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Introduction

The concept of multiset processing is present in various
domains, e.g. in

» DNA computing
» membrane computing
> Petri nets
» chemical abstract machines
>

etc.




Introduction

History of grammars which generate multisets starts with:

» Crespi-Reghizzi S., Mandrioli D., Commutative grammars,
Calcolo, vol. XIlI, fasc. I, 1976

Solid fundamentals were put (on the basis of Formal languages
methodology) in the beginning of 21 century, namely by:

» Manfred Kudlek and his collaborators (long-term project
Multiset languages at University of Hamburg, 29 papers in
9 years),

» Csuhaj-Varju E., Martin-Vide C., and Mitrana V., Multiset
automata, in Multiset processing — mathematical,
computer science, and molecular computing points of view,
LNCS 2235, Springer, 2001




Multiset grammars and multiset automata

Grammars ... generate strings of elements
(whose order is strict)
Multiset grammars ... generate multisets of elements
(no order of the elements
in the multiset is given)
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Grammars ... generate strings of elements
(whose order is strict)
Multiset grammars ... generate multisets of elements
(no order of the elements
in the multiset is given)

Automata ... accept strings of elements
Multiset automata ... accept multisets of elements




Multisets

Occurrence of its elements Example
Classical set single {a,c,d}
Multiset single or multiplied {a,a,c,d,d,d}
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Occurrence of its elements Example
Classical set single {a,c,d}
Multiset single or multiplied {a,a,c,d,d,d}

We will write the multiset {a, a,c,d,d,d} as

(@? @ (c) ® (d)°

where

(a) denotes singleton multiset (with the only element a),
@ denotes the operation of addition of multisets.




Multisets

Occurrence of its elements Example
Classical set single {a,c,d}
Multiset single or multiplied {a,a,c,d,d,d}

We will write the multiset {a, a,c,d,d,d} as
(@2 @ (c)® (d)® or (2,0,1,3) wrt. ¥ ={a,b,c,d}
where
(a) denotes singleton multiset (with the only element a),
@ denotes the operation of addition of multisets.




Multisets

Occurrence of its elements Example
Classical set single {a,c,d}
Multiset single or multiplied {a,a,c,d,d,d}

We will write the multiset {a, a,c,d,d,d} as

(@? @ (c) ® (d)°

where

(a) denotes singleton multiset (with the only element a),
@ denotes the operation of addition of multisets.

Further denotation:
0y ... the empty multiset,

¥ @ ... the set of all multisets over alphabet ¥,

¥ .. the set of all singleton multisets over alphabet ¥.




Multiset grammars

Multiset grammar: G = (N, %, P, S) where
» N is an alphabet of nonterminals,
> 3 is an alphabet of terminals (NNX = (),
> PC [NV & (NUX)®] x (NUX)® is a finite set of
productions,
> S c N is the initial nonterminal.




Multiset grammars

Multiset grammar: G = (N, %, P, S) where
» N is an alphabet of nonterminals,
> 3 is an alphabet of terminals (NNX = (),
> PC [NV & (NUX)®] x (NUX)® is a finite set of
productions,
> S c N is the initial nonterminal.

For p1,u2 € (NUX)®, we define uq = po if there are
(a,8) € P,y e (NUX)? suchthat 1 =v® « and pp = & 8.

=* _.. reflexive and transitive closure of the relation =

M(G) = {w € £¥| (S) =* w} ... the multiset language
generated by G




Chomsky-like classification of multiset grammars

1. Grammars G as above are called arbitrary
(or unrestricted).

2. Grammars G with all productions («a, 8) € P restricted by
the condition |«| < |3] (where |a| denotes cardinality of
the multiset «) are called monotone.

3. Grammars G with all productions («a, 8) € P restricted by
the condition « € N are called context-free.

4. Grammars G with all productions («, 3) € P restricted by
the conditions « € N and g € [NV @ 0 Ux0] are
called regular.




