
Multi-Island Finite Automata and Their Even
Computation

Martin Tomko

paper co-authored with:
Dušan Kolář, Alexander Meduna

Faculty of Information Technology, BUT

December 5, 2022



Table of contents

Finite Automata

Bridges and Islands

Islands in Automata

Even Computations

Accepting Power



Finite Automata



Finite Automata: Example, Graphical Representation
The GFA

M = ({s, q, f }, {a, b}, {sa→ q, qa→ q, qb → f , fb → b}, s, f )

can be represented as:

s q f
a

a

b

b

The language accepted by this automaton is

L(M) = {anbm | n,m ≥ 1}.



Finite Automata: Definition
A generalized finite automaton (GFA) is a 5-tuple
M = (Q,Σ,R, s, f ), where
I Q – a finite set of states,
I Σ – a finite, nonempty input alphabet,
I R ⊆ Q × Σ∗ × Q – a finite set of rules:

I (p,w , q) ∈ R written as pw → q,

I s ∈ Q – the initial state,
I f ∈ Q – the final state.



Finite Automata: Definition
A generalized finite automaton (GFA) is a 5-tuple
M = (Q,Σ,R, s, f ), where
I Q – a finite set of states,
I Σ – a finite, nonempty input alphabet,
I R ⊆ Q × Σ∗ × Q – a finite set of rules:

I (p,w , q) ∈ R written as pw → q,

I s ∈ Q – the initial state,
I f ∈ Q – the final state.

Note these peculiarities:
I The model is non-deterministic;



Finite Automata: Definition
A generalized finite automaton (GFA) is a 5-tuple
M = (Q,Σ,R, s, f ), where
I Q – a finite set of states,
I Σ – a finite, nonempty input alphabet,
I R ⊆ Q × Σ∗ × Q – a finite set of rules:

I (p,w , q) ∈ R written as pw → q,

I s ∈ Q – the initial state,
I f ∈ Q – the final state.

Note these peculiarities:
I The model is non-deterministic;
I The production rules allow reading entire strings;



Finite Automata: Definition
A generalized finite automaton (GFA) is a 5-tuple
M = (Q,Σ,R, s, f ), where
I Q – a finite set of states,
I Σ – a finite, nonempty input alphabet,
I R ⊆ Q × Σ∗ × Q – a finite set of rules:

I (p,w , q) ∈ R written as pw → q,

I s ∈ Q – the initial state,
I f ∈ Q – the final state.

Note these peculiarities:
I The model is non-deterministic;
I The production rules allow reading entire strings;
I There is only a single final state.



Transition Graph of a GFA
An edge-labelled directed graph G = (V ,E ,W ), where:
I V = Q,



Transition Graph of a GFA
An edge-labelled directed graph G = (V ,E ,W ), where:
I V = Q,
I E = {(u, v) ∈ Q × Q | ∃w ∈ Σ∗ : (uw → v) ∈ R},



Transition Graph of a GFA
An edge-labelled directed graph G = (V ,E ,W ), where:
I V = Q,
I E = {(u, v) ∈ Q × Q | ∃w ∈ Σ∗ : (uw → v) ∈ R},
I W : (u, v) 7→ {w ∈ Σ∗ | (uw → v) ∈ R}.



Transition Graph of a GFA
An edge-labelled directed graph G = (V ,E ,W ), where:
I V = Q,
I E = {(u, v) ∈ Q × Q | ∃w ∈ Σ∗ : (uw → v) ∈ R},
I W : (u, v) 7→ {w ∈ Σ∗ | (uw → v) ∈ R}.

s q f
a

a

b

b

I V = {s, q, f },
I E = {(s, q), (q, q), (q, f ), (f , f )},

I W (s, q) = {a},
I W (q, q) = {a},
I W (q, f ) = {b},
I W (f , f ) = {b}



Bridges and Islands



Connected graph
Connected graph: Any two nodes are connected by an undirected
path.



