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Finite Automata



Finite Automata: Example, Graphical Representation
The GFA

M = ({s, q, f }, {a, b}, {sa→ q, qa→ q, qb → f , fb → b}, s, f )

can be represented as:

s q f
a

a

b

b

The language accepted by this automaton is

L(M) = {anbm | n,m ≥ 1}.



Finite Automata: Definition
A generalized finite automaton (GFA) is a 5-tuple
M = (Q,Σ,R, s, f ), where
I Q – a finite set of states,
I Σ – a finite, nonempty input alphabet,
I R ⊆ Q × Σ∗ × Q – a finite set of rules:

I (p,w , q) ∈ R written as pw → q,

I s ∈ Q – the initial state,
I f ∈ Q – the final state.
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Finite Automata: Definition
A generalized finite automaton (GFA) is a 5-tuple
M = (Q,Σ,R, s, f ), where
I Q – a finite set of states,
I Σ – a finite, nonempty input alphabet,
I R ⊆ Q × Σ∗ × Q – a finite set of rules:

I (p,w , q) ∈ R written as pw → q,

I s ∈ Q – the initial state,
I f ∈ Q – the final state.

Note these peculiarities:
I The model is non-deterministic;
I The production rules allow reading entire strings;
I There is only a single final state.
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Transition Graph of a GFA
An edge-labelled directed graph G = (V ,E ,W ), where:
I V = Q,
I E = {(u, v) ∈ Q × Q | ∃w ∈ Σ∗ : (uw → v) ∈ R},
I W : (u, v) 7→ {w ∈ Σ∗ | (uw → v) ∈ R}.

s q f
a

a

b

b

I V = {s, q, f },
I E = {(s, q), (q, q), (q, f ), (f , f )},

I W (s, q) = {a},
I W (q, q) = {a},
I W (q, f ) = {b},
I W (f , f ) = {b}



Bridges and Islands



Connected graph
Connected graph: Any two nodes are connected by an undirected
path.



Disconnected graph
Connected graph: Any two nodes are connected by an undirected
path.



Bridge
Bridge: an edge such that when it is removed, the graph is no
longer connected.



Island
A bridgeless island = a maximal bridgeless connected component

Every node and edge is either a bridge or contained in exactly one
bridgeless island.



Islands in Automata
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I A state is useful if it occurs on some path from s to f ;
I Otherwise, it is useless;
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Islands in Automata: The Structure

I A state is useful if it occurs on some path from s to f ;
I Otherwise, it is useless;
I Assuming no useless states, the islands will always be aranged

linearly:
I1 −→ I2 −→ · · · −→ In

I Sketch of Proof:
1. Think of an ”island graph” – the nodes are islands, the edges

are bridges;
2. This graph is necessarily a tree;
3. There must be exactly one path between Is and If ;
4. All states are useful, so all islands must lie on this path.



Islands in Automata: Number Variability

I For any integers m, n, a GFA with m bridges can be converted
into an equivalent GFA with n bridges;



Islands in Automata: Number Variability

I For any integers m, n, a GFA with m bridges can be converted
into an equivalent GFA with n bridges;

I Idea of proof:
I Redundant states and transitions can merge existing islands

and create new ones.
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Islands in Automata: An abstraction
I a k-bridge island in G :

I a maximal connected subgraph of G containing exactly k
bridges

I the merging of k + 1 bridgeless islands and their connecting
bridges

I We can explicitly specify which islands we want:
a) Explicitly describe which states form which islands,
b) Select the bridges that will actually divide islands;

I
(

b
n−1

)
ways to select n islands in a GFA with b bridges.
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n-Island GFA
I An n-island GFA (n-IGFA) is:

I A GFA M (with at least n − 1 bridges),
I Along with a set Γ of selected bridges;

I Let L(GFAn) denote the class of languages accepted by
n-IGFA;

I L(GFAn) = REG for any n ≥ 1;
I Sketch of proof:

1. n-IGFA are special cases of GFA;
2. A GFA along with Γ = ∅ is a 1-IGFA;
3. An n-IGFA can be transformed into an equivalent m-IGFA.
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Even Computations

I An n-IGFA accepts the same language as the underlying
GFA. . .

I . . . unless we add an additional constraint to their
computation:

I A computation of an n-IGFA is even if the same number of
steps is taken in each island.



Even Computations: Example (1/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;



Even Computations: Example (1/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;
I The language accepted by this automaton is

L(M) = {aibjck | i , j , k ≥ 0}.



Even Computations: Example (2/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;
I Let us consider islands defined by the bridges

Γ = {(s, q), (q, f )}:



Even Computations: Example (2/2)

s q f

a

ε

b

ε

c

I Note: ε denotes the empty string;
I Let us consider islands defined by the bridges

Γ = {(s, q), (q, f )}:
I The language accepted by this automaton by even

computations with regard to Γ is

Le(M, Γ) = {anbncn | n ≥ 0};

I Le(M, Γ) ∈ CS \ CF.