Context-free multiset grammar

Example: Let G =
P=A{((5),(S) ®
Then:

({S,A, B}, {a,b},P,S) where
(8)), ((S), (A @ (B)), ((A), (@),
(@) ® (B) = (a) & (b),
" (a) & (b) & (a) & (b)
(S) & (S)®(S) =" (a>3

= (A)
= (S)
= (S)

S) =

)
(B) =
{
(S) =

@
D
2]

((B), (b))}




Context-free multiset grammar

Example: Let G = ({S, A, B}, {a, b}, P, S) where
(

P ={((S),(S) ®(S)), ((S),{A) @& (B)), ((A),(a)), ((B), (b))}
Then: (S) = (A) & (B) = (a) & (B) = (a) & (b),
(S)=(S)®(S) =" (a) @ (b) ®(a) & (b) = (a)% & (b)?,
(S)=(S)@(S) = (S)®(S) & (S) =* (a)° @ (b)°,
etc
Hence (S)=* (a)® (b),
(S) =* (a)® © (b)?,
(S) = (a)° @ (b)®,




Context-free multiset grammar

Example: Let G = ({S, A, B}, {a, b}, P, S) where
(

P={((5),(S) @(S)), ({S),(A) & (B)), ({(A),(a)),
Then: (S) = (A) @ (B) = (a) © (B) = (a) @ (b),
(S)=(S)@(S) =" (a @ (b)®(a) ®(b) = (a
(S)=(S)e(S)=(S)e(S)e(S)="(a’e
etc.
Hence (S)=* (a) ® (b),
(S) =* (@)% @ (b)?,
(S) =* (a)° @ (b)°,
etc.
Obviously: M(G) = {«a € {a,b}? | |a|a = |a|p > 0}.

((B), (b))}




Chomsky-like classification of multiset languages

Definition: Multiset languages generated by arbitrary,
monotone, context-free and regular grammars are called
arbitrary, monotone, context-free and regular, respectively.




Chomsky-like classification of multiset languages

Definition: Multiset languages generated by arbitrary,
monotone, context-free and regular grammars are called
arbitrary, monotone, context-free and regular, respectively.

Assertion: The family of multiset context-free languages is
equal to the family of multiset regular languages.

Proof directly follows from Parikh’s theorem.




Multiset finite automata

A multiset finite automaton (mFA): A= (Q, %, 4, qo, F) where
» Qis a nonempty finite set of states,
> 3 is an input alphabet,
> 5 C Qx X x Qis a transition relation,
» Qo is the initial state,
> F C Qis a set of final states.
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A multiset finite automaton (mFA): A= (Q, %, 4, qo, F) where
» Qis a nonempty finite set of states,
> 3 is an input alphabet,
> 5 C Qx X x Qis a transition relation,
» Qo is the initial state,
> F C Qis a set of final states.

A configuration: (q, ) € Q x £°.

A computational step is a relation - C (Q x £) x (Q x £P)
defined by (q,(a) ® pu) - (g, n) iff (g,a,q9) € 0.

+* denotes the reflexive and transitive closure of .




Multiset finite automata

A multiset finite automaton (mFA): A= (Q, %, 4, qo, F) where
» Qis a nonempty finite set of states,
> 3 is an input alphabet,
> 5 C Qx X x Qis a transition relation,
» Qo is the initial state,
> F C Qis a set of final states.

A configuration: (q, ) € Q x £°.

A computational step is a relation - C (Q x £) x (Q x £P)
defined by (q,(a) ® pu) - (g, n) iff (g,a,q9) € 0.

* denotes the reflexive and transitive closure of I-.

The multiset language M(A) accepted by A is defined by
M(A) = {w € 9| (qo,w) F* (g, 0x) for some g € F}.




Multiset finite automata

A comparison:

bl |a

Finite automaton A

Multiset finite automaton B




Multiset finite automata

A comparison:

Finite automaton A Multiset finite automaton B

For example

> the finite automaton A accepts the string abab and does
not accept the string aabb,

» the multiset finite automaton B accepts the multiset
{a,a, b, b} (alternatively written as (a)? @ (b)?).




Multiset finite automata

A comparison:

Finite automaton A Multiset finite automaton B

Accepted languages
> L(A) ={(ab)"|n =0},
> M(B) = {(a)"® (b)"|n>0}.




Chomsky hierarchy of string languages

Languages | Grammars Automata
recursivel . . .
y arbitrary Turing machine
enumerable
monotone monotone | linear bounded automaton

context-free

context-free

pushdown automaton

regular

regular

finite automaton




Chomsky hierarchy of string languages

Languages | Grammars Automata
recursivel . . .
y arbitrary Turing machine
enumerable
monotone monotone | linear bounded automaton

context-free
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CF
™
REG
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Chomsky-like hierarchy of multiset languages

Multiset Multiset
Automata
languages | grammars
arbitrary arbitrary multiset Turing machine
multiset linear
monotone | monotone
bounded automaton
context-free ) o
regular multiset finite automaton
& regular




Chomsky-like hierarchy of multiset languages

Multiset Multiset

Automata
languages | grammars

arbitrary arbitrary multiset Turing machine

multiset linear

monotone | monotone
bounded automaton

context-free

regular multiset finite automaton
& regular
mARB
T 1 ... inclusion with unclear properness
mMON . .
4 11 ... proper inclusion

mREG




Similarities and dissimilarities of multiset languages
with string languages

» Similarities — some (we use technigues and concepts
invented for exploration of string languages, for example
generating and accepting devices).

