Decompilation: Structure, Methods, Tools

Adam Sedmik, xsedmi04
Lukas Wagner, xwagnel0

Abstract

Decompilation is process of translating machine code back to original high level
programming language. Decompilers can be viewed as compilers, where source
and target languages are switched. Although decompilers can be of a different
structure compared to traditional compiler. Sometimes, the term decompiler
is used for dissasemblers which merely convert binary programs to low level
assembly language. This dissasembly is only a single step of the decompilers
that attempt to reconstruct original higher level source code.

Decompilation is very difficult process, which is often undecidable; therefore,
methods used aim at least for partial decompilation. These methods are divided
into stages, giving us the structure of decompiler. The first stage is dissasembly,
where machine code instructions can be converted into more easily analyzable
intermediate representation. Before conversion to code, there are the syntax
and semantic analysis stages, which look for idioms. Idiom is sequences of
machine code that can be converted to single complex expression. Next stage
is control flow analysis, searching for high level control structures. Following is
data flow analysis, including analysis of variables and more complex expressions.
Finally there is code generation, where code of target high level language will
be generated based on control flow and intermediate instructions.

This presentation focuses on the basic structure of decompilers and explore
some of the methods used in analysis. In the end, we list some popular decom-
pilers, for a quick look on how they handle decompilation.