Disconnected graph
Connected graph: Any two nodes are connected by an undirected
path.



Bridge
Bridge: an edge such that when it is removed, the graph is no
longer connected.



Island
A bridgeless island = a maximal bridgeless connected component

Every node and edge is either a bridge or contained in exactly one
bridgeless island.



Islands in Automata



Islands in Automata: The Structure

I A state is useful if it occurs on some path from s to f ;
I Otherwise, it is useless;



Islands in Automata: The Structure

I A state is useful if it occurs on some path from s to f ;
I Otherwise, it is useless;
I Assuming no useless states, the islands will always be aranged

linearly:
I1 −→ I2 −→ · · · −→ In



Islands in Automata: The Structure

I A state is useful if it occurs on some path from s to f ;
I Otherwise, it is useless;
I Assuming no useless states, the islands will always be aranged

linearly:
I1 −→ I2 −→ · · · −→ In

I Sketch of Proof:
1. Think of an ”island graph” – the nodes are islands, the edges

are bridges;
2. This graph is necessarily a tree;
3. There must be exactly one path between Is and If ;
4. All states are useful, so all islands must lie on this path.



Islands in Automata: Number Variability

I For any integers m, n, a GFA with m bridges can be converted
into an equivalent GFA with n bridges;



Islands in Automata: Number Variability

I For any integers m, n, a GFA with m bridges can be converted
into an equivalent GFA with n bridges;

I Idea of proof:
I Redundant states and transitions can merge existing islands

and create new ones.



Islands in Automata: An abstraction
I a k-bridge island in G :

I a maximal connected subgraph of G containing exactly k
bridges

I the merging of k + 1 bridgeless islands and their connecting
bridges



Islands in Automata: An abstraction
I a k-bridge island in G :

I a maximal connected subgraph of G containing exactly k
bridges

I the merging of k + 1 bridgeless islands and their connecting
bridges

I We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,



Islands in Automata: An abstraction
I a k-bridge island in G :

I a maximal connected subgraph of G containing exactly k
bridges

I the merging of k + 1 bridgeless islands and their connecting
bridges

I We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,
b) Select the bridges that will actually divide islands;



Islands in Automata: An abstraction
I a k-bridge island in G :

I a maximal connected subgraph of G containing exactly k
bridges

I the merging of k + 1 bridgeless islands and their connecting
bridges

I We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,
b) Select the bridges that will actually divide islands;

I
(

b
n−1

)
ways to select n islands in a GFA with b bridges.



n-Island GFA
I An n-island GFA (n-IGFA) is:

I A GFA M (with at least n − 1 bridges),
I Along with a set Γ of selected bridges;



n-Island GFA
I An n-island GFA (n-IGFA) is:

I A GFA M (with at least n − 1 bridges),
I Along with a set Γ of selected bridges;

I Let L(GFAn) denote the class of languages accepted by
n-IGFA;

I L(GFAn) = REG for any n ≥ 1;



n-Island GFA
I An n-island GFA (n-IGFA) is:

I A GFA M (with at least n − 1 bridges),
I Along with a set Γ of selected bridges;

I Let L(GFAn) denote the class of languages accepted by
n-IGFA;

I L(GFAn) = REG for any n ≥ 1;
I Sketch of proof:

1. n-IGFA are special cases of GFA;
2. A GFA along with Γ = ∅ is a 1-IGFA;
3. An n-IGFA can be transformed into an equivalent m-IGFA.



Even Computations



Even Computations

I An n-IGFA accepts the same language as the underlying
GFA. . .



Even Computations

I An n-IGFA accepts the same language as the underlying
GFA. . .

I . . . unless we add an additional constraint to their
computation:



Even Computations

I An n-IGFA accepts the same language as the underlying
GFA. . .

I . . . unless we add an additional constraint to their
computation:

I A computation of an n-IGFA is even if the same number of
steps is taken in each island.



Even Computations: Example (1/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;



Even Computations: Example (1/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;
I The language accepted by this automaton is

L(M) = {aibjck | i , j , k ≥ 0}.