» Dissimilarities — usual due to work with multisets (their
elements are not ordered).




Similarities and dissimilarities of m-languages with string languages

RE = £(TM)
™
MON
™
CF
™
REG = £(FA)




Similarities and dissimilarities of m-languages with string languages

Matrix grammar with appearance checking: G = (N, X, M, S, F)

where
» N.¥ and S € N are as in a context-free grammar
> M={my,my,...,mp} is afinite set of finite sequences

of context-free productions (incl. erasing productions)
using symbols from NU X U {¢}.

> F is a subset of productions contained in M.

x =y with x,y € (NUX)* ... a direct derivation which uses
productions of a sequence m; ¢ M

1. either all of them one by one

2. or productions contained in F can be omitted if they
cannot be applied; the other productions must be used
(respecting their order in the sequence)

=* ... reflexive and transitive closure of the relation =
LG)={weX|S="w}




Similarities and dissimilarities of m-languages with string languages

Example: Let G = ({S, X, Y},{a, b}, {my, mo, m3, my}, S, 0)
where
S — XX),

= (
mg_(X—>aY, X —aX, Y—X),
=(X—=bY, X = bX, Y= X),
(

my=(X—e, X—e).




Similarities and dissimilarities of m-languages with string languages

Example: Let G = ({S, X, Y},{a, b}, {my, mo, m3, my}, S, 0)
where
S — XX),

=
mg_(X—>aY, X —aX, Y—X),
ms = (X —bY, X—=bX, Y= X),
my=(X—e, X—e).

We have for all w € {a, b}*:
(mp) wXwX ---> waYwX ---> waYwaX ---> waXwaX,
(mg) wXwX ---> wbYwX ---> wbYwbX ---> wbXwbX,
(mg) wXwX --> wwX ---> ww.




Similarities and dissimilarities of m-languages with string languages

Example: Let G = ({S, X, Y},{a, b}, {my, mo, m3, my}, S, 0)
where
S — XX),

=
mg_(X—>aY, X —aX, Y—X),
ms = (X —bY, X—=bX, Y= X),
my=(X—e, X—e).

We have for all w € {a, b}*:
(mp) wXwX ---> waYwX ---> waYwaX ---> waXwaX,
(mg) wXwX ---> wbYwX ---> wbYwbX ---> wbXwbX,
(mg) wXwX --> wwX ---> ww.

Hence S =m XX =7, m, WXWX =m, ww.
So, L(G)={ww|w € {a,b}*}.
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Similarities and dissimilarities of m-languages with string languages
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Similarities and dissimilarities of m-languages with string languages

RE = £(TM) = MATac

™
MON
M
CF
M
REG = £(FA)
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Similarities and dissimilarities of m-languages with string languages

m MATaC = E(mTMac)

™
RE = £(TM) = MATc mMARB = £(mTM)
™ 1
MON mMON
™ ™
CF mCF = mREG = £(mFA)

M
REG = £(FA) = £(dFA)




Similarities and dissimilarities of m-languages with string languages

mMATaC = E(mTMac)

7
RE = £(TM) = MAT, mARB = L(mTM)
(i T
MON mMON
1t )
CF mCF = mREG = £(mFA)
i M

REG = £(FA) = £(dFA) L(dmFA)




Similarities and dissimilarities of m-languages with string
languages

Definition: An mFA A= (Q, %, , qo, F) is said to be
deterministic (we write dmFA) if the following condition is
satisfied:

Forall q,r,r'e Q,a,@ €%, if (q,a,r) €6 and (q,d,r') €4,
then a=4d and r=r.




Similarities and dissimilarities of m-languages with string
languages

Definition: An mFA A= (Q, %, , qo, F) is said to be
deterministic (we write dmFA) if the following condition is
satisfied:

Forall q,r,r'e Q,a,@ €%, if (q,a,r) €6 and (q,d,r') €4,
then a=4d and r=r.

