
Advanced LL Parsing Techniques

Radim Kocman
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, Czech Republic

kocman@fit.vutbr.cz

LTA 2022 (December 5, 2022)



Table of Contents

Motivation

Standard LL(1) Parsing

Full LL(1) Parsing

General LL(k) Parsing

LL(k) Parsing for Automaton with One-Symbol Reading Head

LL(k) Parsing Table Generator

Advanced LL Parsing Techniques 2 / 38



Motivation

• Syntactic analysis
• The goal is to process the input string of tokens while following

the derivation of a selected grammar.
• This process recreates a derivation tree structure of the input

so that semantic actions can follow rules of the grammar.

• LL(k) parsing
• deterministic top-down method
• it simulates the left-most derivation of the grammar
• deterministic prediction for the next step is done according

to the left-most unprocessed symbols of the sentential form
and the input

• k represents the number of symbols on the input used for the
prediction

• if k = 1, (1) is often omitted from the name
• prediction can be implemented as a table look-up in

so-called parsing table

Advanced LL Parsing Techniques 3 / 38



Example LL(1) Grammar

Example LL(1) grammar G1

G1 = ({S,A}, {a,b,c},P, S)

where P contains:
S → aAb
S → bAa
A→ cS
A→ ε

Advanced LL Parsing Techniques 4 / 38



Example LL(2) Grammar

Example LL(2) grammar G2

G1 = ({S,A}, {a,b},P, S)

where P contains:
S → aAaa
S → bAba
A→ b
A→ ε

Advanced LL Parsing Techniques 5 / 38



Standard LL(1) Parsing



Standard LL(1) Parsing

• This is the most common technique. However, there exist
many variations of this parsing that slightly differ in details.

• The grammar can contain empty strings at the right-hand
side of the rules (ε-rules).

• We are using the following auxiliary symbols:
• $ at the end of the input
• # at the end of the generated sentential form

• Steps to create the parsing table:
1 create First sets
2 create Follow sets
3 fill parsing table cells

Advanced LL Parsing Techniques 7 / 38



Standard LL(1) Parsing – First Sets

• We are looking for first terminal symbols that can be
produced from a selected symbol.

• We iteratively compute First sets for every symbol of the
grammar until the sets stabilize.

Rules of G1

S → aAb | bAa, A→ cS | ε

Initial sets

First(a) First(b) First(c) First(S) First(A)

{a} {b} {c} {} {}

Final iteration

First(a) First(b) First(c) First(S) First(A)

{a} {b} {c} {a,b} {c, ε}

Advanced LL Parsing Techniques 8 / 38



Standard LL(1) Parsing – Follow Sets

• Due to ε-rules, we need to know what follows after
non-terminals.

• We iteratively compute Follow sets for every non-terminal of
the grammar until the sets stabilize.

• Computing Follow(X), for every X in Y → αXβ, we add
terminal symbols from First(β) to the set and, if it contains ε,
we also add terminal symbols from Follow(Y ) to the set.

Advanced LL Parsing Techniques 9 / 38



Standard LL(1) Parsing – Follow Sets

Rules of G1

S → aAb | bAa, A→ cS | ε

Initial sets

Follow(S) Follow(A)

{$} {}

First iteration

Follow(S) Follow(A)

{$} {a,b}

Second iteration

Follow(S) Follow(A)

{$,a,b} {a,b}

Advanced LL Parsing Techniques 10 / 38



Standard LL(1) Parsing – Parsing Table

• We are filling two-dimensional table M[X ,a], where X are
symbols of the sentential form, and a are symbols of the
input.

• For every X → α, we add α on the index M[X ,a] where a is
a terminal symbol from First(α) and, if it contains ε, we also
add terminal symbols from Follow(X).

Initial parsing table

a b c $

S
A
#

Advanced LL Parsing Techniques 11 / 38



Standard LL(1) Parsing – Parsing Table

Rules of G1

S → aAb | bAa, A→ cS | ε

First sets

First(a) First(b) First(c) First(S) First(A)

{a} {b} {c} {a,b} {c, ε}

Follow sets

Follow(S) Follow(A)

{$,a,b} {a,b}

Final parsing table

a b c $

S a A b b A a
A ε ε c S
# accept

Advanced LL Parsing Techniques 12 / 38



Standard LL(1) Parsing – Parsing Table

• For the use with push-down automata we add pop rules for
terminal symobls on the stack to the parsing table.

Parsing table

a b c $

S a A b b A a
A ε ε c S
a pop
b pop
c pop
# accept

Advanced LL Parsing Techniques 13 / 38



Standard LL(1) Parsing – Conflicts

Rules of G2

S → aAaa | bAba, A→ b | ε

Parsing table

a b $

S a A a a b A b a
A ε b | ε
# accept

Advanced LL Parsing Techniques 14 / 38



Full LL(1) Parsing



Full LL(1) Parsing

• The Follow sets from the standard LL(1) parsing only
approximate the possible follow-up symbols, and the
predictions can thus be wrong.

