where for each r € P:

a) ris a context-free rule r: A — =,
b) ris a permutation rule r : o — 3 where W(a) = W(f), a # 5;

» L(G) is called a permutation language;
» The class of all permutation languages is denoted by Perm;
» Clearly, CF C Perm C CS.



Basis Language

» Let G =(N,X,PUR,S) be a permutation grammar, where

» P only contains context-free rules,
» R only contains permutation rules;

» Let L=L(G), G =(N,x,P,S);
» Then LB = L(G') is a basis language of L wrt. G;
» The languages L and LB are W-equivalent.



Permutation languages: Example

> Ly =(we{abc}|#a(w) = #b(w) = #c(w))

» L3 = L(Gy), where G; = ({S,A, B, C,X},{a,b,c}, P1,5),
and P; contains:

S—elX

X — ABCX | ABC

A—a

B—b

C—>c

AB — BA

BA — AB

AC — CA

CA — AC

BC —- CB

CB — BC

» L; € Perm\ CF
> Note: LB = {abc}*

VVYVVVVVYVYVYYVYY



Permutation languages: Counterexample

> L, ={a"b"c" | n>1}
» No context-free infinite subset of L exists — there is no
possible basis language for L,.

» [, € CS\ Perm



Conclusion: CF C Perm C CS

» The inclusions shown previously turn out to be proper:

CF Cc Perm C CS

» Proof:
» CF C Perm C CS,
» [, € Perm\ CF,
> [, € CS\ Perm.



Generative Power: An infinite hierarchy

> A permutation rule o« — 3 is of length n if |o| = |3] = n;

» A permutation grammar G is of order n if all its permutation
rules are of length at most n;

> Perm,, denotes the class of languages generated by
permutation grammars of order n;

» Clearly, Permy; C Perms C Permy C --- C Perm

» Furthermore, for all positive integers n,

Permy,_» C Permy,_;
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