Example: dmFA A: nondeterministic mFA B:




Similarities and dissimilarities of multiset languages
with string languages accepted by jumping finite
automata

» Similarities — wide (the concepts of multiset and jumping
finite automata have a lot in common).

» Dissimilarities — rare (despite the difference between
strings and multisets).




String languages accepted by jumping finite automata

Finite automaton:

[2e]o]v]e]0]

3

control

.. input




String languages accepted by jumping finite automata

Finite automaton: N N ‘ b ‘ b ‘ a ‘ b ‘ .. input

control
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String languages accepted by jumping finite automata

Finite automaton: W b ‘ a ‘ b ‘ ... input

control

Jumping finite automaton: [ala|v][b[a|b]| .. input

control
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control




String languages accepted by jumping finite automata

Finite automaton: W b ‘ a ‘ b ‘ ... input

control

Jumping finite automaton: N N M b N b ‘ ... input

control




String languages accepted by jumping finite automata

A jumping finite automaton (JFA): A= (Q, %, 0, qQo, F) where
» Qs a nonempty finite set of states,

Y is an input alphabet, ¥ N Q = 0,

0 C Q x X x Qis atransition relation,

Qo is the initial state,

>
>
>
» F C Qis a set of final states.




String languages accepted by jumping finite automata

A jumping finite automaton (JFA): A= (Q, %, 0, qQo, F) where
» Qs a nonempty finite set of states,

Y is an input alphabet, ¥ N Q = 0,

d C Q x X x Qis atransition relation,

Qo is the initial state,

>
>
>
» F C Qis a set of final states.

A configuration: uqv € ¥*Qx* (uv is the not yet processed
content of the input string)

A jumping relation is a relation ~ C Y*Qx* x X*Qx* defined
by (ugav,u'rv') e ~ iff (q,a,r) €6 and uv =u'v'.
~* denotes the reflexive and transitive closure of .




String languages accepted by jumping finite automata

A jumping finite automaton (JFA): A= (Q, %, 0, qQo, F) where
» Qs a nonempty finite set of states,

Y is an input alphabet, ¥ N Q = 0,

d C Q x X x Qis atransition relation,

Qo is the initial state,

>
>
>
» F C Qis a set of final states.

A configuration: uqv € ¥*Qx* (uv is the not yet processed
content of the input string)

A jumping relation is a relation ~ C Y*Qx* x X*Qx* defined
by (ugav,u'rv') e ~ iff (q,a,r) €6 and uv =u'v'.
~* denotes the reflexive and transitive closure of .

The language L(A) accepted by A is defined by
L(A) ={uv|u,v e X* (uqv,qgs) € ~* forsome gf € F}.




String languages accepted by jumping finite automata

A comparison:

Finite automaton A Jumping finite automaton B




String languages accepted by jumping finite automata

A comparison:

Finite automaton A Jumping finite automaton B

For example

> the finite automaton A accepts the string abab and does
not accept the string aabb,

» the jumping finite automaton B accepts both the string
abab and the string aabb.




String languages accepted by jumping finite automata

A comparison:

Finite automaton A Jumping finite automaton B

Accepted languages
> L(A) = {(ab)"[n =0},
> L(B)={we{ab}||wla=|w|p}.




String languages accepted by jumping finite automata

Another comparison:

Multiset finite automaton A Jumping finite automaton B

Accepted languages
> M(A) ={(a)" & (b)"|n =0},
> L(B) ={w e {ab}"||wla= |wl|p}.




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata
Theorem: If a language L C ¥* is accepted by some jumping

finite automaton then for every w € L, any permutation of
symbols in wis in L.




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata
Theorem: If a language L C ¥* is accepted by some jumping

finite automaton then for every w € L, any permutation of
symbols in wis in L.

Definition: Let ¥ = {ay, ap, ..., an} be an alphabet. The
mapping V¥ : ¥* — N” such that

V(w) = (|W|a,, |[W|a,, ..., |W|s,) forany we x*

is called Parikh mapping (over ¥). Here, |w|, denotes the
number of occurences of g; in w and N is the set of
non-negative integers.




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata
Theorem: If a language L C ¥* is accepted by some jumping

finite automaton then for every w € L, any permutation of
symbols in wis in L.

Definition: Let ¥ = {ay, ap, ..., an} be an alphabet. The
mapping V : ** — N” such that

V(w) = (|W|a,, |[W|a,, ..., |W|s,) forany we x*
is called Parikh mapping (over ¥). Here, |w|, denotes the

number of occurences of g; in w and N is the set of
non-negative integers.

