Advanced LL Parsing Techniques

Radim Kocman

Faculty of Information Technology
Brno University of Technology
BoZetéchova 2, Brno, Czech Republic

kocman@fit.vutbr.cz
BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

LTA 2022 (December 5, 2022)

| Table of Contents | KRG

® Motivation

e Standard LL(1) Parsing

® Full LL(1) Parsing

® General LL(k) Parsing

® LL(k) Parsing for Automaton with One-Symbol Reading Head

® LL(k) Parsing Table Generator

Advanced LL Parsing Techniques | 2/38

| Motivation |

e Syntactic analysis
® The goal is to process the input string of fokens while following
the derivation of a selected grammar.
* This process recreates a derivation tree structure of the input
so that semantic actions can follow rules of the grammair.

e LL(k) parsing

® deterministic fop-down method

* it simulates the leff-most derivation of the grammar

® deterministic prediction for the next step is done according
to the left-most unprocessed symbols of the sentential form
and the input

* k represents the number of symbols on the input used for the
prediction

e if k =1, (1) is often omitted from the name

® prediction can be implemented as a table look-up in
so-called parsing table

Advanced LL Parsing Techniques | 3/38

| Example LL(1) Grammar | KL

Example LL(1) grammar G;

Gy = ({S,A},{a,b,c},P,S)
where P contains:
S — aAb
S — bAa
A— cS
A—e

Advanced LL Parsing Techniques | 4/38

| Example LL(2) Grammar | KL

Example LL(2) grammar G,
G = ({S, A}, {a,b},P,S)

where P contains:
S — gAaa
S — bAba
A—=Db

A—e¢

Advanced LL Parsing Techniques | 5/38

Standard LL(T) Parsing

| Standard LL(1) Parsing | KRG

e This is the most common tfechnique. However, there exist
many variations of this parsing that slightly differ in details.

e The grammar can contain empty strings at the right-hand
side of the rules (e-rules).
* We are using the following auxiliary symbols:

¢ $ at the end of the input
* # at the end of the generated sentential form

e Steps to create the parsing table:

@ create First sets
® create Follow sets
® fill parsing table cells

Advanced LL Parsing Techniques | 7/38

| Standard LL(1) Parsing — First Sets | KEGE

* We are looking for first terminal symbols that can be
produced from a selected symbol.

e We iteratively compute First sets for every symbol of the
grammar until the sets stabilize.

Rules of G;

S— aAb|bAa, A—cS|e

Initial sets
First(a) | First(b) | First(c) | First(S) | First(A)
{fap | 6 | {0 [0 | O

First(a) | First(b) | First(c) | First(S) | First(A)
{a} | {6} | {c} [{ab} [{ce}

Advanced LL Parsing Techniques | 8/38

| Standard LL(1) Parsing — Follow Sets | G

e Due to e-rules, we need to know what follows after
non-terminals.

* We iteratively compute Follow sets for every non-terminal of
the grammar until the sefts stabilize.

e Computing Follow(X), for every X in Y — aXj3, we add

terminal symbols from First(3) to the set and, if it contains ¢,
we also add terminal symbols from Follow(Y) to the set.

Advanced LL Parsing Techniques | 9/38

| Standard LL(T) Parsing — Follow Sets | KEGEE

S— aAb|bAa, A—cS|e

Initial sets

Follow(S) | Follow(A)
0 | 0

First iteration

Follow(S) | Follow(A)
{$ | {a.b}

Second iteratfion

Follow(S) | Follow(A)
{$.0,6} | {o,b}

Advanced LL Parsing Techniques 10/38

| Standard LL(1) Parsing — Parsing Table | G

* We are filling two-dimensional fable M[X, a], where X are
symbols of the sentential form, and a are symbols of the
input.

® Forevery X — a, we add « on the index M[X, a] where ais
a terminal symbol from First(«) and, if it contains e, we also
add terminal symbols from Follow(X).

Initial parsing table

|alblc]|s

S
A
#

Advanced LL Parsing Techniques | 11/38

| Standard LL(1) Parsing — Parsing Table | G

S— aAb|bAa, A—cS|e

First(a) | First(b) | First(c) | First(S) | First(A)
{ap [{B} | {c} | {ab} | {ce}

Follow sets

Follow(S) | Follow(A)
{$,a,b} | {a,b}

Final parsing table

| a | b [c]| §
S || aAb | bAa
A € € cS
accept

Advanced LL Parsing Techniques | 12/38

| Standard LL(1) Parsing — Parsing Table | KA

¢ For the use with push-down automata we add pop rules for
terminal symobls on the stack to the parsing table.

Parsing table

| o [b [c | §
S||aAb | bAa
A € € cS
a || pop
b pop
€ pPop
accept

Advanced LL Parsing Techniques | 13/38

| Standard LL(T) Parsing — Conflicts | KEGE

Rules of G,

S — aAaa|bAba, A—Db|e

| o | b | 8

S|laAaa | bAba
A € b|e
#

accept

Advanced LL Parsing Techniques | 14/38

Full LL(T) Parsing

| Full LL(T) Parsing | KRG

The Follow sets from the standard LL(1) parsing only
approximate the possible follow-up symbols, and the
predictions can thus be wrong.