Accepting Power



Accepting Power: n-PRLG

I Let Le(GFAn) denote the class of languages accepted by
n-IGFA by even computations;



Accepting Power: n-PRLG

I Let Le(GFAn) denote the class of languages accepted by
n-IGFA by even computations;

I Equivalent power to n-parallel right linear grammars
(n-PRLG):
I (N,Σ,P,S);
I P contains rules of the forms:

a) S → x , where x ∈ Σ∗,
b) S → A1 · · ·An, where Ai ∈ N,
c) A→ xB, where A,B ∈ N \ {S}, x ∈ Σ∗,
d) A→ x , where A ∈ N \ {S}, x ∈ Σ∗;

I All nonterminals rewritten at once;



Accepting Power: n-PRLG

I Let Le(GFAn) denote the class of languages accepted by
n-IGFA by even computations;

I Equivalent power to n-parallel right linear grammars
(n-PRLG):
I (N,Σ,P,S);
I P contains rules of the forms:

a) S → x , where x ∈ Σ∗,
b) S → A1 · · ·An, where Ai ∈ N,
c) A→ xB, where A,B ∈ N \ {S}, x ∈ Σ∗,
d) A→ x , where A ∈ N \ {S}, x ∈ Σ∗;

I All nonterminals rewritten at once;

I We denote the class of languages generated by n-PRLGs by
PRLn.
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I P contains the following rules:

I S → AB | BA,
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n-PRLG: Example

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA,
I A→ aA | ε,
I B → bB | ε;

I G is a 2-PRLG;
I L(G ) = {anbn, bnan | n ≥ 0}
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Proof: Le(GFAn) ⊆ PRLn

I Let M = (Q,Σ,R, s, f ) be an n-IGFA along with a set Γ of
bridges;

I For the j-th island, let:
I Qj denote its set of states,
I sj its entry state, and
I fj its exit state;

I Construct the grammar G = (Q ∪ {S},Σ,P, S) where
S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf where:
I Ps = {S → s1 · · · sn},
I Pi = {p → xq | (px → q) ∈ R and p, q ∈ Qj for some 1 ≤ j ≤

n},
I Pf = {fj → x |(fjx → sj+1) ∈ R for some 1 ≤ j < n}∪{f → ε};

I L(G ) = Le(M, Γ).
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Proof: PRLn ⊆ Le(GFAn) – The Problem

I The converse direction is considerably harder to prove;
consider the grammar from before:

I G = ({S ,A,B}, {a, b},P, S),
I P contains the following rules:

I S → AB | BA
I A→ aA | ε
I B → bB | ε

I L(G ) = {anbn, bnan | n ≥ 0}
I We can easily form components to accept substrings of the

forms an or bn in each island, and even computations will
ensure equal length;

I How do we ensure that the an component in the first island
will only work with the bn component in the second island and
vice versa?

I In general, how do we deal with different initial rules of an
n-PRLG?
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Proof: PRLn ⊆ Le(GFAn) – An Example Solution

I The trick is to encode the form of the accepted string in the
number of steps in each island;

I For example, an odd number for the form anbn, and an even
number for the form bnan:

s1

p1 p2

f1

q1

q2

s2

p3 p4

f2

q3

q4

ε

ε

a

ε
ε

ε

ε

b

ε

ε

ε

b

ε
ε

ε

ε

a
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Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 1/2)

I Let m be the number of starting production rules of the input
grammar of the form S → A1 · · ·An;

I Associate each of these starting rules with a remainder
modulo m + 1 with the remainder 0 reserved for starting rules
of the form S → x , x ∈ Σ∗;

I Each island i (for 1 ≤ i ≤ n) will contain the following kinds
of states:
I Entry state si and exit state fi ,
I States 〈i , j〉 where 1 ≤ j ≤ m for the initial generation of

remainder j ,
I States 〈A, i , j〉 where 1 ≤ j ≤ m and A ∈ N \ {S} to represent

nonterminal A simulated with predetermined remainder j ,
I States 〈i , j , k ,B〉 where 1 ≤ j , k ≤ m and

B ∈ (N \ {S}) ∪ {ε}, which use k as a counter to drag out the
rewriting of A to B to m + 1 moves.
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Proof: PRLn ⊆ Le(GFAn) – General Case (Sketch, 2/2)
I The automaton constructed will contain the following kinds of

rules:
I Rules to generate a remainder (at the start of each island):

I si → 〈i , 1〉, 〈i , j〉 → 〈i , j + 1〉;
I Rules to pair a given remainder with the corresponding

computation within each island,
I 〈1,m〉 → f1, 〈i ,m〉 → fi for S → x ∈ P,
I si → 〈Ai1, i , 1〉, 〈i , j − 1〉 → 〈Aij , i , j〉 for

pj : S → A1j · · ·Anj ∈ P;
I Rules to simulate grammar rules of the form A→ xB and

A→ x , A,B ∈ N, x ∈ Σ∗, along with ε-rules ensuring that
each rule is simulated in exactly m + 1 steps,

I 〈A, i , j〉x → 〈i , j , 1,B〉 for A→ xB ∈ P,
I 〈i , j , k,B〉 → 〈i , j , k + 1,B〉, 〈i , j ,m,B〉 → 〈B, i , j〉,
〈i , j ,m, ε〉 → fi ;

I Bridge rules:
I fi → si+1.



Corollary: PRLn = Le(GFAn)

I PRLn = Le(GFAn)

I Proof: See previous slides
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Accepting Power

I The following is known about the accepting power of
n-PRLGs:

I REG = PRL1 ⊂ PRLk ⊂ PRLk+1 ⊂ CS for any k > 1;
I PRL2 ⊂ CF;
I PRLn 6⊆ CF, CF 6⊆ PRLn, n ≥ 3;
I Finally, PRLn = Le(GFAn) for all n ≥ 1.



Accepting Power: Summary
I Le(GFAn) equivalent to languages generated by n-PRLGs:

I An infinite hierarchy between REG and CS;
I For n ≥ 3 incomparable with CF.

I For compactness, EIn will denote Le(GFAn) in the following
diagram:

REG = EI1

EI2
EIk

k ≥ 3 CF

CS
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