Example: ¥ = {a,b,c}, v = abaa, w = aaab,
V(v)=(3,1,0) = ¥(w)




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata
Theorem: If a language L C ¥* is accepted by some jumping

finite automaton then for every w € L, any permutation of
symbols in wis in L.

Definition: Let ¥ = {ay, ap, ..., an} be an alphabet. The
mapping V¥ : ¥* — N” such that

V(w) = (|W|a,, |[W|a,, ..., |W|s,) forany we x*

is called Parikh mapping (over ¥). Here, |w|, denotes the
number of occurences of g; in w and N is the set of
non-negative integers.

For any language L C ¥*, we define V(L) = {¥(w)|w € L}.

Example: If X = {a,b} and L={w € {a,b}" | |w|a = |W|p},
then W(L) = {(n,n)|n e N}.




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata

Let ¥ ={ay,a, ..., an}.

» Image of any w € X* by Parikh mapping is the n-tuple
(IWlay, [Wlap, - [W]a,)-

» A multiset a € ¥¥ can be represented as the n-tuple
(lolay, [eday, -5 feday)-

So, Parikh mapping of a language L C ¥* represents
a multiset language.




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata
Theorem: If a language L C ¥* is accepted by some jumping

finite automaton then W(L) is accepted by some multiset finite
automaton.

Proof: Straightforward. (Both automata have identical state
diagrams.)

Theorem: If a multiset language M C X% is accepted by some
multiset finite automaton then there is exactly one language

L C ¥* suchthat M = W¥(L) and L is accepted by some
jumping finite automaton.

Proof: Straightforward. (Both automata have identical state
diagrams. The uniqueness follows from the fact that every
language accepted by jumping finite automaton contains with
every word also any permutation of its symbols.)




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata

Consequence: L(JFA) corresponds to £(mFA) and vice versa. J

Example:

Jumping finite automaton A Multiset finite automaton B
Accepted languages
> L(A) ={w e {a b} ||w[a=[w]p},
> W(L(A)) ={(n,n)|neN}=M(B).




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata

Consequence: L(JFA) corresponds to £(mFA) and vice versa. J

Note: £(mFA) is equal to the set of all semilinear sets. J

Definition: A semilinear set M over N is defined by
k
M=U {uio+ v +...+ lmWim i1, im € N}
i=1

where
k,my,...,my € N, Uio,... U1 mys- -, Uk, oo Ukomy e N7,




Some closure properties

Operation L(JFA) | L(mFA)
union + +
intersection - +
complement + +
concatenation - XXX
multiset addition |  xxx

homomorphism

substitution




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata

Definition: A homomorphism on strings is defined as a mapping
h: ¥* — A" such that

h(e) =¢e and h(u-v) = h(u) - h(v) forall u,v e x*.
Note that homomorphism “respects” concatenation.

Example: h:{0,1}* — {a, b}* where h(0) = ab and h(1) = ba.
Then h(011) = abbaba.

Definition: A homomorphism on multisets is defined as
amapping h: % — A% such that

h(0s) = 0A and h(a ® B) = h(a) @ h(B) forall a,3 € £®.




Similarities and dissimilarities of multiset languages with
languages accepted by jumping finite automata

Definition: A substitution on strings is defined as a mapping
s: ¥* — 24 such that

s(e) ={¢} and s(u-v) =s(u)-s(v) forall u,vex*.

Note that substitution “respects” concatenation.

Definition: A substitution on multisets is defined as a mapping
s: ¥ 5 287 gych that

s(0x) = {0a} and s(a® B) = s(a) & s(B) forall o, € £%.

v




Minimization problem for multiset finite automata

Definition: A and B are equivalent iff M(A) = M(B).




Minimization problem for multiset finite automata

Definition: A and B are equivalent iff M(A) = M(B).

Definition: An mFA A is called minimal if there is no equivalent
mFA B with smaller number of states.




Minimization problem for multiset finite automata

Definition: A and B are equivalent iff M(A) = M(B).

Definition: An mFA A is called minimal if there is no equivalent
mFA B with smaller number of states.

Example:

The automaton B is minimal (M(B) = {(a)" & (b)" | n > 0}).




Minimization problem for multiset finite automata

Problem of minimization: If an automaton of certain type is
given, then we look for an equivalent minimal automaton of the
same type.

Optimally, the minimal automaton is unique
(up to isomorphism).