• We will compute precise sets of follow-up terminals
according to the current context.

• We will use auxiliary LL(1) tables to compute new
non-terminal symbols that hold information about possible
follow-up terminals.

• Steps to create the parsing table:
1 create First sets (same as before)
2 create an auxiliary LL(1) table for

the new start non-terminal [S, {$}]
3 create auxiliary LL(1) tables for

other new non-terminals until their set stabilizes
4 fill parsing table cells

Advanced LL Parsing Techniques 16 / 38



Full LL(1) Parsing – Auxiliary Tables

• Computing a table for non-terminal [X ,N], for every X → α
we add a row into the table with following parts:
• Next – set of possible first terminals computed from First(α)

and N
• Production – α
• Follow – for every α = βYγ, add [Y ,M] where M is a set of

possible first terminals computed from First(γ) and N

Table [S, {$}]
Next Production Follow

Advanced LL Parsing Techniques 17 / 38



Full LL(1) Parsing – Auxiliary Tables

Rules of G1

S → aAb | bAa, A→ cS | ε

First sets

First(a) First(b) First(c) First(S) First(A)

{a} {b} {c} {a,b} {c, ε}

Initial auxiliary table

Table [S, {$}]
Next Production Follow
{a} a A b [A, {b}]
{b} b A a [A, {a}]

Advanced LL Parsing Techniques 18 / 38



Full LL(1) Parsing – Auxiliary Tables

• We create remaining tables according to new
non-nonterminals from previous Follow columns.

Other auxiliary table

Table [A, {b}]
Next Production Follow
{c} c S [S, {b}]
{b} ε –

Table [A, {a}]
Next Production Follow
{c} c S [S, {a}]
{a} ε –

Table [S, {b}]
Next Production Follow
{a} a A b [A, {b}]
{b} b A a [A, {a}]

Table [S, {a}]
Next Production Follow
{a} a A b [A, {b}]
{b} b A a [A, {a}]

Advanced LL Parsing Techniques 19 / 38



Full LL(1) Parsing – Parsing Table

• The parsing table contains the new non-terminals instead
of the original non-terminals of the grammar. We also
replace non-terminals in the right-hand sides of rules.

Rules of G1

S → aAb | bAa, A→ cS | ε

Final parsing table

a b c $

[S, {$}] a [A, {b}] b b [A, {a}] a
[S, {a}] a [A, {b}] b b [A, {a}] a
[S, {b}] a [A, {b}] b b [A, {a}] a
[A, {a}] ε c [S, {a}]
[A, {b}] ε c [S, {b}]

# accept

Advanced LL Parsing Techniques 20 / 38



Full LL(1) Parsing – Comparison

Standard LL(1) parsing table

a b c $

S a A b b A a
A ε ε c S
# accept

Full LL(1) parsing table

a b c $

[S, {$}] a [A, {b}] b b [A, {a}] a
[S, {a}] a [A, {b}] b b [A, {a}] a
[S, {b}] a [A, {b}] b b [A, {a}] a
[A, {a}] ε c [S, {a}]
[A, {b}] ε c [S, {b}]

# accept

Advanced LL Parsing Techniques 21 / 38



General LL(k) Parsing



General LL(k) Parsing

• This technique generalizes full LL(1) parsing so that we can
use more than one symbol on the input for the prediction.

• k has to be selected at the start
• this method works with sets of strings (not symbols)
• we are using k auxiliary symbols $ at the end of the input

• Steps to create the parsing table:
1 create First sets
2 create a auxiliary LL(k) table for

the new start non-terminal [S, {$k}]
3 create auxiliary LL(k) tables for

other new non-terminals until their set stabilizes
4 fill parsing table cells

Advanced LL Parsing Techniques 23 / 38



General LL(k) Parsing – Firstk Sets

New string operation ⊕k

a ⊕2 bc = ab
{a,ab, ε} ⊕2 {aa,b} = {aa,ab,b}

Rules of G2

S → aAaa | bAba, A→ b | ε

First2 Sets

First2(a) First2(b) First2(S) First2(A)

{a} {b} {aa,ab,bb} {b, ε}

Advanced LL Parsing Techniques 24 / 38



General LL(k) Parsing – Auxiliary Tables

Rules of G2

S → aAaa | bAba, A→ b | ε

First2 Sets

First2(a) First2(b) First2(S) First2(A)

{a} {b} {aa,ab,bb} {b, ε}

Initial auxiliary table

Table [S, {$$}]
Next Production Follow

{aa,ab} a A a a [A, {aa}]
{bb} b A b a [A, {ba}]

Advanced LL Parsing Techniques 25 / 38



General LL(k) Parsing – Auxiliary Tables

• We create remaining tables according to new
non-nonterminals from previous Follow columns.