* We will compute precise sets of follow-up terminals
according to the current context.

e We will use auxiliary LL(1) tables to compute new
non-terminal symbols that hold information about possible
follow-up terminails.

Steps to create the parsing table:
@ create First sets (same as before)
® create an auxiliary LL(1) table for
the new start non-terminal [S, {$}]
® create auxiliary LL(1) tables for
other new non-terminals until their set stabilizes
O fill parsing table cells

Advanced LL Parsing Techniques | 16/38

| Full LL(T) Parsing — Auxiliary Tables | KRG

e Computing a table for non-terminal [X, N], for every X — «
we add a row into the table with following parts:
® Next - set of possible first ferminals computed from First(«)
and N
® Production - «
® Follow - for every a = gY~, add [Y, M] where M is a set of
possible first terminals computed from First(y) and N

Table [S, {$}
Next | Production | Follow

Advanced LL Parsing Techniques | 17/38

| Full LL(T) Parsing — Auxiliary Tables | KRG

Rules of G,

S— aAb|bAa, A— cS|e

First(a) | First(b) | First(c) | First(S) | First(A)
{ap [{B} | {c} | {ab} | {ce}

Initial auxiliary table

Table [S, {$}]
Next | Production | Follow
{a} aAb A, (b}
{b} bAa A {a}

Advanced LL Parsing Techniques | 18/38

| Full LL(T) Parsing — Auxiliary Tables

¢ We create remaining tables according to new
non-nonterminals from previous Follow columns.

Other auxiliary table

Table [A, {b}] Table [A, {a}]
Next | Production | Follow Next | Production | Follow
{c} cs [S.{b}] {c}) [S. {a}]
{b} £ - {a} B —

Table [S, {b}] Table [S, {a}]
Next | Production | Follow Next | Production | Follow
{a} aAb A, {b} {a} aAb A, {b}
(B} bAG A{a)] (b} bAG A {a]

Advanced LL Parsing Techniques

| Full LL(T) Parsing — Parsing Table | G

¢ The parsing table contains the new non-terminals instead
of the original non-terminals of the grammar. We also
replace non-terminails in the right-hand sides of rules.

Rules of G;

S— aAb|bAa, A—cS|e

| o [b | ¢ | 3
[S.{8}] [a[A.{b}Ib | b[A.{a}la
S,{a} al[A,{b}|b | b[A{a}] a
S,{b} alA{b}lb | bl[A{a}] a

A {a} € c[S, {a}
A {b} £ c[S, {b}
s accepft

Advanced LL Parsing Techniques | 20/38

| Full LL(T) Parsing — Comparison | G

Standard LL(T) parsing table

| o | b [c| $

S||aAb | bAa

A € € cS

i accept

| o [b | ¢ | 3
[5,{$}] || a[A {b}]b | b[A{a}]a
S, {a} alA{b}|b | b[A {a}] a
S, {b}] || a[A,{b}|b | b[A {a}] a
A {a} € c[S {a}
A {b} 5 c[S {b}
accept

Advanced LL Parsing Techniques | 21/38

General LL(k) Parsing

| General LL(k) Parsing | EGEH

¢ This technique generalizes full LL(1) parsing so that we can
use more than one symbol on the input for the prediction.

k has to be selected at the start
this method works with sefts of strings (not symbols)
e we are using k auxiliary symbols $ at the end of the input

Steps to create the parsing table:

@ create First sefs
@® create a auxiliary LL(k) table for
the new start non-terminal [S, {$¥}]
® create auxiliary LLK) tables for
other new non-terminals until their set stabilizes
O fill parsing table cells

Advanced LL Parsing Techniques | 23/38

| General LL(k) Parsing — First, Sets | G

New string operation @y

a@d, bc =ab
{g,ab,e} @, {aa, b} = {aa, ab, b}

Rules of G,

S — gAaa | bAba, A— b]|e

First, Sets

Firsty(a) | Firsty(b) | Firsty(S) | Firsty(A)
{a} | (b} |{oq,ab,bb} | (b}

Advanced LL Parsing Techniques | 24/38

| General LL(k) Parsing — Auxiliary Tables | G

Rules of G,

S — gAaa | bAba, A— b]|e

First, Sets

Firsty(a) | Firsty(b) | Firsty(S) | Firsty(A)
{af | (6] |({aa,ab.bb} | (b.&)

Initial auxiliary table

Table [S, {$$}]
Next | Production | Follow
{aa, ab} aAaa A {aa}
{bb} bAba A, {ba}

Advanced LL Parsing Techniques | 25/38

| General LL(k) Parsing — Auxiliary Tables | G

* We create remaining tables according to new
non-nonterminals from previous Follow columns.

