Multiobjectove Grammatically-based Genetic Programming

Author: Ing. Jifi Petrlik
TID 2011

© Multiobjective optimization
@ Genetic programming
© Grammatically-based genetic programming

@ Why use multiobjective optimization in the
grammaticaly-based genetic programming?

2/ 25

Multiobjective optimization problem

@ To choose a suitable solution we should consider more than
one objective.

@ In the case of digital circuits design we should consider delay,
prize, transistor count, etc. Some of them are opposite.

@ Usually there is no the best solution. We must choose
compromise.

3/ 25

Multiobjective optimization problem

e Formally multiobjective problem is a vector function f which
maps a vector of m parameters to a vector of n objectives.

min/max y = f(x) = (f(x), f2(x), ..., fa(x))
subject to x = (x1,Xx2, ..., Xm) € X
.y = (}/17)/27-"ayn) € Y

@ X is the parameter space

@ Y is the objective space [2]

Fitness assignment strategies

@ Aggregation methods

e Transform results of multiple objective functions into one
scalar function.
o For example weighted sum approach.
o To use these methods we need domain knowledge.
e They don't provide family of solutions.
@ Pareto-based fitness assignment
e uses Pareto dominance

5/ 25

Pareto dominance

@ Intuition: Solution a is better than solution b if and only if a is
better or the same quality in all objectives and better in at
least one objective.

e For minimization problem a dominate b (a - b), if and only if

o Vie{l,2,...,n}:fi(a) < fi(b) A
o Jje{1,2,...,n}: fi(a) < fi(b) [2]
@ Solution a covers solution b (a = b), if and only if

ea->byv
o f(a) =f(b) [2]

Pareto-optimal front

@ Solution a € X is Pareto optimal if and only if there is no
other solution b € X which dominates a in the search space.

2]
@ Pareto-optimal front is a set of Pareto optimal solutions. [2]

@ We usually want to find solutions on the Pareto front, or near
the Pareto front.

7/ 25

Pareto-optimal front

100

@ A> C ? No because f(A) > f2(C) breaks the first condition.
e C > A7 No because fi(C) > f1(A) breaks the first condition.

Pareto-optimal front

()

@ A> B 7 Yes, because:
o 1(A) < fi(B) and £(A) < f(B) (condition 1. is passed)
o fi(A) < fi(B) (condition 2. is passed)

9/ 25

Pareto-optimal front

(%)

o A~ A7 No because fi(A) £ fi(a) and (A) £ f(A) breaks
the second condition.

Genetic algorithm

@ Randomly generate set of solutions (first population Pyp).
@ Evaluate quality of candidate solutions.

@ If termination condition was passed, then finish. (max.
iteration count, sufficient solution found)

© Reproduction phase (operators crossover and mutation).

@ Choose solutions into the new population (Pry1).

Genetic algorithm - three main difficulties

@ How to represent solutions.

e Binari vector, vector of integers, etc.
e Directed graph, tree.

@ How to evaluate quality of solution.
@ single objective problems x multiobjective problems

© How to implement operators crosover and mutation.

How to represent solutions

@ Production rule sequence encoding

e Linear genome - typically vector of integers, or binary string.
e It's necessary to use mapping before evaluating quality of
solution.

@ Solution encoding individual
o Tree representation. It will be shown in next slides.

Solution-encoding individual

e We must define context free grammar (N, T,P,S).

@ Solutions are represented as trees in which non-leaf vertices
are nonterminal symbols and leaf vertices are terminal
symbols.

Example of simple program [1]

[a0 [a1 [a [out]
0

R PR Olo|olo

=l k=l =l =)
OOl O+ o

k=l =l =] =)

o Context free grammar:

e N={S5B,T}

e T ={and,or,not,ap,ar,az}
S - B

B —and BB|orBB|notB| T
T—>ao|al|32

Example of simple program [1]

read >

and(or(ao, a1), not(az))

16/ 25

Creating the initial population

@ Let p: A — « is a production, /, is a number of minimum
derivation steps to create string of terminals (A = a =/ 3
where g € T%).

@ To generete Py call procedure Generate(S,D).

@ D is the maximal depth of tree.
o Generate(A,D)
© Randomly select production p: A — « with [, < D.

@ Connect each symbols from o to A
© For each nonterminal B; € « call Generate(B;,D — 1).

Crossover

@ Select two programs p; and po.

@ Randomly select one non-terminal A € p;.
@ If A¢ p> go back to step 2.

@ Randomly select A € p».

© Swap subtree under non-terminal A from p; with subtree
under non-terminal A from p. [1]

J9A0SSOUID

—
()
>
(@)
()]
(72]
(@)
e
)

Randomly select one progam p.
Randomly select one non-leaf vertex A € p.

Delete subtree under the chosen vertex.

For vertex call procedure Generate(A,D) and connect new tree
under the chosen vertex.

Advantages of grammar based genetic programming

@ Can incorporate more knowledge about the problem into
algorithm.

@ Enables to use data types.

e Has wide range of applications (symbolic function regression,
clustering, search for topology of neural network, data mining,
evolving rule sets etc.)

Why multiobjective?

Why use multiobjective genetic algorithms in grammar based
genetic programming:
@ To avoid "bloat" - situation when depth of trees rise and
quality of programms is constant.

@ When we need to optimize program on more than one
objective.

22/ 25

@ Authors: Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal
@ Uses nondominating sorting approach.
@ Uses density estimation approach.

@ Doesn't need any additional parameters like sharing
parameter. [3]

23/ 25

[1] Whigham P. A. Grammaticaly-based genetic programming,
proceedings of the workshop on GP: from theory to real-worl
applications, Tahoe City, 1995, pp. 33-41

[2] Zitzler E., Deb K. Thiele L. Comparision of multiobjective
evolutionary algorithms: Empirical results (revised edition),
Technical Report 70, Computer Engeneering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology Zurich,
Switzerland

[3] Deb K., Agrawal S., Pratap A., Meyarivan T. A fast and elitist
nondominated sorting genetic algorithm for multiobjective
optimization: NSGA-II, in Parallel Problem Solving from Nature -
PPSN VI, Berlin, pp. 849-858. Springer

[4] Pappa G. L., Freitas A. A. Evolving rule induction algorithms
with multi-objective grammar-based genetic programming,
Knowledge and Information Systems, Vol 19., Num. 3, 2007, pp.
283-309

24/ 25

End

Thank you for your attention.

?

25/ 25

