
Selective increase in LL lookahead as an

alternative to factorization

Jakub Kocalka, xkocal00@�t.vutbr.cz

Factorization is a commonly used technique for transforming context-free
grammars to LL(1) grammars. This transformation introduces new nontermi-
nals into the grammar. While the original grammar was (hopefully) designed in
a readable way, with all nonterminals having clear semantic functions, these new
nonterminals are obscure, and break rules apart. This can cause the parser code
to become less readable, can make it more di�cult to assign semantic actions to
rules, and produces larger derivation trees. However, factorization is equivalent
to increasing the number of tokens the parser looks at during parsing, and can
be avoided by using a LL(k) parser.

Increasing the number of lookahead tokens an LL(k) parser needs to parse a
language increases the size of the parsing table substantially. This is problematic
both during the construction and during parsing when using the table. However,
in the case of factorization, we can predict in which cases we will actually need
to look at more than one token. Furthermore, recursive descent parsers don't
actually need to hold a parsing table. Selectively requesting multiple tokens
from the scanner instead of introducing obscure nonterminals (and therefore
functions in the parser code) can make these parsers much cleaner.

In this article, we present an algorithm for constructing a partially LL(k) ta-
ble by avoiding factorization. Next, we explore the e�ect this parsing algorithm
will have on the size of the resulting parsing table compared to factorization.
Finally, we provide an example recursive descent parser using this new parsing
algorithm, and compare it to a parser for a factorized grammar.

1