Note: the following parts are based on

» Martinek P., Some notes to minimization of multiset finite
automata, in International Conference of Numerical
Analysis and Applied Mathematics (ICNAAM 2017), T.
Simos and Ch. Tsitouras, Eds., AIP Conference
proceedings 1978, 470019 (2018)

» Martinek P., On a Generalized Form of Multiset Finite
Automata with Suppressed Nonfinal States, in International
Conference of Numerical Analysis and Applied
Mathematics (ICNAAM 2020), to appear




Minimization problem for multiset finite automata

An example of nonisomorphic minimal nondeterministic
multiset finite automata:

4 —@H0)®)




Minimization problem for multiset finite automata

An example of nonisomorphic and isomorphic minimal
deterministic multiset finite automata:

c: —(@—~a)—"(=)
M
D ba

C and D are not isomorphic.




Minimization problem for multiset finite automata

An example of nonisomorphic and isomorphic minimal
deterministic multiset finite automata:

c: —{(@)—2-a)-"
M
D @ b @ a
C and D are not isomorphic.
M(C) = M(D') = {(a) ® (b)}

C and D’ are isomorphic.
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3. Lexicographic reordering of transitions:

b
(@A) (®)

Input alphabet ¥ = {a, b, c,d}
v

a
@)@




Minimization process for deterministic multiset finite automata

Key states for lexicographically ordered sequences of
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Definition: AdmFA A= (Q, X%, ¢, qo, F) is said to be

a deterministic multiset finite automaton with lexicographically
ordered transitions if for any sequence of transitions

(9i, ai, gir1)f-4 from & with n > 1, the sequence (&)7_; is
lexicographically ordered whenever g1, gn1 € F U {qo,qc} and
Q2,---.qn & FU{qo, qc}-
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4. Merging indistinguishable states.
Definition: States p,q € Q ofadmFA A= (Q,%,d,qo, F) are
called distinguishable iff there exists o € X® satisfying either
a) (p,a) H* (p/,05) with p’ € F and
(q,2) =" (q',0x) with g" ¢ F
or
b) (p,a) H* (p’,05) with p’ ¢ F and
(9,) F* (¢',0x) with @’ € F.
States, which are not distinguishable, are called
indistinguishable.
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Minimization process for deterministic multiset finite automata

5. Solving situation around state qc:
a) shuffling transitions,
b) merging indistinguishable states,
c) final lexicographic reordering of transitions.
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Theorem: For every dmFA A, there is an equivalent minimal
deterministic multiset finite automaton with lexicographically
ordered transitions which is unique up to isomorphism.
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Theorem: For every dmFA A, there is an equivalent minimal
deterministic multiset finite automaton with lexicographically
ordered transitions which is unique up to isomorphism.

Remark: For some nondeterministic multiset finite automata, no
unique equivalent minimal multiset finite automata exist.




Minimization problem for multiset finite automata in
a generalized form

An unusual concept of a generalized multiset finite automaton
with suppressed nonfinal states allows to grasp the
minimization somewhat differently.

A generalized multiset finite automaton with suppressed
nonfinal states: A= (Q, %, 4, qo, F) where
> Q,% and qg are as in mFA,
> F C Q is aset of final states such that FU{qo} = Q,
> §C Qx X% x Q is afinite transition relation satisfying the
following condition.
If there are q,...,qx € Q suchthat (g;_1,0x,q;) €6
forall ie{1,...,k} and gx € F, then q € F.




Generalized multiset finite automata with suppressed nonfinal
states

Examples:




Idea of a transformation to a generalized multiset automaton with
suppressed nonfinal states
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states and their minimization

Theorem: Generalized multiset finite automata with
suppressed nonfinal states accept the family of multiset
languages accepted by multiset finite automata.
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Generalized multiset finite automata with suppressed nonfinal
states and their minimization

Theorem: Generalized multiset finite automata with
suppressed nonfinal states accept the family of multiset
languages accepted by multiset finite automata.

Theorem: For every deterministic multiset finite automaton,
there is an equivalent minimal deterministic generalized
multiset finite automaton with suppressed nonfinal states which
is unique up to isomorphism.

Note: Generally, the previous theorem does not hold true for
nondeterministic generalized multiset finite automata with
suppressed nonfinal states.




An example of nonisomorphic minimal nondeterministic
generalized multiset finite automata with suppressed nonfinal
states

automaton A automaton B

M(A) = M(B) = {{a) ® (b)"|m =0} U {(&)"|n>1}




Conclusion

Multiset languages theory:

» Large field for further research
» Many unsolved problems




Thank you for your attention