Even Computations: Example (2/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;
I Let us consider islands defined by the bridges

Γ = {(s, q), (q, f )}:



Even Computations: Example (2/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;
I Let us consider islands defined by the bridges

Γ = {(s, q), (q, f )}:
I The language accepted by this automaton by even

computations with regard to Γ is

Le(M, Γ) = {anbncn | n ≥ 0};

I Le(M, Γ) ∈ CS \ CF.



Accepting Power



Accepting Power: n-PRLG

I Let Le(GFAn) denote the class of languages accepted by
n-IGFA by even computations;



Accepting Power: n-PRLG

I Let Le(GFAn) denote the class of languages accepted by
n-IGFA by even computations;

I Equivalent power to n-parallel right linear grammars
(n-PRLG):
I (N,Σ,P,S);
I P contains rules of the forms:

a) S → x , where x ∈ Σ∗,
b) S → A1 · · ·An, where Ai ∈ N,
c) A→ xB, where A,B ∈ N \ {S}, x ∈ Σ∗,
d) A→ x , where A ∈ N \ {S}, x ∈ Σ∗;

I All nonterminals rewritten at once;



Accepting Power: n-PRLG

I Let Le(GFAn) denote the class of languages accepted by
n-IGFA by even computations;

I Equivalent power to n-parallel right linear grammars
(n-PRLG):
I (N,Σ,P,S);
I P contains rules of the forms:

a) S → x , where x ∈ Σ∗,
b) S → A1 · · ·An, where Ai ∈ N,
c) A→ xB, where A,B ∈ N \ {S}, x ∈ Σ∗,
d) A→ x , where A ∈ N \ {S}, x ∈ Σ∗;

I All nonterminals rewritten at once;

I We denote the class of languages generated by n-PRLGs by
PRLn.



n-PRLG: Example

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA,
I A→ aA | ε,
I B → bB | ε;



n-PRLG: Example

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA,
I A→ aA | ε,
I B → bB | ε;

I G is a 2-PRLG;



n-PRLG: Example

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA,
I A→ aA | ε,
I B → bB | ε;

I G is a 2-PRLG;
I L(G ) = {anbn, bnan | n ≥ 0}



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;

I Construct the grammar G = (Q ∪ {S},Σ,P, S) where
S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf where:



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;

I Construct the grammar G = (Q ∪ {S},Σ,P, S) where
S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf where:
I Ps = {S → s1 · · · sn},



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;

I Construct the grammar G = (Q ∪ {S},Σ,P, S) where
S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf where:
I Ps = {S → s1 · · · sn},
I Pi = {p → xq | (px → q) ∈ R and p, q ∈ Qj for some 1 ≤ j ≤

n},



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;

I Construct the grammar G = (Q ∪ {S},Σ,P, S) where
S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf where:
I Ps = {S → s1 · · · sn},
I Pi = {p → xq | (px → q) ∈ R and p, q ∈ Qj for some 1 ≤ j ≤

n},
I Pf = {fj → x |(fjx → sj+1) ∈ R for some 1 ≤ j < n}∪{f → ε};



Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;

I Construct the grammar G = (Q ∪ {S},Σ,P, S) where
S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf where:
I Ps = {S → s1 · · · sn},
I Pi = {p → xq | (px → q) ∈ R and p, q ∈ Qj for some 1 ≤ j ≤

n},
I Pf = {fj → x |(fjx → sj+1) ∈ R for some 1 ≤ j < n}∪{f → ε};

I L(G ) = Le(M, Γ).