Other auxiliary table

Table [A, {aa}] Table [A, {ba}]
Next | Production | Follow Next | Production | Follow
{ba} b - {bb} b -
{aa} € - {ba} € -

Advanced LL Parsing Techniques | 26/38

| General LL(k) Parsing — Parsing Table | ERGE

¢ The parsing table is indexed as M[X, a], where X are
symbols of the sentential form, and a are all possible
k-length strings of input symbols (padded with $).

Rules of G,

S — adAaa | bAba, A—Db|e

Parsing table

I aa | ab | a$ | ba | bb | b | 9%
[S,{$%}] || alA {aa}llaa | a[A {aa}]aa bl[A, {aa}]ba
A, {aa} € b
A, {ba} € b
accept

Advanced LL Parsing Techniques | 27/38

| General LL(k) Parsing — Parsing Table | G

e The position of pop rules depends on the first unprocessed
symbol of the input.

Parsing table

I aa | ab | a8 | ba | bb | b$ | 8%
[S.{$$}] || a[A,{aa}]aa | a[A {aa}]aa b[A, {aa}]ba
[A {aa}] e b
[A, {ba}] e b
a pop pop pop
b pop pop pop
accept

Advanced LL Parsing Techniques | 28/38

LL(k) Parsing for Automaton
with One-Symbol Reading Head

| LL(k) Parsing for PDA I

* We can modify the general LL(k) parsing table so that it is
suitable for a standard push-down automaton with a
one-symbol reading head.

¢ |n the original concept of LL(k) parsing, states of the
automaton are almost not utilized. Therefore, we can use
states to create a symbol buffer.

* We always use only one $ at the end of the input.

Steps to create the parsing table:

© create general LL(k) parsing table
® augment it with automaton states

Advanced LL Parsing Techniques | 30/38

| LL(k) Parsing for PDA - Parsing Table | G

* we use the standard notation for symbols on the stack
* we denote any terminal x of the input as [x]
¢ state buffer containing « is denoted as :a:

Non-terminals of the LL(2) parsing table for G,

For better readability, we set [S, {$$}] = S. [A, {aa}] = A;, and
[A, {ba}] = Ag.

Parsing table layout

|| states of length < k | states of length = k

stack parsing
symbols =LY actions
input input
symbols reading 3

Advanced LL Parsing Techniques | 31/38

| LL(k) Parsing for PDA - Parsing Table | KNG

Parsing table layout

| O |:a|:b | :aa | :ab: | :a$: | :ba: | :bb: | :b$: | $%:

>l

&

ol Q¥ TlQ

=

Advanced LL Parsing Techniques | 32/38

| LL(k) Parsing for PDA — State Transitions | G

e State fransitions depend only on k and terminals of the

grammar. We need to fill the table in a way so that the
states behave as a buffer.

Input reading part of the parsing table

|| {0’ | Q. | :b:
a Q. | :aa: | :ba:
b :b: | :ab: | :bb:
[$] || :$%: | :a%: | :D$:

Advanced LL Parsing Techniques | 33/38

| LL(k) Parsing for PDA - Parsing Table

| MR

* Pop rules read symbols from the stack and the state buffer.

Rules of G,

S — gAaa | bAba, A— b]|e

Final parsing table

H 0: ‘ :Q: ‘ :b: H

aa: | ab | a8 | ba: | bbb | b | 8%
S aA,aa | aA,aa bA,ba
A] € b
Ay € b
a pop :a: | pop :b: | pop :$$:
b pop :a: | pop :b: | pop :$$:
accept
[al || :a | :aa: | :ba:
o] || :b: | :ab: | :bb:
81 (8% [:a$: | bS:

Advanced LL Parsing Techniques | 34/38

LL(k) Parsing Table Generator

| LL(k) Parsing Table Generator

https://www.fit.vutbr.cz/~kocman/llkptg/
https://github.com/rkocman/LLk-Parsing—Table-Generator

LL(k) Parsing Table Generator
for Automaton with One-Symbol Reading Head

Authors: Radim Kocman and Dugan Kolaf, GitHub

Based on:
Kol4F, D. Simulstion of LLK Parsers with Wi Cortext by Automston with One-Symbol Resding Head.
&ho, &7, Liman, J D The Theary of Parsing, Translation, and Compiing, Yolume: | Parsing

Input Grammar: Example Grammar:
/* Insert yeour grammar */ $token a b
%% /* LL(2) */
§:akaa
| b Aba:;
A ¢ [Feps*t/
| b

Configuration:

: [whole process v |

Generate parsing table

Status: /nsert your grammar

Advanced LL Parsing Te

| KRG

36/38

https://www.fit.vutbr.cz/~kocman/llkptg/
https://github.com/rkocman/LLk-Parsing-Table-Generator

B

Parsing Techniques: A Practical Guide

B

The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing

B

Simulation of LLk Parsers with Wide Context
by Automaton with One-Symbol Reading Head

And that’s it!

	Motivation
	Standard LL(1) Parsing
	Full LL(1) Parsing
	General LL(k) Parsing
	LL(k) Parsing for Automaton with One-Symbol Reading Head
	LL(k) Parsing Table Generator