Other auxiliary table

Table [A, {aa}]
Next Production Follow
{ba} b –
{aa} ε –

Table [A, {ba}]
Next Production Follow
{bb} b –
{ba} ε –

Advanced LL Parsing Techniques 26 / 38



General LL(k) Parsing – Parsing Table

• The parsing table is indexed as M[X ,a], where X are
symbols of the sentential form, and a are all possible
k-length strings of input symbols (padded with $).

Rules of G2

S → aAaa | bAba, A→ b | ε

Parsing table

aa ab a$ ba bb b$ $$

[S, {$$}] a[A, {aa}]aa a[A, {aa}]aa b[A, {aa}]ba
[A, {aa}] ε b
[A, {ba}] ε b

# accept

Advanced LL Parsing Techniques 27 / 38



General LL(k) Parsing – Parsing Table

• The position of pop rules depends on the first unprocessed
symbol of the input.

Parsing table
aa ab a$ ba bb b$ $$

[S, {$$}] a[A, {aa}]aa a[A, {aa}]aa b[A, {aa}]ba
[A, {aa}] ε b
[A, {ba}] ε b

a pop pop pop
b pop pop pop
# accept

Advanced LL Parsing Techniques 28 / 38



LL(k) Parsing for Automaton
with One-Symbol Reading Head



LL(k) Parsing for PDA

• We can modify the general LL(k) parsing table so that it is
suitable for a standard push-down automaton with a
one-symbol reading head.

• In the original concept of LL(k) parsing, states of the
automaton are almost not utilized. Therefore, we can use
states to create a symbol buffer.

• We always use only one $ at the end of the input.

• Steps to create the parsing table:
1 create general LL(k) parsing table
2 augment it with automaton states

Advanced LL Parsing Techniques 30 / 38



LL(k) Parsing for PDA – Parsing Table

Notation
• we use the standard notation for symbols on the stack
• we denote any terminal x of the input as [x ]
• state buffer containing α is denoted as :α:

Non-terminals of the LL(2) parsing table for G2

For better readability, we set [S, {$$}] = S, [A, {aa}] = A1, and
[A, {ba}] = A2.

Parsing table layout

states of length < k states of length = k
stack

symbols empty
parsing
actions

input
symbols

input
reading empty

Advanced LL Parsing Techniques 31 / 38



LL(k) Parsing for PDA – Parsing Table

Parsing table layout

:0: :a: :b: :aa: :ab: :a$: :ba: :bb: :b$: :$$:

S
A1

A2
a
b
#

[a]
[b]
[$]

Advanced LL Parsing Techniques 32 / 38



LL(k) Parsing for PDA – State Transitions

• State transitions depend only on k and terminals of the
grammar. We need to fill the table in a way so that the
states behave as a buffer.

Input reading part of the parsing table

:0: :a: :b:
[a] :a: :aa: :ba:
[b] :b: :ab: :bb:
[$] :$$: :a$: :b$:

Advanced LL Parsing Techniques 33 / 38



LL(k) Parsing for PDA – Parsing Table

• Pop rules read symbols from the stack and the state buffer.

Rules of G2

S → aAaa | bAba, A→ b | ε

Final parsing table
:0: :a: :b: :aa: :ab: :a$: :ba: :bb: :b$: :$$:

S aA1aa aA1aa bA2ba
A1 ε b
A2 ε b
a pop :a: pop :b: pop :$$:
b pop :a: pop :b: pop :$$:
# accept
[a] :a: :aa: :ba:
[b] :b: :ab: :bb:
[$] :$$: :a$: :b$:

Advanced LL Parsing Techniques 34 / 38



LL(k) Parsing Table Generator



LL(k) Parsing Table Generator

https://www.fit.vutbr.cz/˜kocman/llkptg/
https://github.com/rkocman/LLk-Parsing-Table-Generator

Advanced LL Parsing Techniques 36 / 38

https://www.fit.vutbr.cz/~kocman/llkptg/
https://github.com/rkocman/LLk-Parsing-Table-Generator


References

Dick Grune and Ceriel J.H. Jacobs
Parsing Techniques: A Practical Guide
Springer, 2nd edition (2008)

Alfred V. Aho and Jeffrey D. Ullman
The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing
Prentice Hall, Inc. (1972)

Dušan Kolář
Simulation of LLk Parsers with Wide Context
by Automaton with One-Symbol Reading Head
MOSIS 2004



And that’s it!


	Motivation
	Standard LL(1) Parsing
	Full LL(1) Parsing
	General LL(k) Parsing
	LL(k) Parsing for Automaton with One-Symbol Reading Head
	LL(k) Parsing Table Generator