Proof: PRLn ⊆ Le(GFAn) – The Problem

I The converse direction is considerably harder to prove;
consider the grammar from before:



Proof: PRLn ⊆ Le(GFAn) – The Problem

I The converse direction is considerably harder to prove;
consider the grammar from before:

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA
I A→ aA | ε
I B → bB | ε

I L(G ) = {anbn, bnan | n ≥ 0}



Proof: PRLn ⊆ Le(GFAn) – The Problem

I The converse direction is considerably harder to prove;
consider the grammar from before:

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA
I A→ aA | ε
I B → bB | ε

I L(G ) = {anbn, bnan | n ≥ 0}
I We can easily form components to accept substrings of the

forms an or bn in each island, and even computations will
ensure equal length;



Proof: PRLn ⊆ Le(GFAn) – The Problem

I The converse direction is considerably harder to prove;
consider the grammar from before:

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA
I A→ aA | ε
I B → bB | ε

I L(G ) = {anbn, bnan | n ≥ 0}
I We can easily form components to accept substrings of the

forms an or bn in each island, and even computations will
ensure equal length;

I How do we ensure that the an component in the first island
will only work with the bn component in the second island and
vice versa?



Proof: PRLn ⊆ Le(GFAn) – The Problem

I The converse direction is considerably harder to prove;
consider the grammar from before:

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA
I A→ aA | ε
I B → bB | ε

I L(G ) = {anbn, bnan | n ≥ 0}
I We can easily form components to accept substrings of the

forms an or bn in each island, and even computations will
ensure equal length;

I How do we ensure that the an component in the first island
will only work with the bn component in the second island and
vice versa?

I In general, how do we deal with different initial rules of an
n-PRLG?



Proof: PRLn ⊆ Le(GFAn) – An Example Solution

I The trick is to encode the form of the accepted string in the
number of steps in each island;



Proof: PRLn ⊆ Le(GFAn) – An Example Solution

I The trick is to encode the form of the accepted string in the
number of steps in each island;

I For example, an odd number for the form anbn, and an even
number for the form bnan:



Proof: PRLn ⊆ Le(GFAn) – An Example Solution

I The trick is to encode the form of the accepted string in the
number of steps in each island;

I For example, an odd number for the form anbn, and an even
number for the form bnan:

s1

p1 p2

f1

q1

q2

s2

p3 p4

f2

q3

q4

ε

ε

a

ε
ε

ε

ε

b

ε

ε

ε

b

ε
ε

ε

ε

a



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;

I Each island i (for 1 ≤ i ≤ n) will contain the following kinds
of states:



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;

I Each island i (for 1 ≤ i ≤ n) will contain the following kinds
of states:
I Entry state si and exit state fi ,



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;

I Each island i (for 1 ≤ i ≤ n) will contain the following kinds
of states:
I Entry state si and exit state fi ,
I States 〈i , j〉 where 1 ≤ j ≤ m for the initial generation of

remainder j ,



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;

I Each island i (for 1 ≤ i ≤ n) will contain the following kinds
of states:
I Entry state si and exit state fi ,
I States 〈i , j〉 where 1 ≤ j ≤ m for the initial generation of

remainder j ,
I States 〈A, i , j〉 where 1 ≤ j ≤ m and A ∈ N \ {S} to represent

nonterminal A simulated with predetermined remainder j ,



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;

I Each island i (for 1 ≤ i ≤ n) will contain the following kinds
of states:
I Entry state si and exit state fi ,
I States 〈i , j〉 where 1 ≤ j ≤ m for the initial generation of

remainder j ,
I States 〈A, i , j〉 where 1 ≤ j ≤ m and A ∈ N \ {S} to represent

nonterminal A simulated with predetermined remainder j ,
I States 〈i , j , k ,B〉 where 1 ≤ j , k ≤ m and

B ∈ (N \ {S}) ∪ {ε}, which use k as a counter to drag out the
rewriting of A to B to m + 1 moves.



