Tree Edit Distance in a Document Comparison

Martin Milička

Brno University of Technology

LANGUAGE THEORY with APPLICATIONS 2011

Content

- Motivation
- 2 Tree Edit Distance (TED)
- 3 Document Model
 - Translation
 - Document Compression
- 4 Tree Edit Distance in a Document Comparison

Motivation

In some cases, the textual based comparison is not good enough for a document comparison because there is missing a visual influence. It brings a human perception. In HTML, we are talking about structure based similarity.

- Document comparison
 - textual approach (text)
 - visual approach (structure, colour, sizes, etc.)
- Tree
 - is a well studied combinatorial structure in computer science
 - is a finite connected acyclic graph with distinguish root node
- Tree comparison
 - occurs in several areas (biology, structured text databases, image analysis, compiler optimalization)

Tree Edit Distance (TED)

Definition

The algorithm searches the sequence of edit operations turning tree T_1 into tree T_2 . Tree edit distance is a sequence with the minimum cost. Evaluates the structural differences between DOM trees.

Cost function: defines the cost of every edit operation

Edit operations: insertion, deletion and relabeling

Specific tree notation:

- Order x Unorder tree (connection to a time complexity)
- Labeled x Unlabeled tree

Basic Operations

The operations are defined on pairs of nodes.

Relabeling

- changes the label of the node label l_1 to l_2

Deleting

- non-root node l_2 with parent l_1 .
- making the children of l_2 to become the children of l_1

Inserting

- the complement of delete

Document Model

- Elements of web document are defined in DOM
- DOM has a tree structure
- DOM is an ordered tree
- DOM is a labeled tree each node has a name

Problem: DOM trees are too complex for a tree structure comparison

Solution: abstraction + compression

Translation

Visual (class) tag	HTML tags
grp	table, ul, html, body, tbody, div, p
row	tr, li, h1, h2, hr
col	td
text	otherwise

$$\Sigma_{\mathbb{V}} = \{\textit{grp}, \textit{row}, \textit{col}, \textit{text}\}$$

$$au rn :: au(\mathcal{T} ext \cup \mathcal{T} ag)
ightarrow au(\Sigma_{\mathbb{V}})$$
 $au rn(f(t_1,...,t_n)) = \left\{egin{array}{ll} lpha(f) & n=0 \ lpha(f)(trn(t_1),...,trn(t_n)) & otherwise \end{array}
ight.$

where
$$\alpha:: (\mathcal{T}\mathit{ext} \cup \mathcal{T}\mathit{ag}) \to \Sigma_{\mathbb{V}}$$

$$\tau(\Sigma_{\mathbb{V}}) \text{ term of algebra } \Sigma_{\mathbb{V}}$$

$$\mathit{page} \in \tau(\mathcal{T}\mathit{ext} \cup \mathcal{T}\mathit{ag})$$

Document Compression

 $\tau\left([\mathbb{N}]\Sigma_{\mathbb{V}}\right)$ is a marked term where \mathbb{N} is a number of occurrence

For example: [2]row([1]text)

Compression types:

- horizontal
- vertical

Horizontal Compression

Let
$$t=[r_1]f(t_1,...,t_n)$$
, $s=[r_2]f(v_1,...,v_n)\in au([\mathbb{N}]\Sigma_\mathbb{V})$ where $t\equiv_{\Sigma_\mathbb{V}} s$

$$egin{aligned} \mathit{join} :: & \tau([\mathbb{N}]\Sigma_{\mathbb{V}}) imes au([\mathbb{N}]\Sigma_{\mathbb{V}})
ightarrow au([\mathbb{N}]\Sigma_{\mathbb{V}}) \end{aligned} \ \ egin{aligned} \mathit{join}(t,s) &= \widehat{\mathit{join}}(t,s,1,1,1) \end{aligned}$$

The auxiliary function \widehat{join} is defined as:

$$\widehat{join} :: \tau([\mathbb{N}]\Sigma_{\mathbb{V}}) \times \tau([\mathbb{N}]\Sigma_{\mathbb{V}}) \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \tau([\mathbb{N}]\Sigma_{\mathbb{V}})$$

$$\widehat{join}(t, s, k_1, k_2, p) = \begin{cases} [m]f & n = 0 \\ [m]f(\widehat{join}(t_1, v_1, r_1, r_2, m), ..., \\ \widehat{join}(t_n, v_n, r_1, r_2, m)) & n > 0 \end{cases}$$

where
$$m = \lceil (r_1 * k_1 + r_2 * k_2)/p \rceil$$

Horizontal Compression

Example:

The number of *rows* is computed as $m = \lceil (1*2+5*6)/6 \rceil$.

