Grammars for problems solved by dynamic software
systems

David Martinek
October 21, 2011

Abstract

Contemporary, commonly used software engineering techniques do not consider the
possibility of development of a system during its goal exercise. A transition from a model
to its software implementation is only one-way in such systems. The resulting software
system deterministically processes exactly described problem.

Dynamic software architectures allow to solve even problems whose specifications
change during the run-time. Specifications of the problem can be modified by external
influences that were not known during programming of the software system. Specifica-
tions of the problem can also be modified as a result of activity of the software system
itself. Dynamic software architecture allows programming by models that are created and
simulated during the run-time. Design of such systems accounts for such technologies like
for example technology of software agents, reflective systems, or genetic algorithms.

Remarkable way of use of dynamic software systems is solving tasks with too large
or not known in-the-time-of-design state space. The important parts of the state space
are mapped and described during the execution of the software system solving of the
task. The description can be subsequently used for more effective implementation of the
software system.

Tasks of dynamic planning and organising are examples of problems that are solvable
by dynamic software systems. The goals of these tasks involve creating and deriving
of effective plans of different, usually parallel activities that use shared resources. The
number of shared resources and boundary conditions of their use can change during the
run-time and these changes need not be known before. So, the program must react
dynamically to these changes.

The common software systems solve problems, that are deterministic by its nature.
These problems can be described by languages generated by context-free grammars. Dy-
namic software architectures allow creating of programs that can solve even nondeter-
ministic problems. The usual price for that is computational time because such systems
are less effective than "hard wired” programs. The languages that describe the class
of problems solvable by dynamic software systems can be generated by context-sensitive
grammars. Specifications of some problems are changed or particularised during solving
of these problems, so complete languages of these specifications or their grammars are not
known in advance but they are also particularised during the run-time. Such improved
grammars can be used for reprogramming of software systems or at least theirs parts.

The goal of this work is to create dynamic software system capable of reactions to the
task formulation changes during the run-time and of particularisation of the grammar of
solved task specifications at the same time.