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 2/2)

I The automaton constructed will contain the following kinds of
rules:



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 2/2)
I The automaton constructed will contain the following kinds of

rules:
I Rules to generate a remainder (at the start of each island):

I si → 〈i , 1〉, 〈i , j〉 → 〈i , j + 1〉;



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 2/2)
I The automaton constructed will contain the following kinds of

rules:
I Rules to generate a remainder (at the start of each island):

I si → 〈i , 1〉, 〈i , j〉 → 〈i , j + 1〉;
I Rules to pair a given remainder with the corresponding

computation within each island,
I 〈1,m〉 → f1, 〈i ,m〉 → fi for S → x ∈ P,
I si → 〈Ai1, i , 1〉, 〈i , j − 1〉 → 〈Aij , i , j〉 for

pj : S → A1j · · ·Anj ∈ P;



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 2/2)
I The automaton constructed will contain the following kinds of

rules:
I Rules to generate a remainder (at the start of each island):

I si → 〈i , 1〉, 〈i , j〉 → 〈i , j + 1〉;
I Rules to pair a given remainder with the corresponding

computation within each island,
I 〈1,m〉 → f1, 〈i ,m〉 → fi for S → x ∈ P,
I si → 〈Ai1, i , 1〉, 〈i , j − 1〉 → 〈Aij , i , j〉 for

pj : S → A1j · · ·Anj ∈ P;
I Rules to simulate grammar rules of the form A→ xB and

A→ x , A,B ∈ N, x ∈ Σ∗, along with ε-rules ensuring that
each rule is simulated in exactly m + 1 steps,

I 〈A, i , j〉x → 〈i , j , 1,B〉 for A→ xB ∈ P,
I 〈i , j , k,B〉 → 〈i , j , k + 1,B〉, 〈i , j ,m,B〉 → 〈B, i , j〉,
〈i , j ,m, ε〉 → fi ;



Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 2/2)
I The automaton constructed will contain the following kinds of

rules:
I Rules to generate a remainder (at the start of each island):

I si → 〈i , 1〉, 〈i , j〉 → 〈i , j + 1〉;
I Rules to pair a given remainder with the corresponding

computation within each island,
I 〈1,m〉 → f1, 〈i ,m〉 → fi for S → x ∈ P,
I si → 〈Ai1, i , 1〉, 〈i , j − 1〉 → 〈Aij , i , j〉 for

pj : S → A1j · · ·Anj ∈ P;
I Rules to simulate grammar rules of the form A→ xB and

A→ x , A,B ∈ N, x ∈ Σ∗, along with ε-rules ensuring that
each rule is simulated in exactly m + 1 steps,

I 〈A, i , j〉x → 〈i , j , 1,B〉 for A→ xB ∈ P,
I 〈i , j , k,B〉 → 〈i , j , k + 1,B〉, 〈i , j ,m,B〉 → 〈B, i , j〉,
〈i , j ,m, ε〉 → fi ;

I Bridge rules:
I fi → si+1.



Corollary: PRLn = Le(GFAn)

I PRLn = Le(GFAn)

I Proof: See previous slides



Accepting Power

I The following is known about the accepting power of
n-PRLGs:



Accepting Power

I The following is known about the accepting power of
n-PRLGs:

I REG = PRL1 ⊂ PRLk ⊂ PRLk+1 ⊂ CS for any k > 1;
I PRL2 ⊂ CF;
I PRLn 6⊆ CF, CF 6⊆ PRLn, n ≥ 3;



Accepting Power

I The following is known about the accepting power of
n-PRLGs:

I REG = PRL1 ⊂ PRLk ⊂ PRLk+1 ⊂ CS for any k > 1;
I PRL2 ⊂ CF;
I PRLn 6⊆ CF, CF 6⊆ PRLn, n ≥ 3;
I Finally, PRLn = Le(GFAn) for all n ≥ 1.



Accepting Power: Summary
I Le(GFAn) equivalent to languages generated by n-PRLGs:

I An infinite hierarchy between REG and CS;
I For n ≥ 3 incomparable with CF.

I For compactness, EIn will denote Le(GFAn) in the following
diagram:

REG = EI1

EI2
EIk

k ≥ 3 CF

CS


	Finite Automata
	Bridges and Islands
	Islands in Automata
	Even Computations
	Accepting Power