Horizontal compression

$$\mathit{hrz}(t) = \left\{ \begin{array}{ll} t & \textit{n} = 0 \\ \mathit{hrz}(f(t_1, ..., t_{i-1}, s, t_{j+1}, ..., t_n)) & ((1 \leq i \leq j \leq n) \text{ and} \\ \mathit{where } s = \mathit{join}(t_i, ..., t_j) & (t_i \equiv_{\Sigma_{\mathbb{V}}} t_{i+1} ... t_{j-1} \equiv_{\Sigma_{\mathbb{V}}} t_j)) \\ f(\mathit{hrz}(t_1), ..., \mathit{hrz}(t_n)) & \mathit{otherwise} \end{array} \right.$$

Vertical Compression

The safe vertical conditions (SVC):

```
r=1 (number of repetition)

n=1 (number of children)

\neg(f\equiv group \land root(t_1)\not\equiv group) (preserve the page structure)

root(t_1)\not\equiv text (preserve the information in page)
```

Let $t = [r]f([m]g(t_1,...,t_n)) \in \tau([\mathbb{N}]\Sigma_{\mathbb{V}})$ and if the rules of Save vertical compression are fulfilled then the *shrinking* of t is defined as:

$$shr:: au([\mathbb{N}]\Sigma_{\mathbb{V}}) o au([\mathbb{N}]\Sigma_{\mathbb{V}}) \ shr([r]f([m]g(t_1,...,t_n)))=\left\{egin{array}{ll} [r]f(t_1,...,t_n) & m=1\land g\not\equiv group \\ [m]g(t_1,...,t_n) & otherwise \end{array}
ight.$$

Vertical Compression

Vertical compression

$$extit{vrt} :: au([\mathbb{N}]\Sigma_{\mathbb{V}})
ightarrow au([\mathbb{N}]\Sigma_{\mathbb{V}})$$
 $extit{vrt}(t) = \left\{egin{array}{ll} t & n = 0 \ & extit{vrt}(shr(t)) & t & obeys SVC \ & [r] f(extit{vrt}(t_1),..., extit{vrt}(t_n)) & otherwise \end{array}
ight.$

Tree Edit Distance in a Document Comparison

Let $nd_1, nd_2 \in [\mathbb{N}] \Sigma_{\mathbb{V}}$ be two marked trees. Then λ denotes a fresh symbol that represents the empty marked term, i.e., [0]t for any t.

Each edit operation is presented as:

$$(nd_1 o nd_2) \in ([\mathbb{N}] \, \Sigma_{\mathbb{V}} imes [\mathbb{N}] \, \Sigma_{\mathbb{V}}) \backslash (\lambda, \lambda)$$
 where $(nd_1 o nd_2)$ is relabeling if $nd_1 \not\equiv \lambda$ and $nd_2 \not\equiv \lambda$ is an insertion if $nd_1 \equiv \lambda$

Metric cost function:

$$\gamma :: ([\mathbb{N}] \, \Sigma_{\mathbb{V}} \times [\mathbb{N}] \, \Sigma_{\mathbb{V}}) \backslash (\lambda, \lambda) \to \mathbb{R}$$

$$\gamma(\textit{nd}_1 \to \textit{nd}_2) = \begin{cases} 0 & \textit{nd}_1 \equiv_{\Sigma_{\mathbb{V}}} \textit{nd}_2 \\ r_2 & \textit{nd}_1 \equiv_{\Sigma_{\mathbb{V}}} \lambda & \textit{(insertion)} \\ r_1 & \textit{nd}_2 \equiv_{\Sigma_{\mathbb{V}}} \lambda & \textit{(deletion)} \\ \textit{max}(\textit{r}_1, \textit{r}_2) & \textit{otherwise} & \textit{(relabeling)} \end{cases}$$

Tree Edit Distance in a Document Comparison

The cost of a sequence $S = s_1, ..., s_n$ of edit operations is given by

$$\gamma(S) = \sum_{i=1}^{n} \gamma(s_i)$$

The *edit distance* $\delta(t_1, t_2)$ between two trees t_1 and t_2 is defined:

$$\delta(t_1, t_2) = \min\{\gamma(S)\}\$$

Web pages comparison

$$egin{aligned} \mathit{cmp} :: au\left([\mathbb{N}]\Sigma_{\mathbb{V}}
ight) imes au\left([\mathbb{N}\Sigma_{\mathbb{V}}
ight)
ightarrow [0..1] \ & \ \mathit{cmp}(t,s) = 1 - rac{\delta(t_{\mathit{zip}}, s_{\mathit{zip}})}{|t_{\mathit{zip}}| + |s_{\mathit{zip}}|} \end{aligned}$$

where $t,s\in \ au\left([\mathbb{N}]\Sigma_{\mathbb{V}}\right)$ are two pages,

 t_{zip}, s_{zip} are irreducible visual represenatives of t and s

References

M. Alpuente, D. Romero.

A Visual Technique for Web Pages Comparison. Theoretical Computer Science, 235:3–18, 2009.

P. Bille.

A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1-3):217–239, 2005.

G. Valiente.

An Efficient Bottom-Up Distance between Trees. 8th International Symposium of String Processing and Information Retrieval, 212-219, 2001

Thank you for your attention.

Questions?